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Abstract—In this letter, we propose a novel constant envelope
precoding (CEP) design for multi-user multi-input single-output
(MU-MISO) downlink, where we exploit the extra degrees of
freedom (DoFs) by allowing individual rotation and scaling for
each constellation point. By jointly optimizing the transmitting
signal matrix and the complex scaling factors, the signal-to-
interference-and-noise-ratio (SINR) at the receiver is maximized.
The formulated optimization problem is divided into two sub-
problems and solved by the alternating optimization approach.
We further propose a simplified gradient descent algorithm and
extend our algorithm to frame-level precoding design. Simulation
results show that the proposed algorithms outperform the existing
CEP algorithms in terms of both symbol error rate (SER) and
computational complexity.

Index Terms—Alternating optimization, Constant Envelope
precoding, DinkelBach method, Gradient projection, Per-user
scaling and rotating.

I. INTRODUCTION

AS a promising technology to reduce the cost and power
consumptions in massive MIMO base stations, the con-

stant envelope precoding (CEP) design, which was firstly
proposed in [1] by imposing CE constraints on the transmitted
signals, has recently gained significant research attentions.
Given their favourable peak-to-average power ratio (PAPR)
properties, such CE signals can be transmitted through a
low-cost, high-efficiency nonlinear RF power amplifier (PA)
without causing any distortion.

It is noteworthy that the non-convex nature of CE constraints
poses challenges to the precoding design. By employing the
multi-user interference (MUI) as the cost function, the CEP
design can be formulated as a non-convex nonlinear least-
squares (NLS) problem, where the local minimum is obtain-
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able by using the gradient descent (GD) algorithm [1]. Due
to the CE limitation, however, the symbol error saturation can
not be well-addressed in the high SNR regime. As further
steps, the cross entropy method (CEO) was proposed in [2] to
facilitate the search of the optimum of the CEP design. The
work of [3] aimed at CEP design for single-user large-scale
MISO channels, which provides a complete characterization
of the noise-free receive signal region, under two novel CEP
scenarios, wherein the system has the flexibility to either select
a subset of antennas, or allocate powers unequally across
antennas. More relevant to this work, [4] studied the design
of adaptive receiver constellation for CEP in a single user
MISO flat-fading channel with arbitrary number of transmit
antennas. By relying on the semidefinite relaxation (SDR)
method, a novel CEP design was proposed by the same authors
in [5] to minimize the maximum SER among all users, where
the CE precoding at the transmitter and the constellation
scaling and rotation at each user are jointly optimized. Another
study by [6] focused on multi-stream transmission, where the
transmit antenna grouping and receive beamforming vectors
are jointly designed to minimize the maximum SER over
all data streams. Nevertheless, they are both computationally
expensive in general. By noting the fact that the MUI is
known to the BS, the concept of constructive interference
(CI) was considered in [7], which reduces the resulting SER
of CEP by utilizing constructive MUI resources instead of
fully eliminating them. More recently, an efficient Riemannian
conjugate gradient (RCG) algorithm was proposed in [8] to
solve the CI based CEP problem, which achieves a favorable
tradeoff between performance and complexity.

Inspired by the above methods, in our work, we assign a
complex coefficient to each constellation point, that hereafter
will be referred to as rotating-and-scaling (RS) factor. Differ-
ing from [5], in which the scaling factor was optimized as
a scalar, we take the independent constellation RS factor for
each user and the transmitted signals as optimization variables,
with the sum of the receiver’s SINR being the objective
function. Based on the gradient projection and Dinkelbach
methods, a simple alternating optimization (AO) framework is
proposed for symbol-level CEP design. It is further extended
to a frame-level design, where symbols transmitted within the
channel duration share a common RS factor, for the practical
purpose of reducing the signalling overhead. Simulation results
show that the proposed methods are superior to the existing
benchmark techniques in terms of the SER performance.
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II. SYSTEM MODEL

We consider an MU-MISO downlink scenario where the
base station (BS) equipped with N antennas serves M
single-antenna users. The vector of channel gains from
the BS antennas to the k-th user is denoted by hk =
[h1,k, h2,k, . . . , hN,k]T , k = 1, . . . ,M . Without loss of gen-
erality, the channel is assumed to be Rayleigh fading, i.e.,
hi,k, i = 1, . . . , N subject to i.i.d. standard complex Gaussian
distribution. We assume that the BS knows the channel state
information (CSI) perfectly, and the imperfect CSI case is des-
ignated as our future work. Let xi be the symbol transmitted
from the i-th antenna of the BS and x = [x1, x2, . . . , xN ]T

the vector of transmitted symbols. Further, let θi be the phase
of xi and PT denote the total power of x. The per-antenna
CE signal is expressed by [1]:

xi =
√
PT /Ne

jθi , i = 1, 2, . . . , N. (1)

The signal received by the k-th user is given by:

yk =
√
PT /N

N∑
i=1

hi,ke
jθi + ωk, k = 1, 2, . . . ,M (2)

where ωk ∼ CN
(
0, σ2

)
is additive white Gaussian noise

(AWGN) with zero mean and variance σ2 at the k-th receiver.
Let s = [s1, . . . , sM ]

T ∈ CM×1 be the vector of standard
PSK or QAM constellation symbols. To exploit extra degrees
of freedom, we set β = [β1, . . . , βM ]

T ∈ CM×1 as the
complex vector of RS factors for the constellation symbol
of each user. Being multiplied by a complex vector means
that each constellation point is allowed to rotate and scale
individually. As such, the received signal at the k-th user can
be expressed as

yk =
√
PTβksk +

√
PT

(∑N
i=1 hi,ke

jθi

√
N

− βksk

)
︸ ︷︷ ︸

MUI

+ωk (3)

where k = 1, 2, . . . ,M . The second term stands for the multi-
user interference. The received SINR at the k-th user is given
by

γk =
PT |βksk|2∣∣hTk x−√PTβksk∣∣2 + σ2

. (4)

III. PROBLEM FORMULATION AND DECOMPOSITION

Our goal is to maximize users’ SINR by jointly designing
the transmitted signal x and RS factors β, which is equivalent
to minimizing the inverse of SINR rk = 1/γk. While each
user has an independent RS factor, which can be designed to
minimize its own rk, the signal vector x is transmitted to all
users. As a consequence, it is unlikely for all users to have
the maximum SINR at the same time. The cost function is
thus set as the sum of the inverse SINR of each user, i.e.,∑M
k=1 rk. Therefore, the CEP design can be formulated into

the following optimization problem

min
x,βk

M∑
k=1

∣∣hTk x/√PT − βksk∣∣2 + σ2/PT

|βksk|2

s.t. |xi|2 =
√
PT /N, i = 1, 2, . . . , N.

(5)

It is noteworthy that the optimization variables β and x are
independent with each other, in which case the optimization
problem can be recast as two subproblems. In what follows,
we elaborate on the subproblems for x and β, respectively.

A. Subproblem for x

Given a fixed β, the objective function can be equivalently
expressed as

min
x

M∑
k=1

∣∣∣∣ hTk x√
PTβksk

− 1

∣∣∣∣2 +
σ2

PT |βksk|2
. (6)

The second term can be dropped without affecting the result,
as x is the only variable to be considered. By denoting
cTk =

hTk√
PT βksk

, and C = [c1, c2, . . . , cM ]T , the first term
can be written as the square of the vector’s Euclidean norm.
Accordingly, (6) can be recast in a compact form as

min
x
‖Cx− 1‖22

s.t. |xi|2 =
√
PT /N, i = 1, 2, . . . , N

(7)

where 1 is the M -dimensional all-one vector. While (7) is a
non-convex NLS problem, which has multiple local minima,
a near-optimal solution can be obtained by using the gradient
projection method, since most of the local minima have been
proved to yield small objective values [1]. The gradient of x
in the t-th iteration is calculated as

∇x(t)f = 2CH(Cx(t) − 1) (8)

where the superscript H denotes the conjugate transpose. We
choose the stepsize as α = 1/λmax, where λmax is the
maximum eigenvalue of 2CHC, i.e. the Lipschitz constant.
The iteration scheme of our gradient projection algorithm can
be expressed as

x(t+1) = x(t) − α∇x(t)f (9)

x
(t+1)
i = (

√
PT /N)

x
(t+1)
i∣∣∣x(t+1)
i

∣∣∣ , i = 1, . . . , N. (10)

Repeat (8)-(10) until x converges, i.e.,
∥∥x(t+1) − x(t)

∥∥ < ∆,
where ∆ is the maximum tolerance. 1

B. Subproblem for β

In the case that β is considered as the optimization variable
given a fixed x, the optimization problem can be transformed
from min

∑M
k=1 rk to

∑M
k=1 min rk, since all the βk and the

resulting rk for each user are independent to each other. Thus,
there are k unconstrained fractional optimization problems that
need to be solved. Let us write the objective function in a more
compact form as follows:

min
βk

rk = min
βk

∣∣hTk x/√PT − βksk∣∣2 + σ2/PT

|βksk|2

= min
βk

g1(βk)

g2(βk)
.

(11)

1We remark here that the convergence results of the gradient projection
method for unit-modulus LS problem have already been provided in the
literature [9], and will not be repeated here due to the limited space.
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The Dinkelbach method can be applied here [10]. The idea
behind this method is to relax the fractional objective function
into its subtractive counterpart, which is convex. We denote
β∗k and r∗k as the optimal solution and the objective function
of (11), respectively. As such, the objective function can be
recast as

min
βk

g1(βk)− rkg2(βk)

=g1(β∗k)− rkg2(β∗k).
(12)

Since g1(βk)−rkg2(βk) = 0, it is evidently clear that g1(β∗k)−
rkg2(β∗k) ≤ 0, which means that we have r∗k =

g1(β
∗
k)

g2(β∗
k)
≤

rk. Thus, the optimal solution of (11) can be obtained by
iteratively solving (12). By taking a closer look at (12), we
note that it is a 1-dimensional quadratic optimization problem.
In particular, if rk < 1, (12) is convex and has the following
closed-form solution

βk =
hTk x√

PT sk(1− rk)
. (13)

In the case of rk > 1, the problem is concave, where there
is no analytic solution for the minimization problem. We
therefore consider to move towards the descent direction with
respect to βk by again exploiting the gradient descent tech-
nique. We take the negative gradient as the descent direction,
with a stepsize αβ . The process is expressed as

∇βkf = −sk
∗hTk x√
PT

+ (1− rk) |sk|2 βk (14)

β′k = βk − αβ∇βkf (15)

where αβ can take the appropriate constant based on the value
of the derivative. As per our numerical simulations, it is worth
highlighting that by using (14) and (15), rk reaches a value
smaller than 1 within a small number of iterations, after which
(12) will have an analytic solution. For clarity, we summarize
the above procedure for solving (12) as Algorithm 1.

Algorithm 1 Dinkelbach Method for Solving (11)

Input: hk, βk, αβ , x, s, imax = the maximum number of
iterations and ∆ = the maximum tolerance.
Initialization: Set rk =

|hTk x/
√
PT−βksk|2+σ2/PT

|βksk|2
, fk =∣∣hTk x/√PT − βksk∣∣2 +σ2/PT −rk |βksk|2, iteration index

i = 1
while i <= imax do
i = i+ 1
β
(i)
k = argmin f

(i−1)
k

Obtain f (i)k with β(i)
k , r(i−1)k

Obtain r(i)k with β(i)
k

if f (i)k > −∆ then
βkopt = β

(i)
k , rkopt = r

(i)
k .

break
end if

end while
Output: βkopt, rkopt.

IV. PROPOSED ALGORITHM

A. Conventional Alternating Optimization

The optimization problem in (5) can be solved via the
approach of alternating optimization (AO) [11]. Let us firstly
keep the RS vector β unchanged, and solve the subproblem
(7) to update x. Given a fixed x, we solve the subproblem
(11) and update β. The two subproblems are iteratively solved
until the objective function converges. It is worth noting that
rk is invovled in this process and generates a temporary
value, which would not affect the final convergence. This
explains why indexing for rk variable in AO is different from
the Dinkelbach method. We show the specific algorithm in
Algorithm 2.

Algorithm 2 Conventional AO Algorithm

Input: hk, s, PT , αβ , αx, zmax = the maximum number of
iterations, ∆ = the maximum tolerance
Initialization: x = ej2πrand(N,1), β = [1, 1, . . . , 1︸ ︷︷ ︸

M

]T ,

z = 0, rk =

∣∣∣∣ hTk x√
PT
−βksk

∣∣∣∣2+ σ2

PT

|βksk|2
, k = 1, . . . ,M

while z <= zmax do
z = z + 1
Obtain x(z+1) by solving (7)
Obtain rk(2z) with x(z+1), β(z)

k

Obtain β(z+1)
k by solving (11)

Obtain rk(2z+1) with x(z+1), β(z+1)
k

if
∑M
k=1 r

(2z−1)
k −

∑M
k=1 r

(2z+1)
k < ∆ then

xopt = x(z+1), βopt = β(z+1)

break
end if

end while
Output: xopt, βopt.

The complexity of this conventional AO algorithm is domi-
nated by the computation of the stepsize for x, where 2N2M
flops are needed, leading to a total complexity of O

(
N2M

)
for each iteration.

B. A Simplified AO Scheme

To further reduce the computational overhead incurred in the
AO algorithm, we propose to simplify the iteration procedure
by noting the following facts:
• The gradient projection method with x as the optimiza-

tion variable is an algorithm in which the value of
objective function strictly declines at every step.

• As long as fk is reset to 0, (16) holds true, which
means

∑M
k=1 r

′
k <=

∑M
k=1 rk. Therefore, the Dinkelbach

method with β as the optimization variable can ensure
decline of objective function values at each step.

f ′k = min
βk

fk ≤ 0. (16)

• Since the algorithms used in both sub-problems can
strictly reduce the objective function at each step, the AO
can be operated per iteration [12], i.e., in each iteration
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we firstly step toward the descent direction of x and then
of β, which can also strictly ensure the decline of the
objective function.

Algorithm 3 Simplified AO Algorithm

Input: hk, s, PT , αβ , αx, Jmax = the maximum number of
iterations, ∆ = the maximum tolerance
Initialization: x = ej2πrand(N,1), β = [1, 1, . . . , 1︸ ︷︷ ︸

M

]T ,

j = 0, rk =

∣∣∣∣ hTk x√
PT
−βksk

∣∣∣∣2+ σ2

PT

|βksk|2
, k = 1, . . . ,M

while j <= jmax do
j = j + 1
Obtain x(j+1) by (8)-(10)
Obtain rk(2j) with x(j+1)

if rk(2j) > 1 then
Obtain β(j+1)

k with x(j+1) and rk(2j) by (14)-(15)
else

Obtain β(j+1)
k with x(j+1) and rk(2j) by (13)

end if
Obtain rk(2j+1) with β(j+1)

k

if
∑M
k=1 r

(2j−1)
k −

∑M
k=1 r

(2j+1)
k < ∆ then

xopt = x(j+1), βopt = β(j+1)

break
end if

end while
Output: xopt, βopt.

The complexity of the simplified AO algorithm is also
O
(
N2M

)
per iteration, mainly resulting from the computa-

tion of the stepsize for x. For the conventional AO algorithm,
both subproblems are required to iterate to convergence. Nev-
ertheless, with the same convergence precision, the number
of iterations required by the simplified AO algorithm is much
less than that of its conventional counterpart. For the sake of
clarity, we show in Algorithm 3 the simplified algorithm, and
compare the running time of both algorithms in Fig.1(b).

C. Frame-level Design

The above approach is executed on a symbol-by-symbol
basis, which relies on the assumption that users need to know
the corresponding RS factors for each symbol received. This
means that the coefficients β should be communicated to the
users before transmitting the useful information, which would
generate significant signaling overhead. To this end, in this
section we extend the proposed symbol-level algorithm to the
frame level, i.e., the symbols received by a user in a block
fading channel share the same RS factor. Let us assume that
the channel keeps unchanged within a transmission block of
L symbols. Let X be a N × L transmitted signal matrix,
with xl being the symbols transmitted by all the N antennas
in the l-th symbol duration. The vector sk denotes the k-th
user’s constellation symbols, with sl,k being its l-th entry. The
received SINR of each user becomes the cumulative signal
power divided by the sum of cumulative MUI power and noise

power of L symbols. Hence, the optimization problem can be
rewritten as

min
X,βk

M∑
k=1

∥∥hTkX/√PT − βksTk ∥∥2 + σ2L/PT∥∥βksTk ∥∥2
s.t. |xi,l|2 =

√
PT
N
, i = 1, 2, . . . , N ; l = 1, 2, . . . , L.

(17)

Further, (17) can be expressed as:

min
xl,βk

M∑
k=1

L∑
l=1

∣∣hTk xl/√PT − βksl,k∣∣2 + σ2/PT∥∥βksTk ∥∥2
= min

xl,βk

L∑
l=1

M∑
k=1

∣∣∣∣∣ hTk xl√
PT
∥∥βksTk ∥∥ − βksl,k∥∥βksTk ∥∥

∣∣∣∣∣
2

+
σ2/PT∥∥βksTk ∥∥2 .

(18)
Let vk =

∥∥βksTk ∥∥ , cTk =
hTk√
PT vk

, dk =
βksl,k
vk

, k =
1, 2, . . . ,M. Given a fixed β and solve for X, the objective
function is

min
xl

L∑
l=1

‖Cxl − d‖2 (19)

where C = [c1, c2, . . . , cM ]T ,d = [d1, d2, . . . , dM ]T . The
gradient of xl in the t-th iretation is calculated as

∇
x
(t)
l

f = 2CH(Cx
(t)
l − d). (20)

The stepsize α is the reciprocal of λmax, which is the
maximum eigenvalue of 2CHC. Similarly, when we fix X and
solve for β, the formula is the same as symbol-level algorithm,
except that x and sk are replaced by X and sTk . This is

βk =
(hTkX)s∗k√

PT ‖sk‖2 (1− rk)
. (21)

The complexity of frame-level algorithm is mainly deter-
mined by the computation of the stepsize for solving the
subproblem of X, where 2N2M/L flops are needed, which
is less than the symbol-level methods. Moreover, as the RS
factors only need to be communicated to the users once
per L symbols, the incurred signaling overhead would be
considerably reduced.

V. NUMERICAL RESULTS

In this section, we provide numerical results to evaluate the
performance of our proposed CE scheme. The following four
algorithms are considered:
• The conventional alternating optimization method (AO).
• The simplified AO algorithm (Simplified AO).
• The frame-level AO algorithm (Frame-level AO).
• The RCG algorithm based on CI (CI-RCG) [8].
Without loss of generality, we set PT = 1. N = 64 and

∆ = 10−6 (the maximum torerance) for all the proposed
algorithms. The maximum number of iterations we set for
rk is 1000. For frame-level algorithm, we set L = 8 (the
number of symbols) i.e. an RS factor is sent to a user per
16 bits, assuming QPSK modulation. Fig.1(a) shows the SER
performance of algorithms with increased transmitted signal-
to-noise ratio (SNR), where SNR=PT /σ2. It is worth noting
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Fig. 1: Numerical results.

that the conventional AO method and its simplified counterpart
have similar SER performance, both of which significantly
outperform the CI algorithm for CE. And the frame-level
method is also superior to the latter.

In order to verify the advantages of our algorithms in terms
of the complexity, we compared the average execution time of
the four algorithms with different number of users with a fixed
BS antenna number, and a fixed SNR. The results are shown in
Fig.1(b). While the conventional and simplified AO algorithms
have similar SER performance, the computational complexity
of the conventional method is much higher. Moreover, we
observe that the RCG-CI is more efficient than the frame-level
design, at the price of significantly higher SER. The results
show that our proposed algorithms can simultaneously achieve
complexity reduction and SER performance improvements
compared to the state-of-the-art CEP design [8].

In Fig.1(c), we further look at the SER performance with
increasing users, where the number of users ranges from 14
to 24, and the SNR is fixed at 4 dB. Again, we see that our
algorithm achieves lower SER than that of RCG.

VI. CONCLUSION

This letter presents a novel CEP design for the scenario
of the downlink MU-MISO. In particular, we minimize the
summation of the inverse SINR of all the users by carefully
designing both the transmit signal matrix and the RS factors
for each user. The proposed algorithm optimizes variables
alternatively based on gradient projection and Dinkelbach
methods. For the purpose of reducing the complexity and
signaling overheads, we further propose a simplified AO
algorithm and a frame-level RS factor design. The simulation
results show that our proposed methods achieve a superior
performance in terms of both computational complexity and
SER.
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