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Abstract—Reconfigurable intelligent surface (RIS) can manip-
ulate the wireless communication environment by controlling the
coefficients of RIS elements. However, due to the large number of
passive RIS elements without signal processing capability, chan-
nel estimation in RIS assisted wireless communication system
requires high pilot overhead. In the second part of this invited
paper, we propose to exploit the double-structured sparsity
of the angular cascaded channels among users to reduce the
pilot overhead. Specifically, we first reveal the double-structured
sparsity, i.e., different angular cascaded channels for different
users enjoy the completely common non-zero rows and the
partially common non-zero columns. By exploiting this double-
structured sparsity, we further propose the double-structured
orthogonal matching pursuit (DS-OMP) algorithm, where the
completely common non-zero rows and the partially common
non-zero columns are jointly estimated for all users. Simulation
results show that the pilot overhead required by the proposed
scheme is lower than existing schemes.

Index Terms—Reconfigurable intelligent surface (RIS), channel
estimation, compressive sensing.

I. INTRODUCTION

In the first part of this two-part invited paper, we have in-

troduced the fundamentals, solutions, and future opportunities

of channel estimation in the reconfigurable intelligent surface

(RIS) assisted wireless communication system. One of the

most important challenges of channel estimation is that, the

pilot overhead is high, since the RIS consists of a large number

of passive elements without signal processing capability [1],

[2]. By exploiting the sparsity of the angular cascaded channel,

i.e., the cascade of the channel from the user to the RIS

and the channel from the RIS to the base station (BS), the

channel estimation problem can be formulated as a sparse

signal recovery problem, which can be solved by compressive

sensing (CS) algorithms with reduced pilot overhead [3], [4].

However, the pilot overhead of most existing solutions is still

high.

In the second part of this paper, in order to further reduce

the pilot overhead, we propose a double-structured orthogonal
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matching pursuit (DS-OMP) based cascaded channel estima-

tion scheme by leveraging the double-structured sparsity of

the angular cascaded channels1. Specifically, we reveal that

the angular cascaded channels associated with different users

enjoy the completely common non-zero rows and the par-

tially common non-zero columns, which is called as “double-

structured sparsity” in this paper. Then, by exploiting this

double-structured sparsity, we propose the DS-OMP algorithm

based on the classical OMP algorithm to realize channel

estimation. In the proposed DS-OMP algorithm, the com-

pletely common row support and the partially common column

support for different users are jointly estimated, and the user-

specific column supports for different users are individually

estimated. After detecting all supports mentioned above, the

least square (LS) algorithm can be utilized to obtain the esti-

mated angular cascaded channels. Since the double-structured

sparsity is exploited, the proposed DS-OMP based channel

estimation scheme is able to further reduce the pilot overhead.

The rest of the paper is organized as follows. In Section II,

we introduce the channel model and formulate the cascaded

channel estimation problem. In Section III, we first reveal the

double-structured sparsity of the angular cascaded channels,

and then propose the DS-OMP based cascaded channel estima-

tion scheme. Simulation results and conclusions are provided

in Section IV and Section V, respectively.

Notation: Lower-case and upper-case boldface letters a and

A denote a vector and a matrix, respectively; aT denotes the

conjugate of vector a; AT and AH denote the transpose and

conjugate transpose of matrix A, respectively; ‖A‖F denotes

the Frobenius norm of matrix A; diag (x) denotes the diagonal

matrix with the vector x on its diagonal; a⊗b denotes the

Kronecker product of a and b. Finally, CN (µ, σ) denotes

the probability density function of the circularly symmetric

complex Gaussian distribution with mean µ and variance σ2.

II. SYSTEM MODEL

In this section, we will first introduce the cascaded channel

in the RIS assisted communication system. Then, the cascaded

channel estimation problem will be formulated.

A. Cascaded Channel

We consider that the BS and the RIS respectively employ

the M -antenna and the N -element uniform planer array (UPA)

1Simulation codes are provided to reproduce the results presented in this
paper: http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html.
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to simultaneously serve K single-antenna users. Let G of size

M ×N denote the channel from the RIS to the BS, and hr,k
of size N × 1 denote the channel from the kth user to the RIS

(k = 1, 2, · · · ,K). The widely used Saleh-Valenzuela channel

model is adopted to represent G as [5]

G =

√

MN

LG

LG
∑

l1=1

αGl1b
(

ϑGr

l1
, ψGr

l1

)

a
(

ϑGt

l1
, ψGt

l1

)T

, (1)

where LG represents the number of paths between the RIS and

the BS, αGl1 , ϑGr

l1
(ψGr

l1
), and ϑGt

l1
(ψGt

l1
) represent the complex

gain consisting of path loss, the azimuth (elevation) angle at

the BS, and the azimuth (elevation) angle at the RIS for the

l1th path. Similarly, the channel hr,k can be represented by

hr,k =

√

N

Lr,k

Lr,k
∑

l2=1

αr,kl2 a
(

ϑr,kl2 , ψ
r,k
l2

)

, (2)

where Lr,k represents the number of paths between the kth

user and the RIS, αr,kl2 , ϑr,kl2 (ψr,kl2 ) represent the complex gain

consisting of path loss, the azimuth (elevation) angle at the

RIS for the l2th path. b (ϑ, ψ) ∈ CM×1 and a (ϑ, ψ) ∈ CN×1

represent the normalized array steering vector associated to

the BS and the RIS, respectively. For a typical N1×N2 (N =
N1 ×N2) UPA, a (ϑ, ψ) can be represented by [5]

a (ϑ, ψ) =
1√
N

[

e−j2πdsin(ϑ)cos(ψ)n1/λ
]

⊗
[

e−j2πdsin(ψ)n2/λ
]

,

(3)

where n1 = [0, 1, · · · , N1− 1] and n2 = [0, 1, · · · , N2− 1], λ
is the carrier wavelength, and d is the antenna spacing usually

satisfying d = λ/2.

Further, we denote Hk , Gdiag (hr,k) as the M × N
cascaded channel for the kth user. Using the virtual angular-

domain representation, Hk ∈ CM×N can be decomposed as

Hk = UMH̃kU
T
N , (4)

where H̃k denotes the M ×N angular cascaded channel, UM

and UN are respectively the M ×M and N ×N dictionary

unitary matrices at the BS and the RIS [5]. Since there

are limited scatters around the BS and the RIS, the angular

cascaded channel H̃k has a few non-zero elements, which

exhibits the sparsity.

B. Problem Formulation

In this paper, we assume that the direct channel between

the BS and the user is known for BS, which can be easily

estimated as these in conventional wireless communication

systems [5]. Therefore, we only focus on the cascaded channel

estimation problem.

By adopting the widely used orthogonal pilot transmission

strategy, all users transmit the known pilot symbols to the

BS via the RIS over Q time slots for the uplink channel

estimation. Specifically, in the qth (q = 1, 2, · · · , Q) time slot,

the effective received signal yk,q ∈ CM×1 at the BS for the

kth user after removing the impact of the direct channel can

be represented as

yk,q =Gdiag (θq)hr,ksk,q +wk,q

=Gdiag (hr,k)θqsk,q +wk,q,
(5)

where sk,q is the pilot symbol sent by the kth user, θq =
[θq,1, · · · , θq,N ]T is the N × 1 reflecting vector at the RIS

with θq,n representing the reflecting coefficient at the nth

RIS element (n = 1, · · · , N) in the qth time slot, wk,q ∼
CN

(

0, σ2IM
)

is the M × 1 received noise with σ2 repre-

senting the noise power. According to the cascaded channel

Hk = Gdiag (hr,k), we can rewrite (5) as

yk,q = Hkθqsk,q +wk,q. (6)

After Q time slots of pilot transmission, we can obtain the

M ×Q overall measurement matrix Yk = [yk,1, · · · ,yk,Q]
by assuming sk,q = 1 as

Yk = HkΘ+Wk, (7)

where Θ = [θ1, · · · , θQ] and Wk = [wk,1, · · · ,wk,Q]. By

substituting (4) into (7), we can obtain

Yk = UMH̃kU
T
NΘ+Wk. (8)

Let denote Ỹk =
(

UH
MYk

)H
as the Q × M effective

measurement matrix, and W̃k =
(

UH
MWk

)H
as the Q ×M

effective noise matrix, (7) can be rewritten as a CS model:

Ỹk = Θ̃H̃H
k + W̃k, (9)

where Θ̃ =
(

UT
NΘ

)H
is the Q × N sensing matrix. Based

on (9), we can respectively estimate the angular cascaded

channel for each user k by conventional CS algorithms, such

as OMP algorithm. However, under the premise of ensuring

the estimation accuracy, the pilot overhead required by the

conventional CS algorithms is still high.

III. JOINT CHANNEL ESTIMATION FOR RIS ASSISTED

WIRELESS COMMUNICATION SYSTEMS

In this section, we will first reveal the double-structured

sparsity of the angular cascaded channels. Then, by exploiting

this important channel characteristic, we will propose a DS-

OMP based cascaded channel estimation scheme to reduce

the pilot overhead. Finally, the computational complexity of

the proposed scheme will be analyzed.

A. Double-Structured Sparsity of Angular Cascaded Channels

In order to further explore the sparsity of the angular cas-

caded channel both in row and column, the angular cascaded

channel H̃k in (4) can be expressed as

H̃k =

√

MN

LGLr,k

LG
∑

l1=1

Lr,k
∑

l2=1

αGl1α
r,k
l2

b̃
(

ϑGr

l1
, ψGr

l1

)

ãT
(

ϑGt

l1
+ ϑr,kl2 , ψ

Gt

l1
+ ψr,kl2

)

,

(10)

where both b̃ (ϑ, ψ) = UH
Mb (ϑ, ψ) and ã (ϑ, ψ) =

UH
Na (ϑ, ψ) have only one non-zero element, which lie on

the position of array steering vector at the direction (ϑ, ψ) in

UM and UN . Based on (10), we can find that each complete

reflecting path (l1, l2) can provide one non-zero element for

H̃k, whose row index depends on
(

ϑGr

l1
, ψGr

l1

)

and column

index depends on
(

ϑGt

l1
+ ϑr,kl2 , ψ

Gt

l1
+ ψr,kl2

)

. Therefore, H̃k
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has LG non-zero rows, where each non-zero row has Lr,k
non-zero columns. The total number of non-zero elements is

LGLr,k, which is usually much smaller than MN .

BS

RIS

user 1

user 2

G

,1r
h

,2r
h

1
H

1 2
H

2

Fig. 1. Double-structured sparsity of the angular cascaded channels.

More importantly, we can find that different sparse channels

{H̃k}Kk=1 exhibit the double-structured sparsity, as shown in

Fig. 1. Firstly, since different users communicate with the BS

via the common RIS, the channel G from the RIS to the

BS is common for all users. From (10), we can also find

that

{

(

ϑGr

l1
, ψGr

l1

)

}LG

l1=1

is independent of the user index

k. Therefore, the non-zero elements of {H̃k}Kk=1 lie on the

completely common LG rows. Secondly, since different users

will share part of the scatters between the RIS and users,

{hr,k}Kk=1 may enjoy partially common paths with the same

angles at the RIS. Let Lc (Lc ≤ Lr,k, ∀k) denote the number

of common paths for {hr,k}Kk=1, then we can find that for ∀l1,

there always exists

{

(

ϑGt

l1
− ϑr,kl2 , ψ

Gt

l1
− ψr,kl2

)

}Lc

l2=1

shared

by {H̃k}Kk=1. That is to say, for each common non-zero rows

l1 (l1 = 1, 2, · · · , LG), {H̃k}Kk=1 enjoy Lc common non-

zero columns. This double-structured sparsity of the angular

cascaded channels can be summarized as follows from the

perspective of row and column, respectively.

• Row-structured sparsity: Let Ωkr denote the row set of

non-zero elements for H̃k, then we have

Ω1
r = Ω2

r = · · · = ΩKr = Ωr, (11)

where Ωr represents the completely common row support

for {H̃k}Kk=1.

• Partially column-structured sparsity: Let Ωl,kc denote the

column set of non-zero elements for the l1th non-zero

row of H̃k, then we have

Ωl1,1c ∩Ωl1,2c ∩· · ·∩Ωl1,Kc = Ωl1,Com
c , l1 = 1, 2, · · · , LG,

(12)

where Ωl,Com
c represents the partially common column

support for the l1th non-zero row of {H̃k}Kk=1.

Based on the above double-structured sparsity, the cascaded

channels for different users can be jointly estimated to improve

the channel estimation accuracy.

B. Proposed DS-OMP Based Cascaded Channel Estimation

In this subsection, we propose the DS-OMP based cas-

caded channel estimation scheme by integrating the double-

structured sparsity into the classical OMP algorithm. The

specific algorithm can be summarized in Algorithm 1, which

includes three key stages to detect supports of angular cas-

caded channels.

Algorithm 1: DS-OMP based cascaded channel esti-

mation

Input: Ỹk : ∀k, Θ̃, LG, Lr,k : ∀k, Lc.

Initialization:
ˆ̃
Hk = 0M×N , ∀k.

1. Stage 1: Return estimated completely common row

support Ω̂r by Algorithm 2.

2. Stage 2: Return estimated partially common column

supports {Ω̂l1,Com
c }LG

l1=1 based on Ω̂r by Algorithm 3.

3. Stage 3: Return estimated column supports

{{Ω̂l1,kc }LG

l1=1}Kk=1 based on Ω̂r and {Ω̂l1,Com
c }LG

l1=1 by

Algorithm 4.

4. for l1 = 1, 2, · · · , LG do

5. for k = 1, 2, · · · ,K do

6.
ˆ̃
H
H

k (Ω̂l1,kc , Ω̂r(l1)) = Θ̃†(:, Ω̂l1,kc )Ỹk(:, Ω̂r(l1))
7. end for

8. end for

9. Ĥk = UH
M

ˆ̃
HkUN , ∀k

Output: Estimated cascaded channel matrices Ĥk, ∀k.

The main procedure of Algorithm 1 can be explained

as follows. Firstly, the completely common row support Ωr
is jointly estimated thanks to the row-structured sparsity in

Step 1, where Ωr consists of LG row indexes associated

with LG non-zero rows. Secondly, for the l1th non-zero row,

the partially common column support Ωl1,Com
c can be further

jointly estimated thanks to the partially column-structured

sparsity in Step 2. Thirdly, the user-specific column supports

for each user k can be individually estimated in Step 3.

After detecting supports of all sparse matrices, we adopt

the LS algorithm to obtain corresponding estimated matrices

{ ˆ̃Hk}Kk=1 in Steps 4-8. It should be noted that the sparse signal

in (9) is H̃H
k , thus the sparse matrix estimated by the LS

algorithm in Step 6 is
ˆ̃
H
H

k . Finally, we can obtain the estimated

cascaded channels {Ĥk}Kk=1 by transforming angular channels

into spatial channels in Step 9.

In the following part, we will introduce how to estimate

the completely common row support, the partially common

column supports, and the individual column supports for

the first three stages in detail. 1) Stage 1: Estimating the

completely common row support. Thanks to the row-structured

sparsity of the angular cascaded channels, we can jointly

estimate the completely common row support Ωr for {H̃k}Kk=1

by Algorithm 2.

From the virtual angular-domain channel representation (4),

we can find that non-zero rows of {H̃k}Kk=1 are corresponding

to columns with high power in the received pilots {Ỹk}Kk=1.

Since {H̃k}Kk=1 have the completely common non-zero rows,

{Ỹk}Kk=1 can be jointly utilized to estimate the completely
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Algorithm 2: Joint completely common row support

estimation

Input: Ỹk : ∀k, LG.

Initialization: g = 0M×1.

1. for k = 1, 2, · · · ,K do

2. g(m) = g(m) + ‖Ỹk(:,m)‖2F , ∀m = 1, 2, · · · ,M
3. end for

4. Ω̂r = ΓT (g, LG)
Output: Estimated completely common row support

Ω̂r.

common row support Ωr, which can resist the effect of noise.

Specifically, we denote g of size M×1 to save the sum power

of columns of {Ỹk}Kk=1, as in Step 2 of Algorithm 2. Finally,

LG indexes of elements with the largest amplitudes in g are

selected as the estimated completely common row support Ω̂r
in Step 4, where T (x, L) denotes a prune operator on x that

sets all but L elements with the largest amplitudes to zero,

and Γ(x) denotes the support of x, i.e., Γ(x) = {i,x(i) 6= 0}.

After obtaining LG non-zero rows by Algorithm 2, we

focus on estimating the column support Ωl1,kc for each non-

zero row l1 and each user k by the following Stage 2 and

3.

2) Stage 2: Estimating the partially common column sup-

ports. Thanks to the partially column-structured sparsity of the

angular cascaded channels, we can jointly estimate the par-

tially common column supports {Ωl1,Com
c }Ll1=1 for {H̃k}Kk=1

by Algorithm 3.

Algorithm 3: Joint partially common column supports

estimation

Input: Ỹk : ∀k, LG, Θ̃, Lr,k : ∀k, Lc, Ω̂r.

Initialization: Ω̂l1,kc = ∅, ∀l1, k, cl1 = 0N×1, ∀l1.

1. for l1 = 1, 2, · · · , LG do

2. for k = 1, 2, · · · ,K do

3. ỹk = Ỹk(:, Ω̂r(l1)), r̃k = ỹk
4. for l2 = 1, 2, · · · , Lr,k do

5. n∗ = argmax
n=1,2,··· ,N

‖Θ̃H(:, n)r̃k‖
2

F

6. Ω̂l1,kc = Ω̂l1,kc

⋃

n∗

7.
ˆ̃
hk = 0N×1

8.
ˆ̃
hk(Ω̂

l1,k
c ) = Θ̃†(:, Ω̂l1,kc )ỹk ,

9. r̃k = ỹk − Θ̃
ˆ̃
hk

10. cl1(n∗) = cl1(n∗) + 1
11. end for

12. end for

13. Ω̂l1,Com
c = ΓT (cl1 ,Pc)

14. end for

Output: Estimated completely common row support

{Ω̂l1,Com
c }LG

l1=1.

For the l1th non-zero row, we only need to utilize the

effective measurement vector ỹk = Ỹk(:, Ω̂r(l1)) to estimate

the partially common column support Ωl1,Com
c . The basic idea

is that, we firstly estimate the column support Ωl1,kc with Lr,k

indexes for each user k, then we select Lc indexes associated

with the largest number of times from all {Ωl1,kc }Kk=1 as the

estimated partially common column support Ω̂l1,Com
c .

In order to estimate the column supports for each user k,

the correlation between the sensing matrix Θ̃ and the residual

vector r̃k needs to be calculated. As shown in Step 5 of

Algorithm 3, the most correlative column index in Θ̃ with

r̃k is regarded as the newly found column support index

n∗. Based on the updated column support Ω̂l1,kc in Step 6,

the estimated sparse vector
ˆ̃
hk is obtained by using the LS

algorithm in Step 8. Then, the residual vector r̃k is updated

by removing the effect of non-zero elements that have been

estimated in Step 9. Particularly, the N × 1 vector cl1 is used

to count the number of times for selected column indexes in

Step 10. Finally, the Lc indexes of elements with the largest

value in cl1 are selected as the estimated partially common

column support Ω̂l1,Com
c in Step 13.

3) Stage 3: Estimating the individual column supports.

Based on the estimated completely common row support

Ω̂r and the estimated partially common column supports

{Ω̂l1,Com
c }Ll1=1, the column support Ωl1,kc for each non-zero

row l1 and each user k can be estimated by Algorithm 4.

Algorithm 4: Individual column supports estimation

Input: Ỹk : ∀k, Θ̃, LG Lr,k : ∀k, Lc, Ω̂r,

{Ω̂l1,Com
c }Ll1=1.

Initialization: Ω̂l1,kc = Ω̂l1,Com
c , ∀l1, k.

1. for l1 = 1, 2, · · · , LG do

2. for k = 1, 2, · · · ,K do

3. ỹk = Ỹk(:, Ω̂r(l1))

4.
ˆ̃
hk = 0N×1

5.
ˆ̃
hk(Ω̂

l1,k
c ) = Θ̃†(:, Ω̂l1,Com

c )ỹk
6. rk = yk − Θ̃ĥk,

7. for l2 = 1, 2, · · · , Lr,k − Lc do

8. n∗ = argmax
n=1,2,··· ,N

‖Θ̃H(:, n)r̃k‖
2

F

9. Ω̂l1,kc = Ω̂l1,kc

⋃

n∗

10.
ˆ̃
hk = 0N×1

11.
ˆ̃
hk(Ω̂

l1,k
c ) = Θ̃†(:, Ω̂l1,kc )ỹk

12. r̃k = ỹk − Θ̃
ˆ̃
hk

13. end for

14. end for

15. end for

Output: Estimated the individual column supports

{{Ω̂l1,kc }LG

l1=1}Kk=1.

For the l1th non-zero row, we have estimated Lc column

support indexes by Algorithm 3. Thus, there are Lr,k − Lc
user-specific column support indexes to be estimated for each

user k. The column support Ω̂l1,kc is initialized as Ω̂l1,Com
c .

Based on Ω̂l1,Com
c , the estimated sparse vector

ˆ̃
hk and residual

vector r̃k are initialized in Step 5 and Step 6. Then, the column

support Ω̂l1,kc for ∀l1 and ∀k can be estimated in Steps 7-13

by following the same idea of Algorithm 3.

Through the above three stages, the supports of all angular

cascaded channels are estimated by exploiting the double-
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structured sparsity. It should be pointed out that, if there

are no common scatters between the RIS and users, the

double-structured sparse channel will be simplified as the row-

structured sparse channel. In this case, the cascaded channel

estimation can also be solved by the proposed DS-OMP

algorithm, where Stage 2 will be removed.

C. Computational Complexity Analysis

In this subsection, the computational complexity of the pro-

posed DS-OMP algorithm is analyzed in terms of three stages

of detecting supports. In Stage 1, the computational complex-

ity mainly comes from Step 2 in Algorithm 2, which calcu-

lates the power of M columns of Ỹk of size Q×M for k =
1, 2, · · · ,K . The corresponding computational complexity is

O(KMQ). In Stage 2, for each non-zero row l1 and each user

k in Algorithm 3 , the computational complexity O(NQL3
r,k)

is the same as that of OMP algorithm [6]. Considering LGK
iterations, the overall computational complexity of Algorithm

3 is O(LGKNQL
3
r,k). Similarly, the overall computational

complexity of Algorithm 4 is O(LGKNQ(Lr,k − Lc)
3).

Therefore, the overall computational complexity of proposed

DS-OMP algorithm is O(KMQ) +O(LGKNQL
3
r,k).

IV. SIMULATION RESULTS

In our simulation, we consider that the number of BS

antennas, RIS elements and users are respectively M = 64
(M1 = 8,M2 = 8), N = 256 (N1 = 16, N2 = 16), and

K = 16. The number of paths between the RIS and the BS

is LG = 5, and the number of paths from the kth user to the

RIS is set as Lr,k = 8 for ∀k. All spatial angles are assumed

to be on the quantized grids. Each element of RIS reflecting

matrix Θ is selected from {− 1√
N
,+ 1√

N
} by considering

discrete phase shifts of the RIS [7]. |αGl | = 10−3d−2.2
BR , where

dBR denotes the distance between the BS and RIS and is

assumed to be dBR = 10m. |αr,kl | = 10−3d−2.8
RU , where

dRU denotes the distance between the RIS and user and is

assumed to be dRU = 100m for ∀k [7]. The SNR is defined

as E{||Θ̃H̃H
k ||2F /||W̃k||2F } in (14) and is set as 0 dB.

We compare the proposed DS-OMP based scheme with

the conventional CS based scheme [3] and the row-structured

sparsity based scheme [4]. In the conventional CS based

scheme, the OMP algorithm is used to estimate the sparse

cascaded channel H̃k for ∀k. In the row-structured sparsity

based scheme, the common row support Ωr with LG indexes

are firstly estimated, and then for each user k and each non-

zero row l1, column supports are respectively estimated by

following the idea of the classical OMP algorithm. In addition,

we consider the oracle LS scheme as our benchmark, where

the supports of all sparse channels are assumed to be perfectly

known.

Fig. 2 shows the normalized mean square error (NMSE)

performance comparison against the pilot overhead, i.e., the

number of time slots Q for pilot transmission. As shown

in Fig. 2, in order to achieve the same estimation accuracy,

the pilot overhead required by the proposed DS-OMP based

scheme is lower than the other two existing schemes [3], [4].

However, when there is no common path between the RIS
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Fig. 2. NMSE performance comparison against the pilot overhead Q.

and all users, i.e., Lc = 0, the double-structured sparsity

will be simplified as the row-structured sparsity [4]. Thus the

NMSE performance of the proposed DS-OMP based and the

row-structured sparsity based scheme is the same. With the

increased number of common paths Lc between the RIS and

users, the NMSE performance of the proposed scheme can

be improved to approach the benchmark of perfect channel

supports.

V. CONCLUSIONS

In this paper, we developed a low-overhead cascaded chan-

nel estimation scheme in RIS assisted wireless communication

systems. Specifically, we first analyzed the double-structured

sparsity of the angular cascaded channels among users. Based

on this double-structured sparsity, we then proposed a DS-

OMP algorithm to reduce the pilot overhead. Simulation

results show that the pilot overhead required by the pro-

posed DS-OMP algorithm is lower compared with existing

algorithms. For the future work, we will apply the double-

structured sparsity to the super-resolution channel estimation

problem by considering the channel angles are continuous in

practice.
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