
402 IEEE COMMUNICATIONS LETTERS, VOL. 25, NO. 2, FEBRUARY 2021

Noise-Robust Multilayer Perceptron Architecture for Distributed Denial
of Service Attack Detection

João Paulo A. Maranhão , Graduate Student Member, IEEE, João Paulo C. L. da Costa , Senior Member, IEEE,
Edison Pignaton de Freitas , Member, IEEE, Elnaz Javidi, Graduate Student Member, IEEE,

and Rafael T. de Sousa, Jr. , Senior Member, IEEE

Abstract— Distributed Denial of Service (DDoS) attacks are
one of the most challenging security threats, since a single
victim is attacked by several compromised malicious nodes. As a
consequence, legitimate end users can be prevented to access
network resources. This letter proposes a noise-robust multilayer
perceptron (MLP) architecture for DDoS attack detection trained
with corrupted data. In the proposed approach, the average
value of the common features among dataset instances is iter-
atively filtered out by applying Higher Order Singular Value
Decomposition (HOSVD) based techniques. The effectiveness of
the proposed architecture is validated through comparison with
state-of-the-art methods.

Index Terms— Tensor decomposition, machine learning, super-
vised classification, neural networks.

I. INTRODUCTION

D ISTRIBUTED Denial of Service (DDoS) attacks are one
of the most challenging threats to network security and

present very sophisticated and damaging attacks [1]. DDoS
attacks can be efficiently detected by using supervised machine
learning (ML) techniques trained with large datasets such that
malicious patterns present in the incoming network traffic can
be detected with high reliability. Nonetheless, the classifier
performance can be severely degraded if corrupted datasets
are considered and, consequently, it is fundamental to develop
DDoS attack detection models robust against noise present in
data. For example, in [2], it was proposed a robust network
intrusion detection system (IDS) in which redundant and irrel-
evant noisy informations are removed from the massive data
through the combining of deep belief networks (DBN) and
feature-weighted support vector machines (WSVM). In this
work, noise refers to data corruptions as a consequence of
false data injection attacks performed on publicly available

Manuscript received October 3, 2020; accepted October 15, 2020. Date
of publication October 19, 2020; date of current version February 11,
2021. This work was supported by CAPES PROAP/UnB/PPGEE, CNPq,
FAPDF, ME, ABIN, AGU, CADE and MD/EB/DCT/CDS. The associate
editor coordinating the review of this paper and approving it for publication
was Y. Wu. (Corresponding author: João Paulo A. Maranhão.)

João Paulo A. Maranhão and Rafael T. de Sousa, Jr., are with the Department
of Electrical Engineering, University of Brasília (UnB), Brasília 70910-900,
Brazil (e-mail: joaopaulo.maranhao@ieee.org; desousa@unb.br).

João Paulo C. L. da Costa is with the Department of Electrical Engineering,
University of Brasília (UnB), Brasília 70910-900, Brazil, and also with the
Department 2-Campus Lippstadt, Hamm-Lippstadt University of Applied
Sciences, 59063 Hamm, Germany (e-mail: joaopaulo.dacosta@ene.unb.br;
joaopaulo.dacosta@hshl.de).

Edison Pignaton de Freitas is with the Informatics Institute, Federal Univer-
sity of Rio Grande do Sul (UFRGS), 90040-060 Porto Alegre, Brazil (e-mail:
epfreitas@inf.ufrgs.br).

Elnaz Javidi is with the Department of Mechanical Engineering,
University of Brasília (UnB), Brasília 70910-900, Brazil (e-mail:
elnaz.javidi@gmail.com).

Digital Object Identifier 10.1109/LCOMM.2020.3032170

datasets. For instance, Gaussian noise injection attacks are
easy to implement in practice and aim to fool machine learning
classifiers during the training and testing phases [3].

This letter proposes a novel multilayer perceptron (MLP)
architecture for DDoS attack detection robust against data
corruption. In our solution, the average value of the common
features among dataset instances is dynamically filtered out
via Higher Order Singular Value Decomposition (HOSVD)
algorithm. The best MLP parameters used for dataset filtering
are dynamically computed according to the errors between
the expected and predicted classifications. Extensive experi-
ments conducted on samples extracted from the CIC-IDS2017,
CSE-CIC-IDS2018 and CIC-DDoS2019 datasets showed that
the proposed solution outperforms state-of-the-art schemes in
terms of accuracy, detection rate and false alarm rate.

II. DATA MODEL

In this letter, the dataset tensor XXX ∈ R
N1×···×NR×M is

defined as XXX = XXX0 + NNN, where Nr is the number of features
along the r-th dimension, M is the number of instances,
XXX0 ∈ R

N1×···×NR×M is the noise-free dataset tensor and NNN ∈
R

N1×···×NRM is the noise tensor. The r-th mode unfolding
matrix of XXX is denoted by [XXX](r) ∈ R

Nr×
�

j �=r NjM . Moreover,
y = [y1, . . . , yM]T ∈ R

M denotes the class label vector, where
ym is the class label of the m-th instance.

III. PROPOSED NOISE-ROBUST MLP ARCHITECTURE

FOR DDOS ATTACK DETECTION

A. Proposed Feature Extraction Method

The concept of common and individual features is well
known in image classification problems. For example, consider
a 3D tensor, composed by multiple color matrices stacked
along the 3rd dimension. Such matrices contain common
features, which correspond to the base color matrices red,
green and blue, as well as individual features, which provide
discriminative information. The three base color matrices can
be stacked in the 3rd dimension, constituting the common fea-
ture tensor. Thus, ML algorithms can benefit from exploiting
such individual features for identifying each color matrix [4].

Applying such concepts to the DDoS attack detection prob-
lem, the following intuition can be drawn. Let us consider
a 3D network traffic dataset composed by legitimate and
DDoS attack sample matrices as its frontal slices. Although
from different classes, these samples may present some com-
mon features, such as source and destination IPs. Therefore,
the common features across all the samples can be removed
and then the more discriminative individual features can be
applied for classification.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-4655-8889
https://orcid.org/0000-0003-1101-3029
https://orcid.org/0000-0002-8616-4924
https://orcid.org/0000-0003-0632-6434

MARANHÃO et al.: NOISE-ROBUST MULTILAYER PERCEPTRON ARCHITECTURE FOR DISTRIBUTED DENIAL OF SERVICE ATTACK DETECTION 403

Fig. 1. Block diagram of the proposed feature extraction method applied on ML classification.

Next, the concepts relating the average common feature
extraction and the noise-robustness of our proposed approach
are presented. The tensors X̂XX ∈ R

N1×···×NR×dR+1 and X̆XX ∈
R

N1×···×NR×M are the common and individual feature ten-
sors, respectively. The tensor X̂XX can be obtained after applying
some tensor decomposition technique on XXX, such as the
HOSVD, which is defined as XXX = GGG×1 A1 · · · ×R AR ×R+1

AR+1, where GGG ∈ R
d1×···×dR+1 is the truncated core tensor,

Ar ∈ R
Nr×dr for r = 1, . . . , R + 1 are the truncated singular

matrices and (d1, . . . , dR+1) is the multilinear rank of XXX.
The number of common features among dataset instances,
given by dR+1, can be obtained empirically. In addition,
X̂XX ∈ R

N1×···×NR×dR+1 is defined as the r-mode product
between the core tensor GGG and the first R factor matrices,
i.e., X̂XX = GGG ×1 A1 · · · ×R AR. Then, the individual feature
tensor X̆XX is computed by subtracting, from XXX, the weighted
common features, i.e., X̆XX:,...,m = XXX:,...,m −∑

k∈Kn
αk ·X̂XX:,...,k

for m = 1, . . . , M , where Kn is a subset of common features
for XXX related to the values in the n-th row of Ar [4].

In this work, we propose an approach in which the
DDoS detection performance is improved due to two fac-
tors: noise-robustness and dataset filtering. Noise-robustness
is achieved through the HOSVD of the dataset tensor.
In HOSVD, the singular value decomposition (SVD) is applied
to each r-th unfolding matrix [XXX](r) = [XXX0](r) + [NNN](r) and
is given by [XXX](r) = UrΣrVH

r , where Ur ∈ R
Nr×dr and

Vr ∈ R

�
j �=r NjM×dr are the left and right singular matrices,

respectively, and Σr ∈ R
dr×dr is the singular values matrix.

On the other hand, after dataset filtering, ML algorithms can
exploit the filtered features in order to identify each dataset
instance. In this approach, instead of obtained empirically,
the number of common features dR+1 can be approximated
as the model order, which is a parameter computed from
classic model order selection (MOS) techniques. Thus, a more
discriminative information is present in each sample, which
can be exploited by ML classifiers during the training phase.

Initially, three steps are necessary, namely, dataset split-
ting, dataset pre-processing and minibatch splitting. First,
the dataset XXX is split into the training and testing tensors XXXtr ∈
R

N1×···×NR×Mtr
and XXXte ∈ R

N1×···×NR×Mte
, where M tr

and M te are the total number of training and testing instances,
respectively, with M = M tr+M te. Next, a preprocessing step
is applied on each tensor as well, including data cleansing,
feature scaling and label encoding. Finally, XXXtr is split into
S minibatches XXXs ∈ R

N1×···×NR×Mmb
for s = 1, . . . , S

containing Mmb instances each, i.e., M tr = S · Mmb.
Additionally, if M tr is not a multiple of Mmb, then random

instances from XXXtr are added into the last minibatch such that
the condition M tr = S · Mmb is satisfied.

Fig. 1 depicts the block diagram of the proposed feature
extraction method applied on the training and testing phases
of ML classification.

1) Training Phase: First, given XXXs, the multilinear ranks
ds

r for r = 1, . . . , R + 1 and s = 1, . . . , S are estimated in
Block 1.1 of Fig. 1 through multidimensional MOS schemes,
such as the R-D Minimum Description Length (MDL) [5].
Further, Blocks 1.2 and 1.3 compute, respectively, the HOSVD
of XXXs ∈ R

N1×···×NR×Mmb
as well as the tensor X̂XX

s ∈
R

N1×...NR×dR+1 , which contains the common features among
the instances XXXs

:,...,m ∈ R
N1×···×NR for m = 1, . . . , Mmb,

XXXs = (GGGs ×1 As
1 · · · ×R As

R) ×R+1 As
R+1

= X̂XX
s ×R+1 As

R+1, (1)

where GGGs ∈ R
ds
1×···×ds

R+1 is the core tensor, As
r ∈ R

Nr×ds
r for

r = 1, . . . , R+1 are the singular matrices, and (ds
1, . . . , d

s
R+1)

corresponds to the multilinear rank of XXXs.
Next, X̄XX

s ∈ R
N1×···×NR is obtained in Block 1.4 of Fig. 1

and corresponds to X̂XX
s

averaged along the (R + 1)-th dimen-

sion, i.e., X̄XX
s

= (1/ds
R+1)

∑ds
R+1

x=1 X̂XX
s

:,...,x. Then, the filtered

tensor XXX
s,[f]
:,...,m for m = 1, . . . , Mmb can be computed in Block

1.5 as follows

XXXs,[f]
:,...,m = XXXs

:,...,m −CCCs � X̄XX
s
, for m = 1, . . . , Mmb, (2)

where CCCs ∈ R
N1×···×NR is the weight tensor.

Alternatively, Mmb identical copies of CCCs and X̄XX
s

can
be stacked along the (R + 1)-th dimension, generating the
concatenated tensors CCCs,C ∈ R

N1×···×NR×Mmb
and X̄XX

s,C ∈
R

N1×···×NR×Mmb
. Consequently, (2) can be rewritten as

XXXs,[f] = XXXs −CCCs,C � X̄XX
s,C

. (3)

Moreover, in Block 1.6 of Fig. 1, XXXs,[f] is unfolded into the
matrix Xs,[f] ∈ R

Mmb×N and then forwarded for machine
learning classification in Block 1.7. Finally, the error es

between the expected and predicted class label vectors ys and
ŷs, respectively, is computed and sent to Block 1.5 in order
to update CCCs before the next minibatch training.

2) Testing Phase: The testing phase is composed by three
steps, as depicted in Boxes 2.1 to 2.3 of Fig. 1. Instead of
applying a scheme similar to the one described for the training
set, we simply apply a transformation to each testing instance
by using information extracted from the training phase. Since
testing and training instances are extracted from the same
dataset, they have similarities and, consequently, we consider

404 IEEE COMMUNICATIONS LETTERS, VOL. 25, NO. 2, FEBRUARY 2021

that the testing dataset presents the same average common
features of the training dataset.

First, the filtered testing dataset XXXte,[f] is computed in
Box 2.1 by subtracting, from XXXte, the weighted common
feature tensor obtained from the training phase, i.e.,

XXXte,[f] = XXXte − Ĉ̂ĈCS,C � X̄XX
S,C

, (4)

where Ĉ̂ĈCS,C and X̄XX
S,C

are, respectively, the weight tensor
and the average common feature tensor, both obtained after
the training of the S-th minibatch. Next, XXXte,[f] is unfolded
into the matrix Xte,[f] ∈ R

Mte×N , as shown in Box 2.2 of
Fig. 1. Finally, Xte,[f] is applied on the trained machine
learning classifier in Box 2.3 for testing purposes, generating
the predicted class label vector ŷte.

B. Proposed MLP Architecture

The proposed feature extraction method introduced in
Subsection III-A is a pre-processing algorithm where denois-
ing and filtering are performed over the dataset before ML
classification. In this subsection, the proposed technique is
directly applied on the MLP layers, and not as a pre-processing
scheme. The training and testing phases of the proposed MLP
architecture are described as follows.

1) Training Phase: Multilayer perceptrons are fully con-
nected feedforward neural networks where the output of one
layer is the input of the subsequent layer. If the MLP presents
J layers, the output vector z[j] ∈ R

N [j]
of the j-th layer after

receiving the input vector z[j−1] ∈ R
N [j−1]

from the (j−1)-th
layer is given by

z[j] = f [j](W[j,j−1] · z[j−1] + b[j]), (5)

where W[j,j−1] ∈ R
N [j]×N [j−1]

is the weight matrix, b[j] ∈
R

N [j]
is the bias vector, f [j](·) is the activation function and

N [j] is the number of neurons for j = 1, . . . , J .
Since MLPs get one-dimensional input data, the input

dataset tensor must be matricized such that each instance can
be directly forwarded to the neural network. In this sense, first
we compute the (R + 1)-th mode unfolding of (3) as follows

[XXXs,[f]](R+1) = [XXXs](R+1) − [CCCs,C](R+1) � [X̄XX
s,C

](R+1). (6)

The weight tensor CCCs,C is composed by Mmb identical ten-
sors CCCs stacked along the (R+1)-th dimension. Consequently,
the unfolded matrix [CCCs,C](R+1) ∈ R

Mmb×N presents Mmb

identical row vectors cs = [cs
1, . . . , c

s
N] = vec{CCCs

:,...,m} for
m = 1, . . . , Mmb. Alternatively, cs can also be written as a
diagonal matrix Cs,diag = diag{[cs

1, . . . , c
s
N]} ∈ R

N×N .
Similarly, [X̄XX

s,C
](R+1) is composed by Mmb identical row

vectors x̄s = [x̄s
1, . . . , x̄

s
N] = vec{X̄XXs

:,...,m} for any m =
1, . . . , Mmb. If the (R+1)-th mode unfolding matrices in (6)
are represented as a function of its rows and replace the
Hadamard product by the dot product, such equation can be
rewritten as

[XXXs,[f]]T(R+1)m,: = −Cs,diag · x̄sT

+ [XXXs]T(R+1)m,:. (7)

Note the similarity between (7) and the argument of the
activation function f [j](·) in (5). In this sense, a new input

Fig. 2. Proposed MLP architecture.

layer is included on the conventional MLP architecture where
the computation described in (7) can be directly performed.
Fig. 2 illustrates the proposed MLP architecture for DDoS
attack detection with the new input layer, labeled as “layer
0”, in red color, placed at the left of the conventional input
layer, referred as “layer 1”. Thus, by comparing (5) and (7),
we set N [0] = N , W[1,0] = −Cs,diag, z[0] = x̄sT

and b[0] =
[XXXs]T(R+1)m,: in the proposed MLP.

2) Testing Phase: In this phase, each testing instance is
feedforwarded through the trained MLP for classification.
Consequently, the filtering operation on the testing vectors,
for m = 1, . . . , M te, is given by

[XXXte,[f]]T(R+1):,m = −ĈS,diag · x̄ST

+ [XXXte]T(R+1):,m, (8)

where ĈS,diag is the weight diagonal matrix and x̄S is
the average common feature vector, both obtained after the
training of the S-th minibatch.

IV. EXPERIMENTS AND RESULTS

A. Results

This subsection presents the performance evaluation of
the proposed MLP architecture through numerical simula-
tions. Accuracy (Acc), detection rate (DR) and false alarm
rate (FAR) are the assessed metrics. Detailed explanation about
these metrics can be found in [6].

We customized a single dataset composed by legitimate
and DDoS attack samples extracted from the CIC-DDoS2019,
CIC-IDS2018 and CIC-IDS2017 benchmark datasets. Initially,
the dataset is split into training and testing sets. Next, a 3-fold
cross validation is performed on the training dataset such that
each fold contains samples from a given benchmark dataset.
At each iteration, the classifier is trained on samples from two
benchmark datasets and validated on the third one. Finally,
the trained classifier is evaluated on the testing dataset. The
customized dataset is composed by N = 64 features and
M = 40000 instances, of which 32000 are legitimate and 8000
are DDoS attacks. The dataset is folded as a three-dimensional
tensor with size N1 × N2 × M , where N1 = N2 = 8.

In order to simulate false data injection, noise is added to
each dataset prior to the pre-processing phase. As pointed out
in [7], Gaussian noise is easy to implement and more difficult
to be detected in practice. Thus, x% of the instances of each
feature X:,n for n = 1, . . . , N are corrupted with Gaussian
noise with mean zero and standard deviation (max(X:,n) −
min(X:,n))/5. A total of 100 different experiments were

MARANHÃO et al.: NOISE-ROBUST MULTILAYER PERCEPTRON ARCHITECTURE FOR DISTRIBUTED DENIAL OF SERVICE ATTACK DETECTION 405

TABLE I

PERFORMANCE EVALUATION FOR DIFFERENT RANKS

Fig. 3. Acc, DR and FAR as a function of the noise level and number of
hidden layers.

simulated, with a MLP containing number of hidden layers
varying from 2 to 5 and noise level between 5% and 30%.
Additionally, the training dataset size ranges from 40% to
70% of all available instances. The tensor multilinear rank
is estimated by applying the R-D MDL scheme and each
experiment was trained for 100 epochs.

The benefits of HOSVD on the overall performance of
our proposed MLP are shown in Table I, which presents the
accuracy and training times for different multilinear ranks.
According to the obtained results, the proposed MLP achieves
better performance for lower values of d1, d2 and d3, which
illustrates the efficiency of HOSVD for dataset denoising.

Next, the proposed approach is compared with conven-
tional MLPs in which state-of-the-art low-rank approxi-
mation techniques are previously applied to the dataset,
namely, HOSVD [8] and Higher Order Orthogonal Iteration
(HOOI) [9]. Fig. 3 shows the Acc, DR and FAR as a function
of the noise level (NL) and the number of hidden layers (HL).
Moreover, in Fig. 3d to 3f, the NL fixed in 10%. Note that the
proposed MLP outperforms its competitor methods, especially
under high noise levels and larger number of hidden layers.

Fig. 4 depicts the values of Acc, DR and FAR obtained
for the noise-free case. The proposed scheme is compared
with a conventional MLP, with no denoising technique, for
different HL and TSP. Note that, considering Acc and DR,
the proposed scheme outperforms its competitor for all HL
and TSP ranges, despite presenting a worse performance of
FAR for some values of HL and TSP.

Following, the proposed MLP is assessed for detecting real
time DDoS attacks. Three IDSs trained and tested under noise
levels between 10% and 30% are compared: the proposed
scheme and the HOSVD and HOOI based MLPs. To simulate
a small scale DDoS attack, a virtual network was implemented,
as depicted in Fig. 5. DDoS traffic included TCP, UDP and

Fig. 4. Acc, DR and FAR as a function of the number of hidden layers and
training size proportion under noise-free conditions.

Fig. 5. Network topology for simulating real time attacks.

TABLE II

PERFORMANCE EVALUATION UNDER REAL TIME ATTACKS

HTTP GET flooding attacks generated by three attackers,
whereas the victim is a web server. The attacks were launched
during a period of 60 minutes by using the Low Orbit
Ion Cannon (LOIC) tool. Additionally, legitimate traffic was
generated by two users accessing the web server, and the
IDS is positioned between the router and the victim. The
network traffic captured by the IDS is converted into CSV files
for further processing. Table II shows the values of DR and
FAR obtained for real time detection. Note that the proposed
scheme outperforms the compared approaches when NL is
higher than 20%, presenting considerable detection results.

Further, Fig. 6 presents the mean training and testing times
(in seconds), considering different numbers of hidden layers.
Three techniques are compared: the proposed scheme, as well
as the HOSVD and HOOI based MLPs. Since denoising and
filtering are performed through the MLP layers in our proposed
scheme, its total time correspond to the MLP processing time.
On the other hand, since HOSVD and HOOI are preprocessing
steps in their respective MLPs, the total time correspond to
the sum between the corresponding low-rank approximation
technique time and the MLP processing time. The training
times refer to a period of 100 epochs and NL is fixed in
10%. Note that, from Fig. 6a, the proposed technique is more
computationally expensive than the competing approaches,
showing higher training times, which reflects the trade-off to
achieve a more accurate detection. However, this is compen-
sated considering the testing times, as shown in Fig. 6b.

406 IEEE COMMUNICATIONS LETTERS, VOL. 25, NO. 2, FEBRUARY 2021

Fig. 6. Mean training and testing times (in seconds).

TABLE III

PERFORMANCE COMPARISON WITH RELATED WORKS CONSIDERING:
(1) NSL-KDD, AND (2) CIC-IDS2017

Finally, Table III illustrates the comparison with related
works. To the best of our knowledge, only Wu et al. [2]
proposed a noise-robust solution applied to network intrusion
detection in which the NSL-KDD dataset was considered
for validation. Since [2] did not inform the noise level,
the proposed MLP was simulated with the worst case of
NL = 30%. Note that our proposed scheme presents a high
noise-robustness, with Acc = 99.57%, DR = 99.53% and
FAR = 0.79%. Additionally, since CIC-IDS2017 has been
extensively applied for noise-free IDS validation by several
works in the literature, the performance evaluation considering
such dataset is also included. In this case, NL = 0 was adopted
in our approach. Despite the detection performance of the
proposed MLP is not the best when considering CIC-IDS2017,
it still presents outstanding results, with Acc = 98.95%,
DR = 98.31% and FAR = 0.15%. Note that our scheme
is outperformed by [10], in which a convolutional neural
network (CNN) based IDS is proposed. In [10], DDoS attacks
and legitimate traffic patterns are learnt by CNN through
convolutional filters sliding over packet flow inputs to identify
anomalous characteristics, which may explain its higher Acc
and DR results compared to our MLP based solution.

B. Discussion
From the results shown in the previous subsection,

we observe that, when noisy datasets are considered, the pro-
posed approach is more efficient for detecting DDoS attacks
compared to HOSVD and HOOI based MLPs in most of
the simulations. However, the accuracy of our scheme is
matched by HOOI based MLP in scenarios with low NL.
In this case, the more accurate core tensor and singular
matrices generated through orthogonal iterations in HOOI lead
to a better dataset denoising. Moreover, the HOSVD based
MLP presents the worst performance, since a single tensor
decomposition is performed on the whole dataset during the
preprocessing phase. Additionally, under noise-free conditions,
the proposed approach outperforms the conventional MLP in
terms of Acc and DR for multiple HL and TSP. However, our
scheme is more prone to false positives and, hence, legitimate

traffic is wrongly classified as malicious activity. Therefore,
the proposed MLP presents a higher noise-robustness and
efficiency due to two factors: the noise attenuation provided by
HOSVD and the more discriminative individual information
resulting from dataset filtering. Furthermore, a drawback of
our approach is its higher training time, caused by multiple
HOSVD performed in training data batches. On the other
hand, the proposed scheme shows lower testing times, since
low cost computations are performed during the testing phase,
in contrast to the tensor decompositions executed in HOSVD
and HOOI. Finally, our proposed approach is more accurate for
detecting real time DDoS attacks in comparison with HOOI
and HOSVD based MLPs when NL ≥ 20%. Such results
reflect the superiority of our scheme due to a more effi-
cient dataset filtering during the training phase. Nonetheless,
the best performance for NL = 10% was shown by HOOI
based MLP, in which orthogonal iterations provided a more
accurate separation between signal and noise subspaces and,
consequently, better classifications.

V. CONCLUSION

This letter reports the proposal of a noise-robust MLP
architecture for DDoS attack detection trained with corrupted
datasets. The presented solution dynamically filter out the
average value of the common features among dataset instances,
improving the model performance. The proposed approach
outperforms the competing techniques in almost all perfor-
mance metrics, showing outstanding values of accuracy, detec-
tion rate and false alarm rate.

REFERENCES

[1] X. Liang and T. Znati, “An empirical study of intelligent approaches to
DDoS detection in large scale networks,” in Proc. Int. Conf. Comput.,
Netw. Commun. (ICNC), Feb. 2019, pp. 821–827.

[2] Y. Wu, W. W. Lee, Z. Xu, and M. Ni, “Large-scale and robust intrusion
detection model combining improved deep belief network with feature-
weighted SVM,” IEEE Access, vol. 8, pp. 98600–98611, 2020.

[3] F. Li and Y. Tang, “False data injection attack for cyber-physical
systems with resource constraint,” IEEE Trans. Cybern., vol. 50, no. 2,
pp. 729–738, Feb. 2020.

[4] I. Kisil, G. G. Calvi, and D. P. Mandic, “Tensor valued common
and individual feature extraction: Multi-dimensional perspective,” 2017,
arXiv:1711.00487. [Online]. Available: http://arxiv.org/abs/1711.00487

[5] J. P. C. L. da Costa, F. Roemer, M. Haardt, and R. T. de Sousa, “Multi-
dimensional model order selection,” EURASIP J. Adv. Signal Process.,
vol. 2011, no. 1, pp. 1–13, Dec. 2011.

[6] F. S. D. L. Filho, F. A. F. Silveira, A. de Medeiros Brito Junior,
G. Vargas-Solar, and L. F. Silveira, “Smart detection: An online
approach for DoS/DDoS attack detection using machine learning,” Secur.
Commun. Netw., vol. 2019, pp. 1–15, Oct. 2019.

[7] Y. Li, Z. Pan, D. Du, and R. Li, “Adaptive thresholding HOSVD with
rearrangement of tensors for image denoising,” Multimedia Tools Appl.,
vol. 79, nos. 27–28, pp. 19575–19593, Jul. 2020.

[8] A. Rajwade, A. Rangarajan, and A. Banerjee, “Image denoising using
the higher order singular value decomposition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 4, pp. 849–862, Apr. 2013.

[9] L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1
and rank-(R1 ,R2,. . . ,Rn) approximation of higher-order tensors,” SIAM
J. Matrix Anal. Appl., vol. 21, no. 4, pp. 1324–1342, 2000.

[10] R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward,
J. Martinez-del-Rincon, and D. Siracusa, “Lucid: A practical,
lightweight deep learning solution for DDoS attack detection,” IEEE
Trans. Netw. Service Manage., vol. 17, no. 2, pp. 876–889, Jun. 2020.

[11] M. Roopak, G. Y. Tian, and J. Chambers, “Deep learning models for
cyber security in IoT networks,” in Proc. IEEE 9th Annu. Comput.
Commun. Workshop Conf. (CCWC), Jan. 2019, pp. 0452–0457.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

