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Abstract—We present a MUSIC-based Direction of Arrival
(DOA) estimation strategy using small antenna arrays, via
employing deep learning for reconstructing the signals of a
virtual large antenna array. Not only does the proposed strategy
deliver significantly better performance than simply plugging the
incoming signals into MUSIC, but surprisingly, the performance
is also better than directly using an actual large antenna array
with MUSIC for high angle ranges and low test SNR values. We
further analyze the best choice for the training SNR as a function
of the test SNR, and observe dramatic changes in the behavior
of this function for different angle ranges.

Index Terms—MUSIC algorithm, sparse antenna array, angle
of arrival, deep neural network, training SNR.

I. INTRODUCTION

Direction of arrival (DOA) estimation refers to estimating
the direction of several target electromagnetic waves through
receive antennas that form a sensor array. DOA has a wide
range of applications, e.g., radar, sonar, and wireless communi-
cations [1]. Accurate DOA estimation can be achieved using
large antenna arrays at the cost of increased hardware and
computational complexity. However, multiple input multiple
output (MIMO) radars with co-located antennas can offer
virtual enlargement of the aperture at the receiver, using
relatively few physical antennas. This in turn significantly
increases the maximum number of targets that could be
detected, and enhances the angular resolution at a compact
size, due to the fact that MIMO radars can transmit multiple
probing signals, which can be correlated or uncorrelated [2],
[3]. As an alternative approach, sparse array radars (also
known as thin array radars) have been extensively studied in
the literature and found to offer similar advantages as MIMO
radars [4]. The idea is to decompose a filled array into two
sub-arrays, breaking the uniform spacing rule, hence achieving
a larger aperture. By this means, it can offer similar target
detection and angular resolution capabilities as the MIMO
radar [5] with lower hardware cost. For this purpose, several
array configurations were proposed in the literature [6], [7],
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[8]. However, sparse arrays suffer from the effect of grating
lobes due to the non-uniform spacing between the antennas,
which leads to large estimation errors [9]. Furthermore, exist-
ing vector space DOA methods such as the MUltiple-SIgnal
Classification (MUSIC) algorithm can not be directly applied,
due to the rank deficiency of the correlation matrix. Hence,
a spatial smoothing variant of MUSIC is proposed in [10]
for rank enhancement at the cost of increased computational
cost. This is due to the fact that spatial smoothing must be
performed for every DOA estimation.
A comparison between MIMO and sparse array radars has
been conducted in [4], where MIMO radars were found to be
preferable when compactness is essential, since sparse arrays
are characterized by their large aperture size. However, sparse
arrays might be preferable when the hardware cost is the
driving requirement, yet sparse arrays are not robust to sensor
failures unlike uniform linear arrays (ULA) [11], which could
present an added challenge. In this work, we investigate a
novel approach which enhances the angular resolution and
target detection capacity while satisfying both low cost and
compactness properties. We exploit the potential of deep
neural networks to learn the mapping between two antenna
arrays of different sizes. Specifically, we try to emulate the
received signal of a large ULA using only a significantly
smaller sub-array, without the need to increase the array
aperture size, through training a deep neural network. This is
followed by using the trained model for each received pulse to
estimate the DOA via employing MUSIC without any further
processing, thereby delivering the advantages of sparse arrays
(i.e., hardware cost reduction) without increasing the aperture
size, and without compromising accuracy. Also, no additional
computational cost due to spatial smoothing is required. The
contributions of this work can be summarized as follows:

• DOA resolution enhancement of low antenna arrays using
a deep neural network (DNN) that learns the mapping
between received signals of two differently-sized antenna
arrays. Surprisingly, the performance obtained by using
actual high antenna arrays is not only tightly approxi-
mated, but exceeded at low SNR for high angle ranges.

• Analysis of the best training SNR as a function of the
test SNR, as well as in presence of test SNR uncertainty.
Interestingly, the behavior of this function is observed to
vary dramatically for different angle ranges.

• Analysis of the denoising capabilities of the proposed
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DNN. We attribute - based on experimental evidence -
our approach’s superior performance to the high antenna
setup at high angle ranges and low SNR, to a denoising
DNN functionality that effectively increases input SNR.

II. SYSTEM MODEL

Consider a co-located MIMO radar system with 𝑀 transmit
(TX) antennas and 𝑁 receive (RX) antennas. Here, each trans-
mit antenna with index 𝑚 transmits a narrow-band signal 𝑠𝑚 (𝑡)
with nondispersive propagation, that is perfectly orthogonal to
the rest and consists of a train of 𝑃 non-overlapping pulses;
each with duration 𝑇 . For simplicity, we consider TX and
RX antennas in a ULA configuration with antenna spacing of
𝑑 = 𝜆/2, where 𝜆 is the wavelength. We further assume that
there are 𝐾 targets in the scene. The radar cross section (RCS)
- based on pulse 𝑝 - and the direction of arrival (DOA) of the
𝑘-th target are given by 𝛼𝑘, 𝑝 ∈ C and 𝜃𝑘 , respectively. In
this paper, the target RCS is modeled based on the Swerling
model II, where it is fixed during the pulse interval 𝑇 and
changes independently from one pulse interval to another [12].
We define the transmit and receive steering vectors of the 𝑘-
th target as a𝑡 (𝜃𝑘 ) =

[
1, 𝑒 𝑗𝜌𝑑 sin 𝜃𝑘 , . . . , 𝑒 𝑗𝜌𝑑 (𝑀−1) sin 𝜃𝑘

]𝑇 and
a𝑟 (𝜃𝑘 ) =

[
1, 𝑒 𝑗𝜌𝑑 sin 𝜃𝑘 , . . . , 𝑒 𝑗𝜌𝑑 (𝑁−1) sin 𝜃𝑘

]𝑇 , respectively.
Here, (·)𝑇 is the transpose, and 𝜌 = 2𝜋

𝜆 . Here, we consider
all targets as point targets. In that case, the received echo
(reflected signal) from the target does not expand beyond the
radar resolution cell [13]. The received signal r(𝑡) ∈ C𝑁 after
transmitting 𝑃 pulses is hence [2],

r(𝑡) =
𝐾∑︁
𝑘=1

𝑃∑︁
𝑝=1

𝛼𝑘, 𝑝 a𝑟 (𝜃𝑘 )a𝑇𝑡 (𝜃𝑘 )s(𝑡 − 𝑝𝑇) + n(𝑡), (1)

where n(𝑡) ∈ C𝑁 is independent and identically dis-
tributed (i.i.d) Gaussian noise with variance 𝜎2 and s(𝑡) =
[𝑠1 (𝑡), . . . , 𝑠𝑚 (𝑡)]𝑇 . Next, at each receive antenna, the re-
ceived signal r(𝑡) is cross-correlated with 𝑀 matched filters
corresponding to each transmit signal as given below

Z𝑝 =
∫ 𝑇

0
r(𝑡) s𝐻 (𝑡 − 𝑝𝑇)𝑑𝑡. (2)

Here, (·)𝐻 is the conjugate transpose. Due to the perfect
orthogonality of the transmit waveforms, Z𝑝 in (2) is

Z𝑝 =
𝐾∑︁
𝑘=1

𝑃∑︁
𝑝=1

𝛼𝑘, 𝑝 a𝑟 (𝜃𝑘 )a𝑇𝑡 (𝜃𝑘 )I +
∫ 𝑇

0
n(𝑡)s𝐻 (𝑡 − 𝑝𝑇)𝑑𝑡.

(3)

Here, I is an identity matrix. Next, we rearrange (3) as

Y = A(𝜃)X + N, (4)

where Y ∈ C𝑀𝑁×𝑃 is the receive signal and it is given
as Y = [vec(Z1), . . . , vec(Z𝑃)]. Here, vec(Z𝑝) denotes the
conversion of the matrix Z𝑝 of (3) into a column vector. The
steering vector matrix A(𝜃) is given by [v(𝜃1), . . . , v(𝜃𝐾 )],
where v(𝜃𝑘 ) = a𝑡 (𝜃𝑘 ) ⊗ a𝑟 (𝜃𝑘 ). Further, the RCS matrix
X ∈ C𝐾×𝑃 corresponding to all 𝐾 targets is given as X =
[x1, . . . , x𝑃], with x𝑝 = [𝛼1, 𝑝 , . . . , 𝛼𝐾,𝑝]𝑇 .
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Fig. 1: Training the Deep Neural Network.
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DOA estimation
using MUSIC

Fig. 2: Antenna array reconstruction using the DNN.

III. DEEP LEARNING ARCHITECTURE

Enlarging antenna array aperture enhances angular resolu-
tion capabilities, which in turn leads to better DOA estimation.
Hence, we tackle the problem of mapping the received signal
of two antenna setups of different sizes1. A feedforward deep
neural network (DNN) is proposed to learn the mapping
between the received signals of low and high antenna setups.
Let Y𝑙 ∈ C𝐿×𝑃 and Yℎ ∈ C𝐻×𝑃 be the received signals of the
low and high antenna setups as defined in (4), respectively.
Here, 𝐿 = 𝑀𝑙𝑁𝑙 < 𝐻 = 𝑀ℎ𝑁ℎ . Yℎ and Y𝑙 are then given as

Y𝑙 = A𝐿 (𝜃)X + N, (5)

Yℎ = A𝐻 (𝜃)X + N. (6)

Our approach is based on the hypothesis that in a complex
environment, there is a non-linear relationship between both
received signals corresponding to low and high antenna setups,
which is a priori unknown due to the unknown locations of
different targets. We hence train a DNN to learn this mapping
in a data-driven fashion. The DNN consists of four fully
connected layers, where the input layer is of dimension 𝐿,
followed by three hidden layers of dimensions 𝐿, 𝐿, and 𝐻,
respectively, and the output layer is of dimension 𝐻. The
DNN architecture is shown in Fig. 1. Different DNNs with
different configurations were tested to validate this selection.
It was observed that the DNN with three hidden layers is the
smallest DNN architecture that led to a good performance, on
average. Since the DNN is not designed for special processing
of complex data, the input and output are defined as Y𝑙 =[
<(Y𝑙); =(Y𝑙)

]
, and Yℎ =

[
<(Yℎ); =(Yℎ)

]
, where <(·),

and =(·) denote the real and imaginary components, respec-
tively. Both received and reconstructed signals are normalized
to lie between 0 and 1 through min-max normalization. ReLU

1The maximum number of targets (𝐾max) that can be uniquely identified
by a MIMO radar is given by 𝐾max ∈

[
2(𝑀+𝑁 )−5

3 , 2𝑀𝑁
3

)
[14]. It is hence

feasible to detect four targets for both considered low and high antenna setups.
However, the accuracy of MUSIC suffers severe degradation as the SNR
decreases, and this performance degradation can be significantly overcome
by increasing the number of antennas, which we do through DNN emulation.
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𝑁𝑙 = 𝑀𝑙 10 𝑁ℎ = 𝑀ℎ 16
Angle grid 1 0 : 25 Angle grid 2 20 : 45
Angle grid 3 40 : 65 Number of targets (𝐾 ) 4

TABLE I: Simulation Parameters

is used as an the activation function for all the hidden layers.
For the output layer, we tried both linear activation and ReLU,
and then we chose the best performance for each experiment.
The available dataset is divided into training, validation and
testing, with split ratios of 60%, 20% and 20%, respectively.
Training takes place over a maximum of 150 epochs with a
batch size of 120. For the training process, we used an Adam
optimizer with the mean squared error loss function. In the
testing phase, the DNN is tested using Y𝑙,tst ∈ R2𝐿×𝑃̂ , where
it predicts Ypre ∈ R2𝐻×𝑃̂ , as shown in Fig. 2. Here, 𝑃̂ is
the number of testing samples. DOA estimation is calculated
from the predicted received signal Ypre ∈ C𝐻×𝑃̂ through the
MUSIC algorithm. The covariance matrix is calculated using
𝑁𝑠 snapshots as

Rpre = E [YpreY
𝐻
pre] = A(𝜃) E [XX𝐻 ]A𝐻 (𝜃) + 𝜎2I,

= U𝑥𝚲𝑥U𝐻𝑥 + U𝑛𝚲𝑛U𝐻𝑛 ,
(7)

where E [·] denotes the expected value, U𝑥 and U𝑛 are ma-
trices containing the eigenvectors, which represent the signal
and noise subspaces, respectively. 𝚲𝑥 = diag(𝜆1, . . . , 𝜆𝐾 )
and 𝚲𝑛 = diag(𝜆𝐾+1, . . . , 𝜆𝑀𝑁 ) contain the corresponding
eigenvalues of the target and the noise, respectively. Hence,
the expression of the MUSIC spectrum which provides the
received signal energy distribution for all receive directions
is given by 𝑃𝑀𝑈 (𝜃) =

(
v𝐻 (𝜃)U𝑛U𝐻𝑛 v(𝜃))−1. For a compre-

hensive evaluation of our model performance, we define two
metrics. First, we define the covariance matrix error as

𝑅𝑒 =


Rℎ,tst − Rpre




𝐹

/ 

Rℎ,tst

𝐹 , (8)

where ‖·‖𝐹 is the Frobenius norm, Rℎ,tst = E [Yℎ,tstY𝐻ℎ,tst],
and Yℎ,tst is the received signal of the high antenna setup
during inference. The analysis of the covariance matrix of
the received signal has a significant importance here as it is
directly used to calculate the MUSIC spectrum. Second, to
evaluate the DOA estimation performance, the average mean
squared error (MSE) over 𝑄 trials is used as the performance
metric. Here, 𝑄 = 𝑃̂/𝑁𝑠 . The MSE in radians is given by
MSE = 1

𝐾𝑄

∑𝑄
𝑞=1

∑𝐾
𝑘=1 (𝜃𝑞,𝑘 − 𝜃𝑞,𝑘 )2. Here, the estimated and

actual angles of the 𝑘−th target in the 𝑞−th trial are given as
𝜃𝑞,𝑘 and 𝜃𝑞,𝑘 , respectively.
The computational complexity of DNN training is governed by
that of backpropagation, which is given by O(𝑃𝑛(𝐻2 + 𝐿2)).
Here, 𝑛 is the number of training epochs and O(·) represents
the Big O notation for asymptotic computational complexity
analysis. The test-time computational cost for a single trial
which consists of 𝑁𝑠 snapshots is O(𝑁𝑠𝐻2 + 𝑁𝑠𝐿2), which
is governed by inference cost along with MUSIC complexity,
which is given by O(𝑡𝐻2 + 𝑁𝑠𝐻2) where 𝑡 is the spatial grid
search over the angles. Thus, total test-time computational cost
is O(𝑁𝑠 (𝐻2 + 𝐿2) + 𝑡𝐻2).

IV. SIMULATION RESULTS

To train the DNN, we use a GPU server with 32 GB memory
and a single NVIDIA Quadro RTX 5000. The simulation
parameters are listed in Table I. We consider three angle
ranges, which span the scope of the incident signal, however
similar results were obtained for others. Each range is chosen
to span 25 degrees to place the targets. Also, here we set
the minimum spatial distance of five degrees between two
targets to ensure the best spatial resolution of the actual large
antenna setup of 16 × 16 antennas. Different training sets are
considered in the training phase. Specifically, we consider 16
datasets2 with different SNR combinations. Here, two datasets
(M1 and M2) contain data with a mix of SNR values while the
other 14 datasets involve only a single SNR each. M1 and M2
contain equal percentage of data samples from each training
SNR (SNRtrain) ranging from −16 dB to 10 dB with a step size
of 2 dB. The only difference in constructing these two datasets
is the size, as M1 consists of 840000 and M2 consists of
60000 samples for both training and validation. Furthermore,
each of the other 14 datasets consists of 60000 samples for
training and validation. For the testing phase, we estimate the
DOA for 15000 samples in the testing SNR (SNRtest) range
of −16 . . . 10 dB with the same training step size. Here, we
set the number of snapshots 𝑁𝑠 as 150, resulting in a number
of trials 𝑄 = 100.
The average MSEs for different training datasets are shown
in Fig. 3. In this figure, DOA estimation using the predicted
signal of the DNN is compared with the DOA estimation
obtained by directly using the signals obtained from the
actual low and high antenna setups. Three cases for the DNN
prediction task are explored in this figure:

• Case 1: Training the DNN with the M1 dataset (i.e., mix
of SNR values).

• Case 2: Training the DNN with the same SNR as that
used in testing (e.g., using the DNN model trained with
SNRtrain = −16 dB at SNRtest = −16 dB).

• Case 3: Selecting the lowest MSE of DOA estimation
achieved across all 16 data sets for each testing SNR
(e.g., using the DNN model trained with SNRtrain = −10
dB leads to the lowest MSE at SNRtest = −16 dB for the
angle range of 20 − 45 degrees).

Fig. 3 shows that the predicted signal typically leads to
better performance than directly using the signal of the low
antenna setup (10×10), specially in the low SNR regime and
for high angle ranges. However, there is one exception to
this statement. As shown in Fig. 3(a) and (b), where the low
antenna setup performs slightly better compared to the DNN
prediction in high SNR regimes. This is due to the fact, that
both high and low received signals have similar DOA perfor-
mance in high SNR, where the MSE decreases dramatically
in both cases. We believe that the inferior DNN performance
in this case can be attributed to overfitting as the training loss
is lower than the validation loss. Fig. 3 also demonstrates that
training and testing with the same SNR closely follows the best
achievable performance, and hence highlighting the impact of

2Source code is available for download at https://gitlab.com/miriyugl/doa-
with-dnn-via-emulation-of-antenna-arrays.
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Fig. 3: DOA estimation results and Cramér–Rao Bounds.
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Fig. 4: MSE of covariance matrix of predicted received signal
compared to the actual high antenna setup at the same SNR
and with SNR offset with ReLU output activation function.

knowing the test SNR value and choosing the simple strategy
of training at only that value. In addition, Fig. 3 demonstrates
the difference in behavior among different angle ranges. More
specifically, the performance of the DOA estimation obtained
from using the signals corresponding to the actual antenna
setups becomes worse for higher angle ranges. We believe that
this is due to the loss of spatial resolution of the ULA as the
target directions shift to the endfire direction of the antenna
array (i.e. |𝜃𝑘 | ≥ 60). This is due to the fact that in this range,
the beam sharpness reduces remarkably as the effective array
aperture decreases towards those directions [15].
Interestingly, DOA estimation using our DNN-emulated signal
outperforms the one generated using the actual high antenna
setup at low SNR and high angle ranges. A possible expla-
nation of this behavior is that, while pursuing improvement
in generalization performance, the DNN performs denoising
to the received signal. We further examine this hypothesis
by evaluating 𝑅𝑒 as defined in (8). Then, we compare the
predicted signal with the actual received signal at a certain
SNR offset. Hence, we define 𝑅offset as

𝑅offset =


Rℎ𝑜,tst − Rpre




𝐹

/ 

Rℎ𝑜,tst

𝐹 , (9)

where Rℎ𝑜,tst = E [Yℎ𝑜,tstY𝐻ℎ𝑜,tst], and Yℎ𝑜,tst is the actual

received signal at a certain SNR offset (e.g., if Yℎ,tst and Ypre
are evaluated using SNRtest = −16 dB, then Yℎ𝑜,tst is evaluated
using SNRtest = −8 dB with an offset of 8 dB). In Fig. 4,
we plot 𝑅𝑒 and 𝑅offset using the training datasets of M2 and
case 2 with offset values of 8 and 12 dB, respectively. Those
offset values are chosen based on the observed performance
corresponding to both cases. Fig. 4 shows that 𝑅offset has much
lower values compared to 𝑅𝑒 in both cases. That signifies the
statistical similarity between the predicted signal of the DNN
and the less noisy version of the actual received signal of the
high antenna setup. Further, as the SNR increases, 𝑅offset and
𝑅𝑒 converge to the same value. This underlines the validity of
the hypothesis that the DNN denoises the received signal.

A. Cramér–Rao bound (CRB) Analysis.

To further assess the performance of our approach, the
Cramér–Rao bound (CRB) of unbiased DOA estimation of
MIMO radar is calculated and derived as in [16], [17].

𝐶𝑅𝐵(𝜃) = 𝜎2

2𝑁𝑠

{
Re

[
X𝐻A𝐻𝑒

(
𝐼 − A

(
A𝐻A

)−1
A𝐻

)
A𝑒X

]}−1
.

Here, Ae represents first derivative information of
the steering vector matrix A = A(𝜃) as given by
Ae = Ae (𝜃) =

[
𝜕v(𝜃1)
𝜕𝜃1

, 𝜕v(𝜃2)
𝜕𝜃2

, · · · , 𝜕v(𝜃K)
𝜕𝜃K

]
. Fig. 3 shows

the CRB of the DOA estimation of low and high antenna
setups. It can be seen that the DOA estimation of the DNN-
predicted signal approaches the CRB of the low antenna
setup, specifically in the low SNR regime. Further, for higher
angle ranges at low SNR, the MSE of the DNN-based DOA
estimation is lower than the CRB of the low antenna setup.
We believe that this is due to the side information benefit
from the high antenna setup training signals, as well as the
denoising effect.

B. What is the best training SNR values?

We first investigate the performance when training with
a single SNR value across all testing SNR values. Fig. 5
shows the cumulative average MSEs of the DOA estimation
over all testing SNRs for each training SNR. Note that the
shortest bar corresponds to the training SNR which provides
the lowest cumulative MSE over all testing SNR values. We
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Fig. 5: DOA estimation comparison of the DNN based signal prediction by training at a single SNR.

−16 −14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10
M2
-16
-14
-12
-10

-8
-6
-4
-2
0
2
4
6
8

10

SNRtest (dB)

SN
R t

ra
in

(d
B

)

Best Second best

−16 −14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10
M2
-16
-14
-12
-10

-8
-6
-4
-2
0
2
4
6
8

10

SNRtest (dB)

SN
R t

ra
in

(d
B

)

−16 −14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10
M2
-16
-14
-12
-10

-8
-6
-4
-2
0
2
4
6
8

10

SNRtest (dB)

SN
R t

ra
in

(d
B

)
(a) Angle range 0-25 (b) Angle range 20-45 (c) Angle range 40-65

Fig. 6: The best training SNR selection for different test SNRs.

observe that the training set M1 consistently provides a low
cumulative MSE. However, it may be difficult in practice
to acquire - and train with - a large dataset due to latency
and computational constraints. Interestingly, the best training
SNR value, in terms of cumulative MSE, shifts from low
to high as we move towards higher angle ranges. Further,
perhaps counterintuitively, training with high SNR values can
lead to mild performance for low angle ranges in presence of
uncertainty about the testing SNR.
Further analysis is conducted to elaborate the relationship
between the training and test SNR, and the results are shown
in Fig. 6. Consider the average MSE for each pair of training
and testing SNR values. With respect to that metric, in Fig. 6,

and represent the best and the second best training
SNRs for a particular testing SNR, respectively. Further,
represents other training SNRs which deliver an average MSE
within 10% of the best. We observe that positive training SNR
values are in general more favorable, specially as we move
towards higher angle ranges and higher SNR values. However,
when comparing with the results in Fig. 5, we conclude that
knowledge of the test SNR favors higher training SNR values,
while a significant uncertainty about the test SNR favors lower
training SNR values, specially for lower angle ranges.

V. CONCLUSION

We introduced a novel strategy that employs deep learning
for emulating large antenna arrays, and demonstrated how it
boosts the accuracy of MUSIC for Direction Of Arrival (DOA)
estimation. Multiple observations - of practical significance -
were drawn from the obtained results. Most notably, we high-
lighted how the emulated array leads to superior performance
than an actual antenna array with the same number of antennas
for high angle ranges and low SNR values, probably due to
the denoising abilities of deep neural networks. Further, the
effectiveness of training at low SNR values in presence of
uncertainty about the test SNR was demonstrated, especially
for low angle ranges. Finally, we investigated the best training
SNR values as a function of the test SNR, and particularly
noted the shift in ideal training SNR values from low to high
as we move towards higher angle ranges and higher test SNR
values.
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