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Modulation for Doubly-Dispersive Channels

Roberto Bomfin, Ahmad Nimr, Marwa Chafii and Gerhard Fettweis, Fellow, IEEE

Abstract—In this letter, we present a generic modulation
framework for robust wireless communications over doubly
dispersive channels. This robustness is achieved by spreading the
symbols over time and frequency such that they experience the
same channel gain. Interestingly, we show that our modulation
framework is a generalization of the recently proposed orthog-
onal time frequency space modulation (OTFS). By exploiting an
additional degree of freedom enabled by the generic framework,
we propose in this paper a low-complex waveform based on
the sparse Walsh-Hadamard transform (WHT). We show that
the proposed sparse WHT modulation exhibits the same frame
error rate performance as OTFS, while significantly reducing the
implementation complexity due to the multiplication-free small-
size WHT compared with the discrete Fourier transform used
by symplectic finite Fourier transform (SFFT) of OTFS.

Index Terms—Walsh-Hadamard, MMSE-PIC, doubly disper-
sive channel, OTFS, OFDM.

I. INTRODUCTION

Achieving reliable and robust wireless communications is
essential in future networks for the realization of emerging
applications. In order to attain the required end-to-end relia-
bility, the physical layer (PHY) should be robust [1]. However,
the wireless channel can be challenging in some applications
such as vehicular communications [2], where the channel
becomes selective in time and frequency. To overcome the
channel’s selectivity, several techniques have been considered
for frequency-selective channels, which can also be applied to
the time-selective case. Among the most common approaches,
link adaptation and power loading [3], which require channel
state information (CSI) at the transmitter. Without CSI’s prior
knowledge, another strategy is to design the waveform and
employ more advanced iterative receivers such as [4], [5].
However, its computational complexity depends on the un-
derlying modulation scheme.

Modern digital wireless communication systems such as
WiFi and 5G rely on the orthogonal frequency division mul-
tiplexing (OFDM) modulation, which allows an inter-symbol-
interference (ISI)-free separation of the received symbols in
pure frequency-selective channel and thus, it enables a simple
demodulation. However, it has been shown in [6] that the
performance of OFDM is suboptimal in frequency-selective
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channels. In particular, under the assumption of perfect feed-
back equalization and no CSI at the transmitter, it is proven
that the best modulation should attain the equal gain criterion
(EGC) for the data symbols. In practice, the interference
cancellation can be realized by means of iterative receivers
employing joint decoding and equalization. For instance, a
low-complexity minimum mean squared error with parallel in-
terference cancellation (MMSE-PIC) has been used in [4] with
orthogonal chirp division multiplexing (OCDM). It is shown
that OCDM fulfills the equal-gain criterion, and achieves con-
siderable performance gain over OFDM. Recently, orthogonal
time frequency space modulation (OTFS) has been proposed
for doubly selective channel [5]. It is shown in [7], that
OTFS belongs to a family of precoded OFDM systems, that
attain equal signal-to-interference-plus-noise ratio (SINR) after
equalization, which, in fact, implies satisfying the EGC.

Motivated by the need for robust wireless communications
under distorting channels, the main contribution of this paper is
to provide a robust waveform with a low-complexity detection
scheme for doubly dispersive wireless channels. Firstly, we
present a general modulation framework for doubly dispersive
channel providing the required conditions for achieving equal-
gain property based on [6]. Secondly, we consider a specific
modulation based on the sparse Walsh-Hadamard transform
(WHT) that fulfills the EGC and considerably reduces the
complexity of the symplectic finite Fourier transform (SFFT)
employed by OTFS while achieving the same frame error
rate (FER) performance. For the frequency-domain sparsity,
we provide a proof for EGC depending on the channel’s
power delay profile. The time-domain sparsity is considered
by analogy and is evaluated numerically. In summary, the
proposed low-complexity modulation design is based on two
aspects, i) implementing WHT does not require multiplications
unlike the discrete Fourier transform (DFT) used in OTFS, and
ii) sparse modulation decreases the number of computations
without performance loss. For the receiver, we derive a low-
complexity LMMSE-PIC similarly to [4].

There is a vast literature about WHT, with several appli-
cations, e.g., statistical analysis, signal processing, communi-
cations, and more [8]. In wireless communication, the prior
works [9], [10] focus on decreasing the uncoded bit error
rate (BER), and [11] considers only the time invariant channel,
whereas [12] studies a full spreading waveform. In this letter,
we generalize the scheme studied in [12] by proposing a sparse
waveform with decreased complexity.

Notations: Vectors and matrices are denoted as a, A,
respectively. The n-th element of a vector is a [n], the (k,m)-
th element in a matrix is denoted as A[k,m], and the m-th
row as A[:,m]. For A being a N × N matrix, the operator
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Fig. 1: Generic block modulation.

diag {A} returns a column vector of size N with elements
taken from the diagonal of A. The operator trace {A} returns
the trace of A. Let a and b be column vectors of size N ,
c = a/b is an N size column vector and corresponds to
an element-wise of a by b. The vectorization of a matrix
according to the columns is expressed as a = vec {A}. The
inverse of vectorization, which constructs a matrix of size
K ×M is written as A = unvecK×M {a}. The matrices IN
and FN refer to the N ×N identity and normalized N -DFT
matrices, respectively. The vectors 0N , and 1N denote the all
zeros and all ones column vectors of size N , respectively. The
operator E[·] denotes expectation, � element-wise product, ⊗
Kronecker product, (·)T transpose, (·)H Hermitian transpose,
and 〈·〉N modulo-N operator.

II. GENERIC BLOCK MODULATION FRAMEWORK

Consider a generic linear modulation, where a modulated
block x ∈ CN×1 is generated using a matrix A ∈ CN×N as
x = Ad, d ∈ SN×1 denotes the vector of data symbols whose
elements are selected from the quadurature amplitude modu-
lation (QAM) constellation set S , with cardinality |S| = J .
These symbols are generated by the mapping of the interleaved
encoded bits denoted as c, which corresponds to data bits b.
The elements of d are assumed to be uncorrelated with equal
power Es, such that E[ddH] = EsIN . Assuming a linear
time-variant (LTV) channel defined by the impulse response
h[l, n], with a coherence time sufficiently smaller than the time
required to transmit K samples such that h[l, k + mK] ≈
h[l,m], k = 0 · · ·K − 1. Accordingly, x is split into M sub-
blocks defined by X = [x0, · · · ,xM−1] = unvecK×M {x},
where N = MK and xm ∈ CK×1. Considering L << K
delay taps of the channel, a cyclic prefix (CP) of length
Kcp ≥ L− 1 samples is appended per sub-block to get x(cp)

m .

A. Received signal model

Assuming that the channel is static during the transmission
of a sub-block, the m-th received sub-block after removing
the CP from y

(cp)
m can be expressed as

ym = Hmxm + vm. (1)

Here Hm ∈ CK×K , Hm[k, q] = hm[〈k−q〉K ] is the circular
channel matrix associated with the m-th sub-block, and vm ∈
CK×1 is additive white Gaussian noise (AWGN) with power
N0, such that E

[
vm1

vH
m2

]
= N0IK , when m1 = m2 and

0K otherwise. The respective frequency domain (FD) signal
is obtained using K-DFT,

ỹm = h̃m � x̃m + ṽm, (2)

where, ỹm = FKym, and h̃m = FKHm[:, 1]. By stacking
the vectors of (2) in a matrix of size K × M , defined

as Ỹ = [ỹ0, · · · , ỹM−1], and let Y = [y0, · · · ,yM−1],
H̃ = [h̃0, · · · , h̃M−1], X̃ = [x̃0, · · · , x̃M−1], and Ṽ =
[ṽ0, · · · , ṽM−1], then all received sub-blocks can be expressed
in the following compact form

Ỹ = H̃ � X̃ + Ṽ ⇒ FKY = H̃ � [FKX] + Ṽ . (3)

Applying the vectorization operation to (3) and combining
vec {FKX} = (IM ⊗ FK)x with x = Ad, we get

ȳ = vec
{
Ỹ
}

= Λ(h) (IM ⊗ FK)Ad + v̄,

where Λ(h) = diag
{

vec
{
H̃
}}

represents the FD block chan-
nel matrix. The matrix Ā = (IM ⊗ FK)A corresponds to the
FD block modulation matrix. To simplify the equalization, Ā
can be designed using unitary transform whose matrix is U ,
with UUH = IN , and a diagonal matrix Λ(tx) which performs
FD windowing, such that Ā = Λ(tx)U . Accordingly,

A =
(
IM ⊗ F H

K

)
Λ(tx)U . (4)

As a result, using the equivalent channel Λ(h̄) = Λ(h)Λ(tx),
the received signal can be written as

ȳ = Λ(h̄)Ud + v̄. (5)

B. Relation to OFDM precoding

Using the special case (4), the modulated block can be
expressed as x =

(
IM ⊗ F H

K

)
Λ(tx)Ud, which means, that

the modulation is performed in 3 steps; 1) unitary precoding
of the data dp = Ud, 2) windowing with dp,w = Λ(tx)dp,
and 3) block OFDM modulation. For special precoding design
given by U = (UM ⊗UK), where UM ∈ CM×M and
UM ∈ CK×K are unitary matrices, the sub-block matrix X
can be expressed as

X = F H
K

(
G(tx) �

[
UKDUT

M

])
= F H

KDp,w. (6)

where D = unvecK×M {d}, G ∈ CK×M is defined such as
Λ(tx) = diag {vec {G}}, and Dp,w = G�[UKDUM ] denotes
precoded data symbols. The system model is equivalent to
transmitting M CP-OFDM symbols with K subcarriers mod-
ulated by the precoded data Dp,w. This framework is more
general than the one introduced in [13]. As particular cases
of precoding on top of OFDM, OTFS employs (FH

M ,FK),
block-single carrier (SC), where the sub-blocks are given by
xm = D[:,m] use (IM ,FK). In this letter, the sparse Walsh-
Hadamard (WH) precoding is proposed with UK = WQ ⊗ IP
and UM = WQ′ ⊗ IP ′ , where WN denotes, the normalized
WHT matrix defined recursively by

WN = W2 ⊗WN/2, W2 =
1√
2

[
1 1
1 −1

]
. (7)

More details on this precoding are presented in Section III.
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C. Iterative Equalizer

Depending on the modulation matrix, an iterative equaliza-
tion is necessary to resolve the ISI caused by the dispersive
wireless channel. The MMSE-PIC [4] is adopted in this
work. For the received signal (5), the general MMSE-PIC is
computed as

d̂ = da+

UHΛ(h̄)H (
Λ(h̄)UΣa

dU
HΛ(h̄)H

+IN0

)−1 (
ȳ−Λ(h̄)Uda

)
diag

{
UHΛ(h̄)H

(
Λ(h̄)UΣa

dU
HΛ(h̄)H

+ IN0

)−1

Λ(h̄)U

} (8)

and1

Σd̂ =
1N

diag

{
UHΛ(h̄)H

(
Λ(h̄)UΣa

dU
HΛ(h̄)H

+IN0

)−1

Λ(h̄)U

}
− diag {Σa

d}
(9)

where d̂ ∈ CN×1 is the estimated data symbol and Σd̂ ∈
CN×1 is the error variance of the estimated data. In addition,
da ∈ CN×1 and Σa

d ∈ CN×N are the a-priori data mean
and the diagonal error variance matrix, respectively, which are
computed based on the log likelihood ratios (LLRs) produced
by the single-input single-output (SISO) decoder, e.g., BCJR
log-MAP. In this letter, the computation of da and Σa

d is
omitted for brevity, and can be found in detail in [14, eq.
(13)]. At the initial step, these variables are da = 0N and
Σa

d[n, n′] = 1 for n = n′ and 0 otherwise.

III. ROBUST AND LOW-COMPLEXITY MODULATION

A. Sparse Walsh-Hadamard (SWH)

1) Frequency Domain Sparsity: As opposed to [6], in the
following we show that the EGC can be achieved with sparse
spreading in order to reduce the computational complexity.
Omitting the index m for simplicity, the received signal (1)
is y = HAd + v, where xm is replaced by the modu-
lated data Ad. Now, Consider the sparse Walsh-Hadamard
modulation matrix in time domain ASWH = WP ⊗ IQ,
where P · Q = K and Q ≥ L. For the first column
ASWH[0, :] = 1/

√
P
(
1,0T

Q−1, 1,0
T
Q−1, · · · , 1,0T

Q−1

)T
, we

can prove that the EGC [6] is achieved by the equality
K−1∑
n′=0

|(HASWH)[0, n′]|2 =

K−1∑
n′=0

|H[0, n′]|2. (10)

Next we show that (10) holds. While Q ≥ L, one
can verify that this waveform convoluted with the wire-
less channel has an output equal to HASWH[0, :] =

1/
√
P
(
hT,0T

Q−L,h
T,0T

Q−L, · · · ,hT,0T
Q−L

)T
, where h ∈

CL is the channel impulse response, i.e., the first L elements
of the first column of H . Clearly, HASWH[0, :] appends the
channel response P times and multiplies by a factor of 1/

√
P .

Therefore, it can be easily validated that equation (10) holds.
Conversely if Q < L, HASWH[0, :] cannot be written as

1Following the notation of [4], we define Σd̂ as a vector to keep the
notation cleaner.

above because the channel’s coefficients superpose, thus (10)
is not guaranteed to hold.

In the frequency domain, we have2 FKASWH[0, :] =

1/
√
Q
(
1,0T

P−1, 1,0
T
P−1, · · · , 1,0T

P−1

)T
, where Q and P are

swapped. We can make two observations, i) any cyclic shift
of FKASWH[0, :] still maintains the ECG of (10) because in
the time domain it results in an element wise product with
ASWH[0, :] which does not change the received power, and
ii) any phase change in the amplitude of FKASWH[0, :] also
maintains the ECG of (10). Thus, the SWH modulation in the
frequency domain USWH = WQ ⊗ IP guarantees the ECG.

In summary, we have proved that for a channel impulse
response with length L, we can sparsely spread the symbols
in FD by an interval of P samples with P ·Q = K and Q ≥ L.

2) Time Domain (sub-block) Sparsity: Analogously to the
previous findings with M = 1, we generalize the sparse WH
modulation for any M . To this end, we make UM = WQ′ ⊗
IP ′ in Subsection II-B such that the data symbols are sparsely
spread among the sub-blocks, with Q′ · P ′ = M . Basically, if
the channel among the sub-blocks are highly correlated, the
sparse spreading over the sub-blocks have similar effect as the
respective frequency domain sparse spreading. This behavior
we will numerically evaluated in Section IV.

Thus, the general sparse Walsh-Hadamard transform for
doubly dispersive channels is given as

USWH = (WQ′ ⊗ IP ′)⊗ (WQ ⊗ IP ) . (11)

We note that (11) is more general than the one presented in
[12], which has Q = K and Q′ = M , i.e., full spreading.

B. Low-complexity equalization
In order to avoid the N -size matrix inversion of equations

(8) and (9) as done in [4], we consider only the diagonal of
UΣa

dU
H that according to Appendix is computed as

Σa
X [n, n] =

1

|χ(n)|
∑

n′∈χ(n)

Σa
d[n′, n′], (12)

for n = 0, 1, · · · , N − 1, where the set χ(n) =
{n′|n′ is an index, and U [n, n′] 6= 0} contains the indexes
of the data allocated in the n-th data symbol. Then,
this matrix inversion of (8) can be approximated as(
Λ(h̄)UΣa

dU
HΛ(h̄)H

+Iσ2
)−1

≈
(
Λ(h̄)Σa

XΛ(h̄)H
+Iσ2

)−1

,
which can be realized with element-wise multiplication.

In addition, we can compute the denominator of (8) analo-
gously to (12) because they have the exact format. Consider

the diagonal Λeq = Λ(h̄)H(
Λ(h̄)Σa

XΛ(h̄)H
+N0IN

)−1

Λ(h̄),
and because U and UH have non zero elements in the same
position, we have

Λ̄eq[n, n] = (UHΛeqU)[n, n] =
1

|χ(n)|
∑

n′∈χ(n)

Λeq[n′, n′]. (13)

Finally, the low-complexity equalizer for a generic spreading
modulation matrix is given by

d̂ = da+
1

Λ̄eq

UHΛ(h̄)H
(

Λ(h̄)Σa
XΛ(h̄)H

+Iσ2

)−1(
ȳ−Λ(h̄)Uda

)
(14)

2The DFT of a Dirac comb signal is also a Dirac comb signal.
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TABLE I: Complexity of U .

U Multiplications Additions
SC IM ⊗ FK N/2 log2(K) N log2(K)

OTFS F H
M ⊗ FK N/2 log2(N) N log2(N)

SWH (WQ′ ⊗ IP ′) N , √
QQ′ not radix-2 N log2(QQ′)

⊗ (WQ ⊗ IP ) 0, √
QQ′ radix-2

and Σd̂ [n] =
1

Λ̄eq

−Σa
X . (15)

For the OTFS modulation, (14) and (15) still hold. In this
case, the set χ(n) = {0, 1, · · · , N − 1} ∀n in (12) and (13)
contains all indexes because the symbols are equally spread
over frequency and sub-blocks. Finally, for the SC modulation,
χ(n) = {iK, iK + 1, · · · ,K + iK − 1}, where i = bnKc.

C. Precoding Computational complexity

Table I summarizes the precoding complexity considering
for SC, OTFS and SWH. We do not consider OFDM because
it has no precoding, i.e., U = I . For the SC (DFT-precoding),
U = IM ⊗ FK requires M times K-sized FFT, where
the K-sized FFT requires K/2 log2(K) multiplications and
K log2(K) additions. In Table I, we make N = MK. For
OTFS, the precoder is U = F H

M ⊗ FK whose complexity is
equivalent to N -sized FFT [5], i.e., N/2 log2(N) multiplica-
tions and N log2(N) additions.

For the proposed SWH in (11), the complexity is computed
as follows. Consider USWH = UM ⊗ UK as in Subsection
II-B, where according to (11) we make UK = WQ ⊗ IP
and UM = WQ′ ⊗ IP ′ . Then, we write USWHd as
vec
{
UKDUT

M

}
, where D ∈ SK×M is the data matrix. The

transform D̃ = UKD consumes a Q-sized FWHT P · M
times, where P comes from IP and M is because D has M
columns. Then, the remaining transform (UMD̃T)T consumes
a Q′-sized FWHT P ′ ·K times, where P ′ is due to IP ′ and
K is because D̃T has K columns. The number of additions
of an Q-sized FWHT is Q log2Q [15]. Thus, we compute the
total number of additions as PMQ log2(Q)+P ′KQ′ log2(Q′)
which equals to N log2(QQ′) due to PQ = K, P ′Q′ = M
and KM = N . Further, if

√
QQ′ is not a radix-23 the

normalization requires N multiplications, otherwise it can be
achieved with simple bit shifting.

IV. SIMULATION RESULTS

This section presents the FER performance of the proposed
SWH waveform in comparison to OFDM, SC and OTFS.
As described in Section II, we consider a quasi-static block
fading channel model, i.e., the channel changes among the
sub-blocks based on the well known Jakes’ model, where
a perfect channel estimation is assumed per sub-block. We
consider a relative speed between the transmitter and the
receiver equal to 300 km/hr with a carrier frequency of 5.9
GHz. The channel power delay profile follows the Extended
Vehicular-A (EVA) model, as shown in the Table II. Moreover,
due to the satisfactory performance demonstrated in [4], we

3By radix-2, we mean the numbers contained in the set {1, 2, 4, 8, 16, · · · }.
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Fig. 2: FER curves K = 128, M = 4 and B = 10MHz.
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Fig. 3: FER curves K = 64, M = 16 and B = 5MHz.

TABLE II: EVA Channel PDP, delay in µs and power in dB
1 2 3 4 5 6 7 8 9

µs 0 .03 .15 .31 .37 .71 1.09 1.73 2.51
dB 0 -1.5 -1.4 -3.6 -0.6 -9.1 -7 -12 -16.9

employ the recursive systematic convolutional encoder with
BCJR log-MAP SISO decoder, and the iterative equalization
has a maximum of 7 iterations for the spreading waveforms,
namely, SC, OTFS and SWH.

The results presented in Fig. 2 consider K = 128, M = 4
and a bandwidth of 10 MHz which leads to a channel length
of L = 26 samples, where we set the CP to 32 samples.
In this case, the amount of sub-blocks is not sufficient for
the channel to change considerably. For instance, the corre-
lation between the channels of the first and last sub-block is
E[h̃0[ν]h̃M−1[ν]H] = 0.96 for any frequency bin ν. This effect
can be observed in Fig. 2, since the SC and OTFS present
almost the same performance. This indicates, that spread the
data among the sub-blocks is not necessary in this case as
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TABLE III: Complexity of U for the setups of Figs. 2 and 3

Fig. 2 Fig. 3
Mult. Add. Mult. Add.

SC 1792 3584 3072 6144
OTFS 2304 4608 5120 10240

SWH

Q = 16, Q′ = 1 0 2048 0 4096
Q = 8, Q′ = 1 512 1536 1024 3072
Q = 4, Q′ = 1 0 1024 - -
Q = 16, Q′ = 4 - - 0 6144

the channel does not significantly change. We compare three
configuration of SWH, for Q = {16, 8, 4} and Q′ = 1 for
all cases. Notice that Q′ = 1 means that we do not spread
the symbols over the sub-blocks, thus, the performance of
SC is the lower-bound, which is a full spreading waveform
per sub-block. According to Section III-A, we should have
Q > L = 26 in order to guarantee the equal gain per sub-
block, however, the SWH waveform with Q = 16 and 8 have
shown very little performance degradation in relation to SC.
For SWH with Q = 4, the performance loss is more evident,
however it has a considerable gain in relation to OFDM.

In Fig. 3, we consider a different setup with K = 64,
M = 16 and bandwidth of 5 MHz which leads to a channel
length of L = 13 samples, with CP equal to 16 samples. Now
the amount of sub-blocks is sufficiently large for the channel
to change considerably, which is shown by the correlation
E[h̃0[ν]h̃M−1[ν]H] = 0.24 for any ν. Firstly, we notice
that the waveforms that localizes the symbols per sub-block
experience significant performance loss in relation to OTFS,
namely, SC and both SWH systems with Q′ = 1. This
indicates the benefit of spreading the symbols over the sub-
blocks. Also, we observe that the SWH with Q = 16 and
Q′ = 4 has no performance loss in relation to OTFS, meaning
that indeed we can also sparsely spread the symbols over the
sub-blocks with no performance loss.

Finally, we show the multiplications and additions of the
Table I for the setups of Fig. 2 and Fig. 3. For Fig. 2, we
highlight that the smallest configuration of the SWH with
Q = 4 and Q′ = 1 has considerable resource savings in
relation to SC and OTFS, with little performance loss. For
instance, SWH needs no complex multiplication which greatly
decreases the overall resource consumption, while SC and
OTFS have 1792 and 2304, respectively. For Fig. 3, we give
special attention to the configuration Q = 16 and Q′ = 4,
which has no performance loss in relation to OTFS and
outperforms SC, but has considerable resource savings. In
particular, it also requires no complex multiplication.

V. CONCLUSION

In this letter, we have proposed a robust and low-complexity
waveform based on the sparse WHT for doubly-dispersive
channels. For the frequency domain sparsity, we have provided
a proof for equal gain condition, while we have evaluated
numerically the time domain sparsity. In addition, we have
presented a general modulation framework, to which the
recently proposed OTFS happens to be a particular case. We

have shown that both WH and OTFS are robust waveforms due
to spreading over time and frequency, however, the proposed
sparse WH scheme can be implemented with significantly
lower computational complexity.

APPENDIX

In this appendix, we prove that Σa
X [n, n] =

(UΣa
dU

H)[n, n] = U [n, :]Σa
d(U [n, :])H in (12). Because Σa

d

is a diagonal matrix, we have the equality

U [n, :]Σa
d(U [n, :])H =

N−1∑
n′=0

|U [n, n′]|2 Σa
d[n′, n′]. (16)

In general, U can have zeros if the modulation is sparse, e.g.,
USWH in (11), whose non-zero elements have equal power.
Thus, for a fixed row n, we define the set χ(n) which contains
all indexes that have the condition U [n, n′] 6= 0. Since U is
unitary, |U [n, n′]|2 = 1/ |χ(n)|, which leads to equation (12).
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