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Abstract—This paper studies the effect of rate adaptation
in time slotted Internet of things (IoT) networks. For a given
time slot duration and packets size, rate adaptation necessitates
packet fragmentation to fit the time slot duration. Accounting
for the quality and time resolution of the underlying traffic,
this paper characterizes the tradeoff between transmission rate
and packet latency in IoT networks. Using tools from stochastic
geometry and queueing theory, a novel mathematical framework
is developed for static and dynamic rate adaptation schemes. The
results show that there is an optimal static rate that minimizes
latency, which depends on the network parameters. Furthermore,
the dynamic rate is shown to be resilient to different variations
in the network parameters without sacrificing packet latency.

Index Terms—Stochastic geometry, Markov chains, Internet of
things, rate adaptation, latency.

I. INTRODUCTION

The Internet of things (IoT) is expected to extend wireless

connectivity to a multitude of devices with sporadic traffic

(e.g., measurements or updates) [1], [2], which necessitates

traffic and topology aware performance characterization. In

this regards, stochastic geometry and queueing theory are

jointly utilized to account for the mutual interference and

the underlying traffic requirements of the IoT devices [1]–[7].

However, it is generally assumed that the generated packets

can always fit within the time-slotted system regardless of the

adopted transmission rate. However, rate adaptation require

packet fragmentation to fit the time slot duration, which

imposes a delicate tradeoff between reliability and latency.

To the best of the author’s knowledge, the tradeoff between

rate adaptation and packet latency in slotted large-scale IoT

networks is still an open problem. This paper presents a

novel spatiotemporal model to characterize such important

tradeoff under static and dynamic rate adaptation schemes.

Depending on the network parameters, we show that there

exists a static rate that minimizes latency. In addition, we

highlight the resilience of dynamic rate adaptation scheme, to

different network parameters and packet sizes, at the expense

of slightly increased latency.

A. Notations

Upright and italic fonts are used, respectively, to denote

random variables (e.g., v) and their instantiations (e.g., v).

Vectors are bolded, e.g., v; matrices are bolded and uppercase,

e.g., V . The notations I, 0, and e are used, receptively, for

the identity matrix, the zeros matrix, and the column vector of

ones, all with the appropriate sizes. The notation [·]T denotes
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the transpose operator, N (·) denotes the null space of a matrix,

and V [i,j] denotes the ith-row jth-column element. V [:,j] is

used to denote all elements in the jth column within V . We

use P{·} and E{·} to denote the probability and expectation,

respectively. The over-bar denotes the complement operator,

i.e., v̄ = 1−v, ‖ · ‖ denotes the Euclidean norm, and 1{E}

denotes the indicator function, which is equal to 1 if the event

E is satisfied and 0 otherwise.

II. SYSTEM MODEL

A. Intended Link

We consider an arbitrary IoT transmitter-receiver pair that

are separated by R◦ meters. The transmitter emits wt Watts

within the frequency band (W ) to communicate to its intended

receiver according to a time-slotted system with slot duration

Ts. In each time slot, the intended transmitter generates a

packet of size L bits with probability α. The intended traffic

is parameterized with L and α to reflect the quality and time

resolutions of the generated measurements/updates. Generated

packets are stored in a buffer to be transmitted via a first in

first out (FIFO) discipline. The transmitter can operate with

one of N different transmission rates R1 > R2 > · · · > RN .

The rate Rn is defined such that packets are fragmented to n
equal fragments, where the transmission of each fragment fits

within one time slot duration Ts. Hence, Rn is given by

Rn =
L

n× Ts
= ζW log2 (1 + θn) , (1)

where 0 < ζ ≤ 1 captures the gap between practical

transmission rates when compared to Shannon’s capacity1

and θn is the signal-to-interference ratio (SIR) required to

correctly decode the fragment at the receiver. Operating at R1

(resp. RN ) require at least n = 1 (resp. n = N ) time slots to

deliver one packet. It is worth noting that N < 1
α should be

enforced for stable (i.e., finite latency) link operation.

B. Interference Model

A heterogeneous Poisson field (HPF) of interferers is as-

sumed.2 The HPF is modeled via an arbitrary realization of

a marked Poisson point process (PPP) Ψ × v ⊂ R
2 × V . In

1Due to practical considerations (e.g. finite blocklengh), it is only feasible
to operate reliably at a certain percentage of the theoretical Shannon’s
capacity [8].

2The HPF implies an ad hoc network with distributed administration where
the intended and interfering links are deployed and operated by end users.
Centralized administration with unified parameters and operation is addressed
in [2], [4], [5], [7] for ad hoc networks and in [1], [3], [6] for cellular networks.
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particular, Ψ ⊂ R
2 is a PPP, with intensity λ, that denotes the

locations of the interfering devices. Each interfering device is

marked via a random mark v ∈ V = {1, 2, · · · , V }, which

denotes the type of the IoT device. Hence, the mark v
.
= v

determines the transmission power wv ∈ {w1, w2, · · · , wV }
and the activity factor κv ∈ {κ1, κ2, · · · , κV } of the IoT

device. The mark v has an arbitrary density function fv(·) that

is independent from the devices locations. The HPF represents

other types of coexisting IoT devices with locations and marks

that are considered static once realized. Such assumption is

justified by the short time slot duration that prohibits tangible

variation in the locations or types of the coexisting devices.

C. Fading Model

Transmitted signals are subject to both path-loss and multi-

path Rayleigh fading. In particular, the signal power decays

at the rate r−η with the distance r, where η > 2 is the

path-loss exponent. In addition, signals powers experience

independent and identically distributed unit mean exponential

block channel fading.

D. Fragments Transmission Model

Due to fading and interference, transmission outages may

occur. Particularity, when operating with rate Rn, a fragment

of size ⌈L
n ⌉ bits is successfully delivered to the intended

receiver if the SIR fulfills the decoding threshold θn =

2
Rn
ζW − 1 = 2

L
nζWTs − 1. Fragments that are correctly received

at the intended receiver are dropped from the transmitter’s

buffer. Otherwise, retransmissions are attempted until success-

ful packet delivery.

We consider both static and dynamic rate adaptation

schemes. In the static case, the rate Rn is predetermined

offline and is never changed during the device operation. In the

dynamic case, online rate control is realized via two param-

eters, namely the decrement probability d and the increment

probability u. Dynamic rate adaptation is only performed for

the first fragment of each packet. Then, the same rate is utilized

for all fragments within the same packet.3 If the transmission

of the first fragment at rate Rn fails, the intended transmitter

opts to utilize Rn+1 with probability d and persists on Rn

with probability 1 − d. Upon the successful transmission of

the last fragment of a packet with rate Rn, the intended

transmitter explores Rn−1 for the first fragment of the next

packet with probability u or exploits Rn with probability 1−u.

Such randomized rate adaptation scheme requires no control

overhead and is adequate for IoT device-to-device links.

III. ANALYSIS

By virtue of the independent thinning property of the PPP,

we first split Ψ into V independent PPPs denoted as Ψv with

intensities λv = fv(v)λ. Let pn = P{SIR ≥ θn
∣

∣Ψ} be the

probability that a fragment of size ⌈L
n ⌉ bits is successfully

transmitted when operating at rate Rn. Without loss of gen-

erality, the intended receiver is assumed to be located at the

3Fixing the transmission rate per packet reduces the overhead required for
fragment tracking and decoding as well as packet reassembly at the receiver.

origin. Accounting for the rate dependent SIR threshold, pn
can be expressed as

pn=P

{

wth◦‖x◦‖−η

∑V
v=1

∑

xi∈Ψv
1{Ei}wv gi ‖xi‖−η

>θn
∣

∣Ψ

}

=

V
∏

v=1

∏

xi∈Ψv

(

κv

1 + θn
wvR

η
◦

wt‖xi‖η

+ (1− κv)

)

, (2)

where x◦ is the location of intended transmitter, h◦ is the

intended channel gain, xi ∈ Ψv is the location of an interfering

IoT device of type v, gi is the interfering channel gain, Ei is

the event that the interfering IoT device is active. Note that

(2) is obtained substituting R◦ = ‖x◦‖ and averaging over the

devices types, activities, and fading gains.

Due to the fixed realization of the HPF, the transmission

success probability (TSP) is a function of the relative locations

between the intended receiver and interfering IoT devices.

Such realization dependent TSP is fully characterized via the

meta distribution of the TSP [9], which is defined as

F̄s(θn, γ) = P
{

P
{

SIR > θn
∣

∣Ψ
}

> γ
}

= P {pn > γ} , (3)

where the TSP (pn) is defined as a random variable to account

for the different realizations of the HPF. In particular, for each

rate Rn, (3) defines the likelihood that the intended IoT link

exists within a realization of the HPF such that the required

decoding threshold θn is fulfilled for more than γ percent of

the time. Hence, (3) generalizes the SIR model for the intended

IoT link to all realizations of the HPF with a given set of

parameters. For tractable analysis [9], the distribution in (3) is

approximated as shown in the following proposition.

Proposition 1: The likelihood that an IoT link successfully

communicate with the transmission rate Rn for more than γ
percent of the time is approximated as

F̄s(θn, γ)≈1−Iγ

(

µn(µn − νn)

νn − µ2
n

,
(1− µn)(µn − νn)

νn − µ2

)

,

(4)

where µn and νn are the first two moments of the TSP at

rate Rn, and Iγ(a, b) = 1
B(a,b)

∫ γ

0 ta−1(1 − t)b−1dt is the

regularized incomplete beta function. The moments µn and

νn are given by

µn = exp

{

−Υθ
2

η
n

V
∑

v=1

(

wv

wt

)
2

η

κvλv

}

, (5)

and

νn=exp

{

−Υθ
2

η
n

V
∑

v=1

(

wv

wt

)
2

η

κvλv

(

2−
(

1−
2

η

)

κv

)

}

. (6)

where Υ =
2π2R2

◦

η sin(2π/η) .

Proof: The proof follows [9] while accounting for the

rate dependent threshold θn and the HPF parameterized by V ,

fv(·), w, and κ.

To conduct the queueing analysis, we discretize the distribu-

tion in (4) for each rate Rn to M equiprobable TSP classes.

Each of the TSP classes captures all HPF realizations that

would lead to a TSP within a certain range. To define the TSP
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ranges for the different classes, we set ω0 = 0 and ωM = 1,

and define the set {ω2, ω3, · · · , ωM−1} such that

F̄s(θn, ωm)− F̄s(θn, ωm−1) =
1

M
. (7)

The TSPs within the range [ωm, ωm+1] are approximated via
the median value pn,m, which is given by

F̄s(θn, ωm)−F̄s(θn, pn,m)=
1

2M
. (8)

The above discritization implies that the likelihood for the

intended IoT link to operate with any of the TSPs pn,m ∀m is
1
M . Using the discretized pn,m ∀(n,m) pairs, we can construct

a queueing model for each TSP class for static and dynamic

rate adaptation schemes. Recall that each rate Rn spans the

transmission of the packets over at least n time slots. However,

due to outages, the number of required time slots to deliver

a packet is a random variable that varies across different TSP

classes. For each TSP class, let kn,m be a random variable

representing the number of time slots required to deliver all

fragments that belong to the same packet when operating

with Rn, then it is straightforward to show that kn,m has the

following distribution,

P{kn,m = k|Rn} =

(

k − 1

n− 1

)

(pn,m)n(1− pn,m)k−n, (9)

where n ≤ k ≤ ∞ and E {kn,m} = n
pn,m

. For each TSP

class, the distribution in (9) captures the dependency between

the transmission rate and latency for each packet.

In the following, we construct the queueing model to track

the buffer state at the intended transmitter while accounting

for the TSP class and transmission rates. Utilizing the matrix

analytic method (MAM) [10], we use a hierarchical approach

to construct the queueing transition matrix. At the top-level,

P tracks the number of packets in the transmitter’s buffer.

Since at most one packet can arrive or depart from the buffer

at each time slot, the buffer states can be tracked via a quasi-

birth-death (QBD) process with the following transition matrix

P=















B C 0 0 0 . . .

E A1 A0 0 0
. . .

0 A2 A1 A0 0
. . .

...
. . .

. . .
. . .

. . .
. . .















, (10)

where the sub-matrices A2, A1, and A0 track the transitions

for which the number of packets in the buffer, respectively,

decreases by one, remains constant, and increases by one. The

sub-matrices B, C , and E are the boundary matrices that track

the transitions within, from, and to the idle state (i.e, empty

buffer state). The detailed structure of the the sub-matrices

within (10) depends on the rate adaptation scheme (i.e., static

or dynamic), the TSP class, and the transmission rate.

1) Static Rate: For a static rate of Rn, we define the

phase (PH) type distribution (see [10, Sec. 2.5.3]) with 1× n
initialization vector

βn = [1, 0, · · · , 0], (11)

and n× n transient matrix

Tn,m=

















p̄n,m pn,m 0 . . . 0

0 p̄n,m pn,m
. . . 0

...
. . .

. . .
. . .

...

0 · · · 0 p̄n,m pn,m
0 · · · 0 0 p̄n,m

















, (12)

which tracks the transmission success/failure of the n-

fragments within each packet for each TSP class m when

operating with rate Rn. Note that (11) and (12) are the PH-

type representation of the distribution in (9). Let sn,m =
e − Tn,me, where e is a column vector of ones. Then the

QBD for the static rate can be defined by the transition matrix

in (10) with the following parameters

B = ᾱ, C = αβn, E = ᾱsn,m, A0 = αTn,m,

A1 = αsn,mβn + ᾱTn,m, A2 = ᾱsn,mβn.
(13)

The stability of the static rate with such transition matrix is

characterized in the following lemma,

Lemma 1: For the TSP class m ∈ {1, 2, · · · ,M} and static

transmission rate Rn, the QBD model in (10) with parameters

in (13) is stable if and only if
pn,m

n > α.

Proof: Follows from the distribution in (9), where the

system is stable if the packet departure rate
pn,m

n is higher

than the packet arrival rate α.

Remark 1: The stability condition in Lemma 1 is important

to determine the necessity of packet fragmentation. For a given

traffic parameters L and α, the feasible rates Rn (i.e., that

guarantees finite latency) should satisfy n
pn,m

< 1
α .

Let πn,m = {πn,m,0,πn,m,1,πn,m,2, · · · } be the steady state

solution of queueing model for the TSP class m operating with

static rate Rn, where πn,m,0 (resp. πn,m,k) is the probability

of having zero (resp. k) packets in the buffer. Note that πn,m,k

is a row vector representing the n fragments that constitute the

kth packet. For stable TSP classes, the steady state solution is

characterized in the following theorem.

Theorem 1: For the TSP class m ∈ {1, 2, · · · ,M} and static

transmission rate Rn that satisfies Lemma 1, the steady state

solution of the QBD shown in (10) with parameters in (13) is

given by

πn,m,k=























(

1 + αβnZ(I −Rn,m)−1e
)−1

for k = 0

πn,m,0αβnZ for k = 1

πn,m,1R
i−1
n,m for k > 1

, (14)

where Z = (I − αsn,mβn − ᾱTn,m −Rn,mᾱsn,mβn)
−1

and Rn,m is the MAM rate matrix given by Rn,m =
αTn,m (I − αsn,mβn − ᾱTn,m − αTn,meβn)

−1
.
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Proof: Follows from the solution of Geo/PH/1 queue-

ing systems [10, Sec. 5.8], which is obtained by solving

πn,m P = πn,m along with the normalization condition

πn,m e = 1 for P in (10) with parameters in (13).

Let zn,m be the number of time slots from packet generation

to successful delivery, then the per-TSP average latency as well

as the spatially averaged latency are given by

E{zn,m}=
πn,m,1(I−Rn,m)−2e

a
(15)

and

E{zn}=
M
∑

m=1

E{zn,m}

M
(16)

where πn,m,1 and Rn,m are obtained from the steady

state solution in Theorem 1. The latency in (15) fol-

lows from Little’s law for discrete Markov chains, where

πn,m,1(I −Rn,m)−2e is the average queue length. From the

uniform discretization of the meta distribution, the spatially

averaged latency in (16) (i.e., over all TSP classes) is obtained.

2) Dynamic Rate: We utilize a three-level hierarchy to

construct the transition matrix for the dynamic rate. The top-

level is defined by the QBD in (10) to track the number

of packets in the device’s buffer. The middle-level of the

hierarchy traces the rate adaptation and subsequent fragments

transmissions through the matrices E and C along with

B = ᾱI, A0 = αTm,

A1 = ᾱTm + αSm, A2 = ᾱSm,
(17)

where Tm, Sm, E and C are shown in (18)-(19). The matrix

Sm tracks the transmissions of the last fragment that belongs

to a certain packet and the rate adaptation after successful

packet transmission. The transmission of all other fragments

are traced by the matrix Tm, which also tracks the rate

adaptation for new packets.

The matrices Dn,m, Fn,m, Mn,m, and Un,m, shown in

(19) and (20), lie at the bottom of the hierarchy and represent

the basic building blocks of the queueing system. In particular,

Dn,m is of size (n−1)×n and tracks the transition down from

rate Rn−1 to rate Rn, the matrix Fn,m is of size n× n and

traces the fragments transmissions at rate Rn for one packet

until the last fragment, the matrix Mn,m is of size n×n and

represents the transition after successfully transmitting the last

fragment of a packet while persisting the same rate Rn, and

Un,m is of size (n+1)×n and represents the transition after

successfully transmitting the last fragment and going up from

rate Rn to rate Rn−1. Note that Fn,m corresponds to Tn,m

in the static rate case that tracks the n successful fragments

transmissions required to deliver one packet at rate Rn.

Constructing Tm and Sm as shown in (18) with the elements

in (19) and (20), it can be shown that each has the size of

∆×∆, where ∆ =
∑N

n=1 n = N(N+1)
2 . Note that the matrices

B (size N ×N ), E (size ∆ ×N ), and C (size N ×∆) are

defined to keep track of the last utilized rate in transmissions

before the buffer becomes empty. Hence, empty buffers do not

interrupt the memory of the employed rate adaptation scheme.

Once the transition matrix P is constructed, the next step is to

check the stability of the queueing model for each TSP class.

Lemma 2: For the TSP class m ∈ {1, 2, · · · ,M}, the

QBD model in (10) with the parameters in (17)-(20) is

stable if and only if ᾱΠmSme > αΠmTme, where

Πm =
(

[

Sm + Tm

]T
− I + eeT

)−1

e.

Proof: Stability requires ΠmA2e > ΠmA1e [10]. The

vector Πm is the solution of ΠmA = Πm and Πme = 1,

where A = A0 +A1 +A2. The lemma follows by applying

the specific structure of A0, A1, and A2. Note that the explicit

expression for Πm is obtained by following [11].

For stable TSP classes, the steady state solution for the

dynamic rate scheme is characterized in the following theorem

Theorem 2: For the TSP class m ∈ {1, 2, · · · ,M} that

satisfies Lemma 2, the steady state solution of the QBD shown

in (10) with the parameters in (17)-(20) is given by

πm,k=



























(1−a)πm,1Em

a for k = 0

N
(

Qm

)

for k = 1

πm,1R
i−1
m for k > 1

, (21)

such that Qm =
[

(1−a)(EmC+Tm+RmSm)+aSm

]T
−I

and the condition πm,0e+πm,1(I−Rm)−1e = 1 is satisfied,

where N (·) denotes the null space of a matrix and Rm is

the MAM rate matrix obtained by the minimum non-negative

solution of Rm = αTm +Rm (αSm + ᾱTm) + ᾱR2
mSm.

Proof: Follows from the steady state solution of

QBDs [10, Sec. 4.8], which is obtained by solving πm P =
πm along with the normalization condition πn,m e = 1 for

P in (10) with parameters in (17)-(20). Note that there is no

explicit closed-form expression for Rm since neither A2 nor

A0 are of rank 1 [10, Sec. 4.8]. However, there are efficient

algorithms to find Rm as shown in [4], [10], [12].

Similar to (15) and (16), utilizing πm,1 and Rm given in

Theorem 2, the per TSP class latency and spatially averaged

latency for the dynamic rate are given by

E{zm} =
πm,1(I −Rm)−2e

a
, (22)

and

E{z} =
M
∑

m=1

E{zm}

M
. (23)

IV. NUMERICAL RESULTS

Unless otherwise stated, the HPF parameters are λ = 103

device/km2, that are divided into V = 3 networks, with

uniform probability distribution fv(v) = 1/3, activity factors

κ = {0.1, 0.3, 0.5}, and powers w = {10, 7, 5} mWatts.

The intended link parameters are α = 0.04, W = 100 kHz,

ζ = 0.8, Ts = 1ms, η = 4, R◦ = 20 meters, N = 5 rates,

M = 8 TSP classes, L = 40 bytes, d = 0.3, and u = 0.1.

Hence, Rn = 320
n kbps and θn = 24/n − 1. The Monte Carlo

simulations construct F̄sim(θn, γ) across 5000 different HPF

realizations with 105 time iteration per each HPF realization.



ELSAWY: RATE ADAPTATION AND LATENCY IN HETEROGENEOUS IOT NETWORKS 5

Tm=













0 D2,m 0 . . . 0

0 F2,m D3,m . . . 0

...
...

. . .
. . .

...
0 0 . . . FN−1,m DN,m

0 0 . . . 0 FN,m













, & Sm=

















p1,m 0 0 . . . 0

U1,m M2,m 0 . . . 0

0 U2,m M3,m

. . . 0

.

..
. . .

. . .
. . .

.

..
0 . . . 0 UN−1,m MN

















. (18)

E=















p1,m 0 . . . 0

U
[:,1]
1,m M

[:,1]
2,m

. . . 0

..

.
. . .

. . .
..
.

0 . . . U
[:,1]
N−1,m M

[:,1]
N,n















, C=













1 0 0 . . . 0

0 β2 0 . . . 0

.

..
. . .

. . .
. . .

.

..
0 0 . . . βN−1 0

0 0 . . . 0 βN













, & Fn,m=

















d̄ p̄n,m pn,m 0 . . . 0

0 p̄n,m

. . .
. . .

...
.
..

. . .
. . .

. . .
.
..

0 · · · 0 p̄n,m pn,m

0 · · · 0 0 p̄n,m

















. (19)

D
[i,j]
n,m =

{

d p̄n−1,m; i = j = 1

0; otherwise
, U

[i,j]
n,m =

{

u pn,m; i = n & j = 1

0; otherwise
, & M

[i,j]
n,m =

{

ū pn,m; i = n & j = 1

0; otherwise
. (20)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

F̄
(θ

n
,γ
)

R1 = 320 kbps
R2 = 160 kbps
R3 ≈ 106 kbps
R4 = 80 kbps
R5 = 64 kbps
Simulations

Fig. 1: Meta distribution of the TSP for wt = 10 mW.

For the analysis, the meta distribution of the TSP for each

rate Rn is obtained via (4). To compute latency, the TSP

classes pn,m, ∀(n,m) pairs are obtained from (8), which

discretize the meta distribution in (4). The TSP classes are then

used to populate the sub-matrices in (10), which are given in

(12)-(13) (resp. (17)-(20)) for static (resp. dynamic) rate. The

stability of the queueing model can be verified by Lemma 1

(resp. Lemma 2) for static (resp, dynamic) rate. For stable

queues, the steady state solution is obtained from (14) (resp.

(21)) for static (resp. dynamic) rate. Once the steady state

solution is determined, the delay can be computed via (15)

(resp. (22)) for static (resp. dynamic) rate.

Fig. 1 shows the meta distribution of the TSP for different

transmission rates, where the close match between the analysis

(i.e., curves) and simulations (marks) validates Proposition 1.

The figure also shows the impact of Rn on the TSP (i.e., trans-

mission reliability). Dividing the packet into more fragments

enables a lower transmission rate. Hence, leading to a lower

detection threshold θn that is more likely to be satisfied, which
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Fig. 2: Tx and queueing latency for wt = 50 mW, where

infinite queueing latencies for unstable TSP classes are omitted

from the bottom figure. The legend (Dyn.) stands for dynamic

rate and (Thres. = 1
α )) stands for stability threshold.

improves transmission reliability. However, at the expense of

expanding the packet transmission over multiple time slots.

Fig. 2 shows the latency for different transmission rates.

The top (resp. bottom) figures of Fig. 2 show the transmission

(resp. overall) latency for different TSP classes. The figure

shows that each TSP class has its own adequate transmission

rate. Importantly, for poor TSP classes fragmenting the packet

over multiple time slots is necessary for stable operation. For

instance, operating at R1 for TSP classes 1 and 2 leads to a

transmission latency that exceeds the stability threshold (i.e.,

α−1), and hence, the latency is infinite (note that infinite

latencies are omitted from the bottom figure of Fig. 2).

The figure also shows that there is an optimal static rate

for different TSP classes, and hence, packet fragmentation

depends on the network parameters and the HPF realization.

The figure also shows that the dynamic rate can achieve low

latency across all TSP classes, which confirms its resilience.

Fig. 3 shows the spatially averaged (i.e., over all TSP
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n kbps.

The legend (Dyn.) stands for dynamic rate.

classes) latency vs the packet size for different transmis-

sions rates. The figure shows that the transmission rate and

subsequent fragmentation depend on the underlying packet

size. In compliance with intuition, larger packets should be

divided into more fragments in order to operate with a reliable

transmission rate. For instance, packets from 45 to 75 bytes

(resp. 75 to 110 bytes) should be divided into two (resp. three)

fragments to achieve minimal delay. The figure also shows

that over-fragmentation of packets lead to unnecessary delay

(e.g., L < 45 bytes). Interestingly, the figure shows a resilient

performance for the dynamic rate scheme at the expense of a

slightly prolonged latency. Note that the latency degradation

of the dynamic scheme is due to its randomized exploration

of different transmission rates.

V. CONCLUSION

Using tools from stochastic geometry and queueing theory,

this paper develops a novel mathematical model for static

and dynamic rate adaptation schemes in IoT networks. The

developed model accounts for the effect of transmission rate

adaptation on packet fragmentation to comply with the time

slot duration, which captures an important tradoff between

transmission reliability and packet latency. It is shown that

fragmentation is sometimes necessary to maintain finite packet

latency. Also, over-fragmentation of packets may lead to un-

necessary delays. Hence, there exists an optimal fragmentation

(i.e., static rate) that minimizes packet latency, which depends

on the network parameters. To this end, the paper reveals the

resilience of a simple randomized dynamic rate adaptation to

different variations in the packet sizes and network parameters

without sacrificing the latency performance.
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