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Index and Composition Modulation
Ferhat Yarkin Graduate Student Member, IEEE and Justin P. Coon Senior Member, IEEE

Abstract—In this paper, we propose a novel modulation con-
cept which we call index and composition modulation (ICM). In
the proposed concept, we use indices of active/deactive codeword
elements and compositions of an integer to encode information. In
this regard, we first determine the activated codeword elements,
then we exploit energy levels of these elements to identify the
compositions. We depict a practical scheme for using ICM
with orthogonal frequency division multiplexing (OFDM) and
show that OFDM with ICM (OFDM-ICM) can enhance the
spectral efficiency (SE) and error performance of OFDM-IM.
We design an efficient low-complexity detector for the proposed
technique. Moreover, we analyze the error and SE performance
of the OFDM-ICM technique and show that it is capable of
outperforming existing OFDM benchmarks in terms of error
and SE performance.

Index Terms—Composition modulation (CM), index modula-
tion (IM), orthogonal frequency division multiplexing (OFDM).

I. INTRODUCTION

Index modulation (IM) that encodes data into the combi-

nations of active/deactive codeword elements offers a variety

of attractive advantages including better error performance

and improved energy/spectral efficiency over conventional

modulation and multiplexing schemes. Hence, the adaptation

of IM to orthogonal frequency division multiplexing (OFDM)

has attracted several researchers attentions [1]–[6] and it has

been shown by these studies that OFDM with IM (OFDM-

IM) can achieve better error performance, higher data rate

and higher energy efficiency than conventional OFDM. Apart

from IM, in [7], we proposed two new modulation concepts,

weak composition modulation (WCM) and composition modu-

lation (CM), that embed data using integer compositions, and

showed that the applications of these concepts to OFDM bring

noteworthy improvements in error performance.

5G’s key enabling technologies are expected to satisfy the

user demands for high data rate, ultra-reliable transmission,

and very low latency. However, it is anticipated that 6G and the

following next-generation networks will require even higher

data rates, better error performance, and lower latency due to

the proliferation of a variety of new applications, including ex-

tended reality services, telemedicine, haptics, flying vehicles,

brain-computer interfaces, and connected autonomous systems

[8]. In this regard, the existing OFDM and OFDM-IM schemes

require further improvement in error performance and spectral

efficiency (SE) to be deployed efficiently in next-generation

networks.
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Motivated by the advantages of the IM and CM techniques

as well as the requirements of next-generation networks, we

propose a novel concept that we call index and composition

modulation (ICM). In this context, we encode information

using the combinations of active/deactive codewords elements

as in IM and the combinatorial framework of integer com-

positions as in CM. We depict a practical model based

on OFDM with ICM (OFDM-ICM). Moreover, we design

an efficient low-complexity detector to overcome the high

complexity arising from maximum-likelihood (ML) detector.

We also investigate the bit error rate (BER) and SE of the

proposed scheme in this paper. Our analytical, as well as

numerical, findings indicate that our novel design can achieve

a substantially better SE and BER performance than OFDM,

OFDM-IM, OFDM-WCM and OFDM-CM.

II. INDEX AND COMPOSITION MODULATION

An ICM codebook consists of LICM codewords and each

codeword is an N -tuple of nonnegative real numbers which

can be regarded as a vector xl =
{

xl1, xl2, . . . , xlN

}

, l =
1, 2, . . . , LICM , in an Euclidean space S of N dimensions

where xln ∈ R≥0 and n = 1, 2, . . . , N . In an ICM codeword,

K elements are positive real numbers where K ≤ N , whereas

the remaining N −K elements are zeros. Here, we call the K
positive real elements and N −K zero elements as activated

and deactivated elements, respectively, since no energy is

used to form the zero elements. All other codewords of the

codebook can be obtained by permuting the order of the N
elements in the codeword. The values of K activated elements

in each codeword are chosen according to the integers that

form the compositions of an integer I with K parts. Hence,

one can obtain different codewords by using different compo-

sitions of an integer. More explicitly, when we form xl, we first

determine the indices of K activated elements in an N -tuple

and denote the set of these indices as I :=
{

α1, α2, . . . , αK

}

where αk ∈
{

1, 2, . . . , N
}

and k = 1, 2, . . . ,K . Then, the kth

activated element xlαk
of the N -tuple is chosen as xlαk

=
√
νk

where νk ∈
{

1, . . . , I − K + 1
}

is the kth summand of the

composition and ν1+ν2+. . .+νK = I . Note that one needs to

pick I ≥ K to be able to construct the ICM codewords. Since

the number of permutations regarding the order of K activated

and N − K deactivated elements is
(

N
K

)

and the number of

integer compositions of I with K parts is
(

I−1
K−1

)

, the number

of codewords in an ICM codebook is LICM =
(

N
K

)(

I−1
K−1

)

. In

Table I, we give a codebook generation example for an ICM

scheme when N = I = 3 and K = 2. As seen from the

leftmost column of the table, we first determine the indices of

K = 2 activated elements, then we determine the compositions

of an integer I = 3 with K = 2 parts and map the summands

in those compositions to the elements of the ICM codewords

according to the indices as shown in the rightmost column.

http://arxiv.org/abs/2009.13214v1
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TABLE I: Codebook generation example for ICM when N =
I = 3 and K = 2.

Indices of Activated
Elements, I Compositions ICM Codeword

{

1, 2
}

3=1+2
x1 =

{

1,
√
2, 0

}

{

1, 3
}

x2 =
{

1, 0,
√
2
}

{

2, 3
}

x3 =
{

0, 1,
√
2
}

{

1, 2
}

3=2+1
x4 =

{√
2, 1, 0

}

{

1, 3
}

x5 =
{√

2, 0, 1
}

{

2, 3
}

x6 =
{

0,
√
2, 1

}

III. OFDM WITH INDEX AND COMPOSITION

MODULATION

In this section, we present a practical system model in which

we apply the ICM concept to OFDM transmissions.

A. Transmitter

Analogously to OFDM-IM, m input bits enter the transmit-

ter and these bits are divided into B = m/f blocks, each of

them having f input bits. The total number of the subcarriers,

NT , is also split into B = NT /N blocks whose size is N .

We will focus on the bth block in what follows. f information

bits are further divided into three parts, having f1, f2 and f3
bits with f1 + f2 + f3 = f in the bth block.

The first f1 = ⌊log2
(

N
K

)

⌋ bits are used to determine

the activated K subcarriers. Then, the f2 = ⌊log2
(

I−1
K−1

)

⌋
bits are used to determine the specific composition of an

integer I with K parts where I ≥ K . The energies of the

symbols on the activated subcarriers are chosen according

to the specific composition of an integer I with K parts.

Let us denote the sets that comprise the indices of the acti-

vated subcarriers and the energies of the activated subcarriers

in the bth block, respectively, as Ib :=
{

α1, α2, . . . , αK

}

and βb :=
{

ν1ET /I, ν2ET /I, . . . , νKET /I
}

where αk ∈
{

1, 2, . . . , N
}

, k = 1, 2, . . . ,K , νk ∈
{

1, 2, . . . , I −K + 1
}

,

and ν1 + ν2 + . . . + νK = I . Once we decide Ib and βb

according to the f1 and f2 bits, respectively, f3 = K log2 M
bits are used to determine the M -PSK constellation symbols

carried by the activated subcarriers. Hence, the SE of the

OFDM-ICM scheme per subcarrier can be given as

η =
f1 + f2 + f3

N
=

⌊log2
(

N
K

)

⌋+ ⌊log2
(

I−1
K−1

)

⌋+K log2 M

N
.

(1)

The mapping of f1 bits to the indices of activated subcarriers

and f2 bits to the subcarrier’s energies can be implemented by

using a look-up table. In Table II, we present an example of

how these mappings are performed when N = I = 4 and K =
3. Since f1 = ⌊log2

(

4
3

)

⌋ = 2, the first two bits, p1, entering the

OFDM-ICM encoder of the corresponding bitstream [p2 p1]
are used to determine the indices of activated subcarriers.

Then, the remaining f2 = ⌊log2
(

I−1
K−1

)

⌋ = ⌊log2
(

3
2

)

⌋ = 1
bit, p2, is used to determine the specific composition of I = 4
with K = 3 parts. For example, when [p2 p1] = [0 1 1] bits

enter the OFDM-ICM transmitter, the first two bits ’p1 = 11’

choose the indices of activated subcarriers as Ib :=
{

2, 3, 4
}

,

then the remaining bit ’p2 = 0’ chooses the set βb :=

TABLE II: Look-up table implementation example for OFDM-

ICM when N = I = 4 and K = 3.

Compositions βb Ib OFDM-ICM
Symbol Vector

[p2 p1]

4=1+1+2
{

ET

4
, ET

4
, 2ET

4

}

{

1, 2, 3
}

[ET
4

ET
4

2ET
4

0] [0 0 0]
{

1, 2, 4
}

[ET

4

ET

4
0 2ET

4
] [0 0 1]

{

1, 3, 4
}

[ET
4

0 ET
4

2ET
4

] [0 1 0]
{

2, 3, 4
}

[0 ET

4

ET

4

2ET

4
] [0 1 1]

4=1+2+1
{

ET

4
, 2ET

4
, ET

4

}

{

1, 2, 3
}

[ET
4

2ET
4

ET
4

0] [1 0 0]
{

1, 2, 4
}

[ET

4

2ET

4
0 ET

4
] [1 0 1]

{

1, 3, 4
}

[ET
4

0 2ET
4

ET
4

] [1 1 0]
{

2, 3, 4
}

[0 ET
4

2ET
4

ET
4

] [1 1 1]

4=2+1+1
{ 2ET

4
, ET

4
, ET

4

}

{

1, 2, 3
}

[ 2ET
4

ET
4

ET
4

0] unused
{

1, 2, 4
}

[ 2ET

4

ET

4
0 ET

4
] unused

{

1, 3, 4
}

[ 2ET
4

0 ET
4

ET
4

] unused
{

2, 3, 4
}

[0 2ET
4

ET
4

ET
4

] unused

{

ET /4, ET/4, 2ET/4
}

for the subcarriers’ energies. Then, we

map the set, βb, to the energies of the activated subcarriers and

obtain the OFDM-ICM symbol vector as shown in the table.

Once we decided the activated subcarriers and their energies

according to the first f1 + f2 bits,1 then the remaining f3 bits

are used to modulate the signals on the activated subcarriers

by using an M -PSK constellation, M. Hence, in the bth
block, the OFDM-ICM symbol vector can be written as

xb = [xb
1, x

b
2, . . . , x

b
N ] where xb

i ∈
{

∅
}

∪ M. The energy of

the symbol carried by the kth activated subcarrier of the bth
block is Eb

k = |xb
k|2 = νkET /I where k = 1, 2, . . . ,K . After

obtaining symbol vectors of all blocks, the overall OFDM-

ICM vector is formed as x := [x(1), x(2), . . . , x(NT )]
T =

[x1, . . . , xb, . . . , xB]T ∈ CNT×1. After this point, exactly the

same operations as conventional OFDM are applied.2

Remark. OFDM-ICM is equivalent to OFDM-IM and OFDM

when I = K and I = K = N , respectively. It is clear from (1)

that the proposed scheme is capable of providing a higher SE

than OFDM-IM and OFDM-CM. It is also important to note

that OFDM-ICM is fundamentally different from the OFDM-

IM schemes in [3]–[6] due to the use of signal levels to encode

information into compositions rather than different signals to

encode information into index patterns or permutations.

B. Receiver

At the receiver, the received signal is down-converted, and

the cyclic prefix is then removed from each received baseband

symbol vector before processing with an FFT. After employing

an NT -point FFT operation, the frequency-domain received

signal vector can be written as

y := [y(1), y(2), . . . , y(NT )]
T = Xh + n (2)

where X = diag(x). Moreover, h and n are NT×1 channel and

noise vectors, respectively. Elements of n follow the complex-

valued Gaussian distribution CN (0, N0) where N0 is the noise

variance.

1f1 + f2 bits can be mapped to the indices of activated subcarriers and
the compositions without using a look-up table implementation since the
mapping of f1 bits to the indices of activated subcarriers and f2 bits to
the compositions, thus to the subcarriers’ energies, can be performed without
a look-up table as discussed in [1] and [7], respectively.

2We assume that the elements of x are interleaved sufficiently and the
maximum spacing is achieved for the subcarriers.
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Since the encoding procedure for each block is independent

of others, decoding can be performed independently at the

receiver. Hence, using ML detection, the detected symbol

vector for the bth block can be written as

(Îb, β̂b, x̂
b) = arg min

Ib,βb,xb
||yb − Xbhb||2 (3)

where yb = [y((b − 1)N + 1), . . . , y(bN)]T , Xb = diag(xb)
and hb = [h((b − 1)N + 1), . . . , h(bN)]T .

The optimum ML detector in (3) performs

2⌊log2 (
N

K)⌋+⌊log
2 (

I−1

K−1
)⌋MK squared Euclidean distance

calculations. To overcome the high complexity of the optimum

ML detector, we design the following low-complexity ML

(LC-ML) detector for the OFDM-ICM technique:

1) Calculate the following log-likelihood ratio (LLR) for the

nth subcarrier3 where n ∈
{

1, 2, . . . , N
}

:

δ(n) = ln

∑

x∈M

∑

E∈Λ

P (x(n) =
√
Ex|y(n))

P (x(n) = ∅|y(n)) (4)

∝ ln

∑

x∈M

∑

E∈Λ

exp (−|y(n)− h(n)
√
Ex|2/N0)

exp(−|y(n)|2/N0)

where x is a unit-energy M -PSK symbol. P (x(n) =√
Ex|y(n)) stands for the probability that the symbol

carried by the nth subcarrier, x(n), is equal to
√
Ex

given the received signal regarding the nth subcarrier, y(n),
whereas P (x(n) = ∅|y(n)) is the probability that the

nth subcarrier is deactivated given y(n). Moreover, Λ is

the set which consists of the possible energy levels, i.e.,

Λ :=
{

ET /I, 2ET /I, . . . , (I − K + 1)ET /I
}

. Note that

the LLR value in (4) can be approximated by [4]

δ(n) ≈
exp (−|y(n)− h(n)

√

Ê(n)x̂(n)|2/N0)

exp(−|y(n)|2/N0)
(5)

where (x̂(n), Ê(n)) = argminx,E |y(n)− h(n)
√
Ex|2.

2) Sort the LLR values (δ(1), δ(2), . . . , δ(N)) in descending

order, i.e., δ(ρ1) > δ(ρ2) > . . . > δ(ρN ) where ρn ∈
{

1, 2, . . . , N
}

. Then, determine the indices of the activated

subcarriers as Î =
{

ρ1, ρ2, . . . , ρK
}

.

3) Sort the channel gains of the activated subcarriers in de-

scending order, i.e., |h(γ1)|2 > |h(γ2)|2 > . . . > |h(γK)|2
where γk ∈ Î and Γ :=

{

γ1, γ2, . . . , γK
}

.

4) Determine the energy levels and M -ary symbols on the

activated K subcarriers by following the order in Γ and

using ML detection. More explicitly, we start with the

γ1th subcarrier and determine its energy level and M -ary

symbol by (x̂(γ1), Ê(γ1)) = argminx∈M,E∈Λ |y(γ1) −
h(γ1)

√
Ex|2. The related composition can be obtained by

ν̂(γ1) = Ê(γ1)I/ET . Then, we update Λ according to pre-

viously estimated energy levels and the fact that ν̂(γk) ≥ 1
as Λ :=

{

ET /I, . . . , (I − (ν̂(γ1)+K − 2))ET /I
}

and we

proceed with the γ2th subcarrier and determine its energy

level and M -ary symbol. For the γkth, 1 < k < K ,

and γK th subcarriers, the sets in question can be written

3Here, we drop the block superscript, b, for convenience since the proposed
LC-ML detector can be operated for each block independently.

respectively as Λ :=
{

ET /I, . . . , (I−(K−k+∆k))ET /I
}

and Λ :=
{

(I −∆K)ET /I
}

where ∆k =
∑k

l=1 ν̂(γl) and

∆K =
∑K

l=1 ν̂(γl).

For the proposed detector, one needs to perform (I −K +
1)M squared Euclidean distance calculations in (4). Hence, the

proposed algorithm makes N(I−K+1)M squared Euclidean

distance calculations in total, which is considerably smaller

than the complexity of the optimum ML detector.

IV. PERFORMANCE ANALYSIS

A. Bit-Error Rate

An upper-bound on the average BER is given by the well-

known union bound as follows

Pb ≤
1

f2f

2f
∑

i=1

2f
∑

j=1

P (Xi → Xj)D(Xi → Xj) (6)

where P (Xi → Xj) is the pairwise error probability (PEP)

regarding the erroneous detection of Xi as Xj where i 6= j,

i, j ∈
{

1, . . . , L
}

, Xi = diag(xi), Xj = diag(xj), and

D(Xi → Xj) is the number of bits in error for the correspond-

ing pairwise error event. Here, L is the codebook size for the

proposed scheme. One can use the same PEP expression as in

[1] and substitute the codewords of the proposed scheme to

obtain the upper bound on the average BER.

Remark. The minimum Hamming distance between the sets

that keep the subcarriers’ energies is two, just like the index

symbols of OFDM-IM. However, the proposed scheme can

send conventional modulation symbols together with embed-

ding information into the indices and/or compositions, and

the minimum Hamming distance between the conventional

modulation symbols is limited to one. This limits the diversity

gain of the proposed scheme to one.

As a special case of OFDM-ICM, one can use only the

indices and compositions to embed information and obtain a

diversity gain.4 However, in this case, the transmitted symbol

vectors should be carefully chosen to get optimum error

performance. One simple yet efficient strategy is choosing

the transmitted symbols in a way that the angular difference

between the different energy symbols is maximized. Hence,

in this case, one can choose the signal on the kth activated

subcarrier of the bth block as xb
k =

√

νkET /I exp(
2jνkπ
I−K+1

).
As will be shown in the Numerical Results section, the error

performance of this special case is promising for low SEs.

B. Spectral Efficiency

By rewriting K and I as K = αN and I = βN ,

respectively, the SE maximization problem is formulated as

maximize
α

η =
log2

(

N
αN

)

+ log2
(

βN−1
αN−1

)

+ αN log2 M

N
subject to 0 < α ≤ 1,

α ≤ β.
(7)

4For this special case, the SE is η =
⌊log

2

(

N
K

)

⌋+⌊log
2

(

I−1

K−1

)

⌋

N
.
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Proposition 1. The value of α that maximizes (10) is

α∗ =
M(β + 1)−

√

M2(β − 1)2 + 4Mβ

2(M − 1)
. (8)

Thus, one can pick the optimum number of activated subcar-

riers in an OFDM block as

K∗ ∈
{

⌊α∗N⌋, ⌈α∗N⌉
}

(9)

where ⌊.⌋ and ⌈.⌉ are floor and ceiling operations, respectively.

Proof. For 0 < α1 < α2 ≤ 1, one can write

∆η

∆α
=

log2
(

N
α2N

)

+ log2
(

βN−1
α2N−1

)

+ α2N log2 M

N(α2 − α1)
(10)

−
log2

(

N
α1N

)

+ log2
(

βN−1
α1N−1

)

+ α1N log2 M

N(α2 − α1)
.

Since K ∈ Z
+, the minimum value of ∆α = α2 − α2 is

∆α = 1
N

. By substituting α2 = α1+
1
N

into (10), the optimal

value of α can be obtained when ∆η
∆α

= 0. By arranging this

equation, one can obtain classical quadratic program and this

classical program yields the solution in (8).5

Proposition 2. As N → ∞, the asymptotic SE of OFDM-IM

can be given as

η ∼ H(α) + log2(β
β/αα)− (β − α) log2(β − α) + α log2 M

(11)

where H(α) is the entropy function of α.

Proof. The proof is simply obtained by using the Stirling’s

formula6 in the SE and ignoring the expressions that approach

zero as N → ∞.

V. NUMERICAL RESULTS

In this section, we provide numerical BER and SE results.

In BER figures, “OFDM-ICM (N,K, I,M)” is the proposed

OFDM-ICM scheme having K activated subcarriers out of

N in each block, choosing the energies of the activated

subcarriers according to the compositions of I into K parts and

employing M -PSK modulation on the activated subcarriers,

whereas “OFDM-ICM (N,K, I)” stands for the special case

of OFDM-ICM that embeds information into only indices of

subcarriers and compositions of an integer I with K parts.

“OFDM-IM (N,K,M)” signifies the conventional OFDM-IM

scheme in which K out of N subcarriers are activated to send

M -PSK modulated symbols in each block. Finally, “OFDM-

WCM (N, I, λ), Alg. 1” stands for the OFDM-WCM scheme

that employs Algorithm 1 in [7] and uses λ to alter the SE as

well as integer compositions of I with N parts to decide the

energies of N subcarriers, whereas “OFDM-CM (N, I,M)”
is the OFDM-CM scheme that determines the energies of N
subcarriers according to the composition of an integer I with

N parts and carries M -ary PSK symbols on each subcarrier.

For the simulated schemes in this section, we pick ET = N ,

thus the average energy per subcarrier is assumed to be one.

5Note that the quadratic program produces two solutions. However, only
the solution in (8) satisfies the constraints in (7).

6 N ! ∼
√
2πN(N/e)N when N → ∞.
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Fig. 1: BER comparison of OFDM-ICM with OFDM-WCM,

OFDM-CM, OFDM-IM, and OFDM when N = 4, K ∈
{

2, 3
}

, I ∈
{

4, 5, 8
}

, M ∈
{

2, 4
}

and λ = 1.
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Fig. 2: BER comparison of OFDM-ICM with OFDM-IM,

OFDM-WCM, OFDM-CM, and OFDM when N = 4, K = 3,

I ∈
{

4, 7, 8
}

, M ∈
{

4, 8
}

, and λ = 2.

In Fig. 1, we compare the BER performance of OFDM-

ICM with that of OFDM-WCM, OFDM-CM, OFDM-IM,

and OFDM. Here, except for OFDM (BPSK), all schemes

achieve the same SE, which is 1.5 bits per subcarrier (bps).

As seen from the figure, OFDM-ICM (4, 3, 8) considerably

outperforms all other schemes by introducing an additional

diversity gain. Moreover, the BER performance of OFDM-

ICM (4, 3, 4, 2) is very close to that of OFDM-WCM (4, 3, 1),
Alg. 1 and these schemes outperform the OFDM-CM, OFDM-

IM, and OFDM schemes, especially at high signal-to-noise

ratio (SNR), since they produce more symbols whose mini-

mum Hamming distance is two. However, since the minimum

Euclidean distance for the overall codebook of OFDM-ICM

and OFDM-WCM is less than that of OFDM-IM, they are

outperformed by OFDM-IM at low SNR. Due to the same

reason, OFDM-ICM (4, 2, 5, 2) is outperformed by all other

schemes except for OFDM-CM (4, 5, 2) at low SNR; however,

it outperforms all other schemes except for OFDM-ICM

(4, 3, 8) at high SNR.

Fig. 2 compares the BER performance of OFDM-ICM with
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Fig. 3: BER comparison of the proposed LC-ML detector with

the optimum ML detector for OFDM-ICM.

that of OFDM-IM, OFDM-WCM, OFDM-CM, and OFDM.7

As observed from the figure, OFDM-ICM (4, 3, 8, 4) and

OFDM-CM (4, 7, 4) exhibit very close BER performance and

they outperform all other schemes, especially at high SNR.

Compared to Fig. 1, the effectiveness of the OFDM-WCM

scheme against the other schemes substantially degrades as it

is required to employ higher order modulation in this scheme

to achieve 3 bps. However, the OFDM-ICM scheme preserves

its effectiveness in both data rates. It is also worth mentioning

that OFDM-ICM (4, 3, 8, 4) considerably outperforms OFDM

(8-QAM) and OFDM (8-APSK) that use the energies of the

constellation symbols for encoding like the proposed scheme.

Fig. 3 demonstrates the BER performance of the proposed

LC-ML detector of the OFDM-ICM scheme compared to the

optimum ML detector when N = 4, K ∈
{

2, 3
}

, I ∈
{

5, 8
}

,

and M ∈
{

2, 4
}

. As seen from the figure, the performance

of the proposed LC-ML detector is very close to that of the

optimum ML detector, especially at low and high SNR. On

the other hand, curves with extensions “Theory” in the legend

relate to the theoretical upper-bound results for the proposed

scheme. As observed from the figure, upper-bound curves are

consistent with computer simulations, especially at high SNR.

In Fig. 4, we compare theoretical, numerical and asymp-

totic SE results for OFDM-ICM when β = 0.5 and M ∈
{

4, 8, 16
}

.8 Fig. 4 verifies the validity of the SE expres-

sions in Section IV-B since the theoretical and numerical

SE results match perfectly and they approach asymptotic SE

as N increases. On the other hand, the SE is considerably

improved when we increase N . When N = 4, the OFDM-ICM

schemes can achieve only 70.14%, 77.60%, and 82.20% of

the asymptotic SE for M = 2, 4, and 8, respectively, whereas

7For the curve related to OFDM (8-APSK), we use the optimum 8-ary
amplitude and phase shift keying (APSK) design in [9], [10]. In this design,
constellation consists of two circles (inner and outer) with four signals on each
of them. The radii of the inner and outer circles are r1 = 1/

√
2 ≃ 0.707

and r2 = 1.366, respectively.
8Here, curves with extensions “Theory” in the legend are obtained by

substituting (9) into (1), whereas those with with extensions “Numerical”
in the legend are obtained by substituting all possible values of K into (1)
and choosing the maximum SE. On the other hand, curves with extensions
“Asymptotic” in the legend are obtained by substituting (8) into (11).
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Fig. 4: Comparison of theoretical, numerical and asymptotic

SE results for OFDM-ICM when β = 0.5 and M ∈
{

4, 8, 16
}

.

these percentages increase to 81.82%, 87.30%, and 90.41%
for M = 2, 4, and 8, respectively, when N = 8.

VI. CONCLUSION

In this paper, we proposed a novel modulation concept,

which we call ICM. We depicted a practical OFDM-ICM

scheme that is capable of improving the SE of OFDM-IM

by embedding data into the compositions of an integer and

using energy levels to identify them. We demonstrated through

simulations and theoretical calculations that the proposed

scheme can provide noteworthy improvements compared to

OFDM, OFDM-IM, OFDM-WCM, and OFDM-CM.

As future work, the proposed scheme could be generalized

by utilizing in-phase and quadrature dimensions of the modu-

lation symbols as in [2] and space time coding with coordinate

interleaving could be combined with the proposed scheme as

in [11] to obtain additional diversity gain.
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