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Abstract—Interference mitigation is a major design challenge
in wireless systems, especially in the context of ultra-reliable low-
latency communication (URLLC) services. Conventional average-
based interference management schemes are not suitable for
URLLC as they do not accurately capture the tail information of
the interference distribution. This letter proposes a novel interfer-
ence prediction algorithm that considers the entire interference
distribution instead of only the mean. The key idea is to model
the interference variation as a discrete state space discrete-time
Markov chain. The state transition probability matrix is used to
estimate the state evolution in time, and allocate radio resources
accordingly. The proposed scheme is found to meet the target
reliability requirements in a low-latency single-shot transmission
system considering realistic system assumptions, while requiring
only ∼ 25% more resources than the optimum case with perfect
interference knowledge.

Index Terms—Beyond 5G/6G networks, intelligent resource
management, interference prediction, URLLC.

I. INTRODUCTION

Ultra-reliable low-latency communication (URLLC) is a
novel service class introduced in the latest fifth generation
(5G) New Radio (NR) wireless network standard. URLLC
targets stringent reliability performances, e.g., in the order of
99.999%, and latency budgets as low as one millisecond [1].
These stringent quality of service (QoS) figures are required
to support a variety of mission-critical applications in dif-
ferent vertical industries, such as remote control of robots,
autonomous coordination among vehicles and in industrial
automation [2].

There are three main lower layer challenges in ensuring
URLLC, namely (i) uncertainty in the traffic arrival, (ii) chan-
nel impairments such as fading, and (iii) random interference.
Addressing these challenges efficiently mandate a departure
from the average utility based approach of conventional radio
resource management (RRM) practices to a framework that
considers the tail behavior of the reliability, latency and
throughput performance [3].

URLLC enablers in 5G NR are primarily centered around
redesigning the system numerology to meet low latency re-
quirements [1], and ensuring high reliability through over-
provisioning of resources [4]. While such an approach is
known to enable URLLC under sparse and controlled en-
vironments, it is neither scalable nor resource efficient, and
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therefore does not adequately address the fundamental and
novel challenges imposed by URLLC. Alongside, emerging
URLLC use cases in future beyond 5G/sixth generation (6G)
networks will require QoS guarantees that are much more
diverse and stringent than those considered in 5G NR [5].
Novel solutions incorporating intelligent and predictive RRM
algorithms are therefore needed to enable URLLC in a scalable
and resource efficient manner in future wireless networks.

Link adaptation is a well known RRM approach in conven-
tional interference management. It involves estimating future
interference values from past samples, which is then mitigated
by adapting the link parameters accordingly [6]. Conventional
link adaptation schemes operate by condensing the entire inter-
ference distribution into a single mean value, and are therefore
not suitable for URLLC applications where the tail behavior
of the interference distribution needs to be considered [3].
Instead, interference prediction strategies that capture informa-
tion about the entire interference distribution are better suited.
Generally, such interference prediction involves building a
model to reflect the interference variation across time, which
is then used to predict future interference values.

RRM algorithm design for URLLC applications based on
interference prediction is still at its infancy (see for exam-
ple [7]). We aim at contributing to this emerging field by
proposing a novel interference prediction based RRM algo-
rithm in this work. We model the interference variation as a
discrete state space discrete-time Markov chain (DTMC). The
state transition probability matrix, obtained by observing the
history of state transitions, is used to predict future interference
states. Finally, the predicted interference is mitigated through
efficient allocation of resources. The proposed approach is
validated using extensive Monte-Carlo simulations. We ob-
serve that very low outage probabilities can be achieved with
the proposed scheme, which are otherwise not possible by
adopting a conventional average-based approach.

II. SYSTEM MODEL

We consider the downlink1 of a wireless network. The focus
is on a desired URLLC link operating in the presence of
N interferers distributed in R2 space. The desired channel
is assumed to have a mean signal to noise ratio (SNR)
of γ̄D , whereas the mean interference to noise ratio (INR)
corresponding to each interfering link - i.e., the mean SNR

1The proposed scheme is link direction agnostic and works equally for the
uplink as well.



of the interference signal - is considered to be uniformly dis-
tributed in the range [γ̄I,min, γ̄I,max]. We assume γ̄D ≥ γ̄I,max,
i.e., users are served by the transmitter with the strongest
mean SNR. All nodes are assumed to operate independently,
i.e., there is no cooperation among them. A single-antenna
Rayleigh block-fading channel model is adopted.

The desired transmitter transmits a short packet of D bits
with a target outage/block error rate (BLER) ε . The transmitter
estimates the signal to interference plus noise ratio (SINR),
and then allocates the required resources accordingly. The goal
is to estimate the SINR as accurately as possible to ensure
efficient allocation of resources.

URLLC aims to realize low latency and high reliability
simultaneously. This is usually done by aiming to achieve a
target reliability under a given latency budget [8]. In this work,
we consider a very tight latency budget that cannot accommo-
date any retransmissions, i.e., transmissions are assumed to
be single shot [9]. Such an assumption allows us to analyze
the lower bound of URLLC performance since retransmissions
improve reliability, albeit at the cost of additional latency [10].

URLLC transmissions usually occur over mini-slots of
duration ∼ 0.1 ms, thereby providing shorter and more agile
transmission time interval (TTI) compared to the 1 ms TTI of
LTE [1]. Given that the channel coherence time in a typical
wireless environment is much larger than the mini-slot dura-
tion, the duration of a fading block for URLLC transmissions
spans over multiple TTIs. The desired transmitter is therefore
assumed to have sufficient time to acquire accurate knowledge
of the desired channel state information (CSI). In addition,
the receiver is also assumed to feed back the experienced
‘aggregate’ interference allowing the transmitter to acquire
knowledge of the past interference samples at the receiver.

III. THE PROPOSED INTERFERENCE PREDICTION SCHEME

A model-based approach to interference prediction is
adopted in this work, where the interference distribution is
modeled as a discrete state space DTMC. The sketch of
the proposed interference prediction algorithm is pictorially
outlined in Fig. 1 and detailed in the rest of this section.

1) Discretization of the Interference Space: As the first
step, the initially observed (continuous) interference space I
is discretized into the state space L , {S1, . . . ,SL} such that
interference values in the range [Il−1, Il) are assigned to state
Sl . A straightforward option would be to discretize I into L
equally spaced states within the range of I. However, this
treats stronger and weaker interference values equally and
is contradictory to the risk-sensitive approach recommended
for URLLC [3]. We therefore discretize I2 into L equally
spaced states and define the state boundaries of L to be the
squareroots of those values. Thus, larger interference values
are represented by a higher number of states, as depicted in
Fig. 1. Finally, we set I0 = 0 and IL = ∞ to capture any future
interference value that may lie outside the initial range of I. It
is worth mentioning that, the choice of L results in a trade-off
between algorithm complexity and performance accuracy.

2) Obtaining the Transition Matrix: Next, we obtain the
transition matrix P describing the transition probabilities of

the states in L. We first define Ĩ , {S0,S1, . . .} as the set
of observed interference states at time index t = 0, 1, . . .. The
transition probability pi j denotes the probability of a transition
from the states Si to Sj , and is defined as

pi j =

∑
t

[
1St+1

(
Sj

)
|1St (Si)

]∑
t [1St (Si)]

, (1)

where 1A(x) is the indicator function which equals 1 if x ∈ A
and 0 otherwise. The entries of the transition matrix P are thus
obtained by evaluating (1) ∀ i, j ∈ {1, 2, . . . , L}.

3) Interference Prediction: In order to utilize the tail
statistics of the interference distribution, we introduce the
confidence level parameter η < 1, which can be viewed as
a risk-sensitivity index [3]. Suppose, we would like to utilize
the right end of the distribution tail up to a point ζ . η is
then the area under the left side of the PDF up to point ζ .
Hence, the closer η approaches one, the closer to the right
end of the distribution tail is utilized for the prediction, as
illustrated in Fig. 1. More specifically, η characterizes the
likelihood that the predicted interference level is higher than
the actual interference. Thus, a larger η corresponds to a more
conservative interference estimation.

Suppose, St = Si , i.e., the interference state at time t is
Si . Our proposed scheme predicts the interference at time
t + 1 to be such that the predicted interference

(
Î t+1

)
is

greater than the actual interference
(
I t+1) with probability

≥ η. Mathematically, this is stated as Pr[I t+1 ≤ Î t+1] ≥ η.
To ensure this, we first predict the next state Ŝt+1 to be Sj ,
where j is the smallest integer such that

∑j
l=1 pil ≥ η. The

predicted interference level at time index t + 1 is then

Î t+1 =

{
Ij if j , L
2IL−1 − IL−2 if j = L

, (2)

where Ij is the right-endpoint of state Sj . Please note that,
we have earlier set IL = ∞ and hence if Ŝt+1 = SL , we risk
obtaining Î t+1 = ∞. To avoid this, the second step in (2) sets
a dummy right-endpoint of SL . Note that the dummy endpoint
can be set to any value greater than IL−1 for the proposed
scheme to work.

4) Transition Matrix Update: The last step of the proposed
algorithm involves updating the transition matrix P. Suppose,
a transition is made from state Si to state Sj .P is then updated
as follows,

step 1, update: pi j → pi j + ωi j

step 2, normalize: normalize ith row s.t.
L∑
j=1

pi j = 1.

Here, 0 ≤ ωi j � 1 is the learning rate. The provision for
having different learning rates for different states allows giving
a higher weight to certain transitions. In this work, we have
set ωi j = ωi ∀ j and let its value be inversely proportional to
the number of elements in state Si .

5) Complexity Analysis: The proposed interference predic-
tion algorithm is of low-complexity with minimal additional
signaling overhead. The only additional step during runtime
involves looking up the transition matrix (a table of size L) to
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Fig. 1. Sketch of the proposed algorithm.

predict the next interference state. In addition, the algorithm
requires the receiver to feed back the experienced interference
level along with the CSI, and the transmitter to update P upon
receiving this information. All of these steps are rather simple
to execute and incurs negligible processing delay.

IV. NUMERICAL EVALUATION

The performance of the proposed scheme is evaluated and
compared against two baseline schemes in this section.

A. Baseline Estimation Techniques

1) Moving Average Based Estimation: The conventional
weighted average based interference estimator, which is
adopted as an estimator in link adaptation for conventional
enhanced mobile broadband (eMBB) services [6], is con-
sidered as the first baseline scheme. In this scheme, the
interference measured at time t is filtered with a low-pass
first-order Infinite Impulse Response (IIR) filter, resulting in
the following interference estimate,

Ît+1 = αIt−1 + (1 − α)Ît, (3)

where 0 < α < 1 is the forgetting factor (FF) of the filter.
2) Genie Aided Estimation: We also consider a genie-aided

estimator where the exact interference condition is known a
priori at the transmitter, leading to optimum resource alloca-
tion. Even though such a scheme is not feasible in practice,
it is considered as an indicator of the optimum performance
bound.

B. Resource Allocation

Let γ = σ/Î be the predicted SINR, where σ is the SNR
of the desired transmission (which we assume to be known
using CSI estimates) and Î is the predicted interference level

as described in the preceding section. Using results from finite
blocklength theory, the number of information bits D that can
be transmitted with decoding error probability ε in R channel
uses in an additive white Gaussian noise (AWGN) channel
with SINR γ is given as [11]

D = RC(γ) −Q−1(ε)
√

RV(γ) + O(log2 R), (4)

where C(γ) = log2(1 + γ) is the Shannon capacity of
AWGN channels under infinite blocklength regime, V(γ) =

1
ln(2)2

(
1 − 1

(1+γ)2

)
is the channel dispersion (measured in

squared information units per channel use) and Q−1(·) is the
inverse of the Q-function. Using the above, the channel usage
R can be approximated as [12]

R ≈
D

C(γ)
+

Q−1(ε)2V(γ)
2C(γ)2

[
1 +

√
1 +

4DC(γ)
Q−1(ε)2V(γ)

]
. (5)

Eq. (4) is extended in [13] to derive the achievable maxi-
mum coding rate spanning over multiple coherence intervals
considering the more practical (and assumed) case of cor-
related Rayleigh block-fading channels. However, this only
changes the absolute performance but not the relative perfor-
mance measures of the different schemes, and hence does not
alter the key findings of this paper.

C. Performance Evaluation

The performance of the proposed interference prediction
method is numerically evaluated against the two baseline
schemes presented in Section IV-A. Unless stated otherwise,
the simulation parameters presented in Table I are adopted.

1) Outage Probability vs. Resource Usage: We first evalu-
ate the outage probability as a function of the target outage ε
as plotted in Fig. 2. Four different values of the risk-sensitivity
index are considered, namely η = {0.8, 0.85, 0.9, 0.95}. Since
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TABLE I
GENERAL SIMULATION PARAMETERS

Parameter Value

Mean SNR, γ̄D 20 dB
Mean INR range, [γ̄I ,min, γ̄I ,max ] [−10, 5] dB
Number of interferers, N 5
Channel model Rayleigh fading SISO
Packet length, D 50 bits
Number of states, L 20
Risk sensitivity index, η 0.95
FF of IIR filter, α 0.01

the genie-aided estimator is assumed to know the achieved
SINR beforehand, it can allocate the exact amount of resources
required to meet the target outage. On the other hand, the
conventional IIR filter based estimator performs very poorly
and is only able to meet a BLER target of about 10%. It
is worth mentioning that the conventional IIR filter based
approach is known to be quite resource efficient for eMBB
services, where the BLER target is usually around 10%.

The performance of the proposed scheme depends on η.
Outage targets as low as 5 × 10−4 can be fulfilled with a
conservative value of η = 0.95. Obviously, this comes at the
cost of higher resource usage (RU), as discussed next. It is
worth highlighting that this outage is achieved with a single
shot transmission, which means that the outage performance
can be significantly improved with retransmission or other
diversity techniques, albeit at the cost of higher latency.

Fig. 2. Achieved outage as a function of the target outage probability for
different values of the risk-sensitivity index η.

The average RU corresponding to the above setup is shown
in Fig. 3. As expected, the lowest RU is achieved when the
SINR is exactly known a priori as it leads to the optimum
resource allocation. The IIR filter based baseline scheme is
very close to the optimum performance in terms of RU. As
indicated earlier, this is the conventional scheme in the case
of eMBB services where optimum RU is prioritized over high
reliability and low latency.

The RU of the proposed scheme depends on the risk-
sensitivity index η, which can be used to balance the trade-off
between reliability and RU. A higher η reflects a more conser-
vative prediction. This leads to a lower SINR estimation, and
subsequently higher resource allocation while also resulting in
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Fig. 3. Resource usage in channel uses vs. target outage probability for
different values of the risk-sensitivity index η.

a better outage performance.
2) Performance Under Different Interference Conditions:

The performance of our proposed scheme under different in-
terference conditions is evaluated in this section. We consider
three different scenarios, as follows

Strong SNR, strong interference: Mean SNR and the INR
range set to γ̄D = 20 dB, and [γ̄I,min, γ̄I,max] = [0, 20]
dB, respectively;

Strong SNR, weak interference: γ̄D = 20 dB and
[γ̄I,min, γ̄I,max] = [−5, 5] dB; and

Weak SNR, weak interference: γ̄D = 5 dB and
[γ̄I,min, γ̄I,max] = [−5, 5] dB.

Fig. 4 presents the outage probability as a function of the
target outage under the considered interference scenarios. As
a general trend, neither the baseline nor the proposed scheme
is strongly sensitive to the interference scenario. The baseline
scheme behaves as expected with the strong SNR, weak inter-
ference scenario demonstrating the best performance, followed
respectively by weak SNR, weak interference and strong SNR
and strong interference scenarios. On the other hand, given
its nature, the proposed interference prediction scheme can

Fig. 4. Outage probability vs. target outage under different interference
scenarios, η = 0.95.
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Fig. 5. Achieved outage as a function of the target outage probability with
correlated traffic, η = 0.95.

better track the interference when it is strong. Hence, a
better performance is observed for the scenarios where the
interference strength is comparable to the SNR.

3) Performance Evaluation with Correlated Traffic: In or-
der to meet the low latency requirements, URLLC transmis-
sions in 5G NR take place over mini-slots with rather short
TTIs [1]. Hence, the channel coherence time in practice spans
over multiple transmission slots, resulting in the interference
from a given transmitter being correlated over time.

The outage probability as a function of the target outage
considering (time) correlated and uncorrelated interference is
presented in Fig. 5. Under these realistic assumptions, the
proposed interference estimate based RRM scheme is found to
always fulfill the target outage, whereas the baseline estimator
performance is only slightly improved. Correlation induces
greater dependence in the transition from one state to the
next. Hence, estimating future interference values based on the
state transition probability matrix results in greater accuracy
compared to the uncorrelated traffic case. The corresponding
RU, as shown in Fig. 6, is only about 25% more than the
optimum RU. This indicates that the proposed scheme is even
more efficient when considering the realistic case of correlated
traffic. The RU for correlated traffic is almost unchanged for
both the baseline schemes, and hence not illustrated in the
figure.

V. CONCLUSIONS AND FUTURE WORKS

URLLC mandates a departure from the conventional
average-based resource management approach. Intelligent and
risk sensitive designs are instead needed to meet the stringent
reliability and latency requirements while guaranteeing high
resource efficiency. A novel interference prediction based
RRM algorithm is proposed in this letter. The interference
distribution is modeled as a discrete state space DTMC. Future
interference states are predicted by utilizing the state transition
probability matrix along with a risk sensitivity parameter. The
reliability of the proposed scheme is found to be significantly
better than that of the considered baseline RRM scheme.
Alongside, the proposed scheme requires only slightly more
resources than the optimum case. As next steps, we plan
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Fig. 6. Resource usage in channel uses vs. target outage probability with
correlated traffic, η = 0.95.

to investigate more resource efficient implementations of the
proposed scheme.
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