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Intelligent Surface Aided MIMO Systems
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Abstract—This article aims to reduce huge pilot overhead when
estimating the reconfigurable intelligent surface (RIS) relayed
wireless channel. Motivated by the compelling grasp of deep
learning in tackling nonlinear mapping problems, the proposed
approach only activates a part of RIS elements and utilizes
the corresponding cascaded channel estimate to predict another
part. Through a synthetic deep neural network (DNN), the
direct channel and active cascaded channel are first estimated
sequentially, followed by the channel prediction for the inactive
RIS elements. A three-stage training strategy is developed for
this synthetic DNN. From simulation results, the proposed
deep learning based approach is effective in reducing the pilot
overhead and guaranteeing the reliable estimation accuracy.

Index Terms—RIS-aided MIMO systems, CSI acquisition, deep
neural network, multi-stage training.

I. INTRODUCTION

THE recent advent of reconfigurable intelligent surface
(RIS) has stirred up a plethora of research activities since

it has potential to boost the network performance and reduce
the cost [1]–[3]. The general RIS consists of an inexpensive
smart surface, usually made of either tiny antenna elements
or metamaterials, and some low power circuits. Through real-
time reflecting adaption by an external controller, RIS bears
the ability of manipulating the phase and amplitude of the
impinging signal in order to focus the signal energy at the
receiver as well as to mitigate the interference and security
threats [4]–[6].

The above-mentioned brightening advantages of RIS build
on the reliable channel state information (CSI). However, the
CSI acquisition is challenging since the RIS-relayed link is
a cascaded channel whose structure differs from the single-
hop channel, which makes most channel estimation approaches
exploiting single-hop channel statistics malfunction. In addi-
tion, the huge pilot overhead incurred by the RIS is a vital
limit thwarting the dramatic performance improvement. In [7],
a simple on/off operation mode for the RIS is proposed to
sequentially estimate the cascaded channel associated with
each active RIS element. By exploiting the array gain of the
RIS, an efficient least-square (LS) based approach is developed
in [8] and [9], which adapts the reflection coefficient of
each RIS element as per a discrete Fourier transformation
(DFT) matrix to improve the estimation accuracy. In [10],
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compressed sensing (CS) is exploited to separately estimate
the sparse channel of each hop by endowing the RIS with
signal processing ability. In [11], a novel sparse form of the
cascaded channel is uncovered to enable the sparse channel
recovery with the reduced pilot overhead provided that the
sparsity of each hop is known.

As one of the key technologies underlaying the pathway
to smart radio, deep learning (DL) based signal processing
has sparked a revolution in wireless communications [12]–
[15], and thus inspires some attempts to address the channel
estimation problem for RIS-aided systems. In [16] and [17],
deep convolutional neural network (CNN) is applied to refine
the LS channel estimate to further improve the accuracy. A
complex-valued denoising CNN is proposed in [18] to enhance
the CS-based estimate for the broadband user-RIS channel.

It can be seen that the CS-based channel estimation ap-
proaches highly rely on channel statistics as the prior knowl-
edge and will suffer from performance degradation in the
practical complicated scenarios. Although the LS-based ap-
proaches get rid of this dependence, they still have not well
traded off between the estimation accuracy and the pilot
overhead. The success of DL in estimating the single-hop
channels [14], [15] has implied its potential to address the
above-mentioned problems and thus enlightens us to figure
out a solution along with this line. The main novelty and
contribution of this article can be summarized as follows:

1) With partially activated RIS elements to reduce the
pilot overhead, we propose a three-stage CSI acquisition
framework successively including estimation of the direct
channel, estimation of the cascaded channel for active
RIS elements, and prediction of the cascaded channel
for inactive RIS elements, and develop a synthetic deep
neural network (DNN) to realize it.

2) For the prediction stage, we discover a simple yet
efficient mapping relationship from the perspective of
each base station (BS) antenna, which facilitates the
DNN training under the accumulative estimation errors
propagated from the previous stages and thus achieves
the superior estimation accuracy.

Notations: In this article, we use upper and lower case
boldface letters to denote matrices and vectors, respectively.
(·)T , (·)H , ‖ · ‖F , and E{·} represent the transpose, conjugate
transpose, Frobenius norm, and expectation, respectively. ‖ · ‖
denotes the Euclidian norm of a vector. diag(x) transforms
vector x to a diagonal matrix. 0N denotes an all-zero column
vector with N entries. 1N denotes a column vector with each
of N entries equal to 1. IN denotes an N×N identity matrix.
CN (0, σ2) represents a circular symmetric complex Gaussian
distribution with variance σ2. |X | denotes the cardinality of
set X .
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Fig. 1. A RIS-aided MIMO uplink system.

II. SYSTEM MODEL

We consider a RIS-aided multiple-input multiple-output
(MIMO) uplink system shown in Fig. 1, where a single-
antenna user transmits signals to a BS with M antennas and a
RIS with N reflecting elements is deployed to enhance the
communication quality by using extremely low power and
cost. The reflecting coefficient of each RIS element can be
adapted by the BS via a controller based on the real-time CSI
in order to smartly rotate the phase of the incident signal.
In Fig. 1, the MIMO system is operated in the time division
duplex mode, where the BS acquires the CSI resorting to the
pilot signals transmitted by the user.

At the ith time instant of a coherence interval, the received
pilot signal at the BS is expressed as

yi =
√
P (hUB + HRBdiag(φi)hUR)xi + zi, (1)

where P , xi, φi, and zi ∼ CN (0, σ2
0IM ) denote the user

transmit power, the transmitted pilot signal, the reflecting
coefficient vector of the RIS, and the additive white Gaussian
noise (AWGN) at the BS, respectively. From [8], the nth entry
of φi ∈ CN×1 corresponds to the reflecting coefficient of
the nth RIS element and is written as φni = βnie

jϕni with
βni ∈ [0, 1] and ϕni ∈ (0, 2π] accounting for the reflecting
amplitude and phase rotation, respectively. In this article, we
set βni = 1 for the active RIS elements to avoid the energy
loss and simplify the RIS hardware structure. hUB ∈ CM×1,
hUR ∈ CN×1, and HRB ∈ CM×N denote the channel from
the user to the BS, the channel from the user to the RIS, and
the channel from the RIS to the BS, respectively.

To facilitate further signal processing, yi is rewritten as
yi =

√
P (hUB + HRBdiag(hUR)φi)xi + zi

,
√
P (hUB + Gφi)xi + zi. (2)

Note that it is more tractable to estimate the equivalent
cascaded channel G instead of estimating HRB and hUR
separately and G can be directly used for the beamforming
design during the data transmission. Hence, we will focus on
the acquisition of hUB and G hereinafter.

Then the received pilot signals at the BS during τ +1 time
instants are given in matrix form as

Y =
√
P (hUB1Tτ+1 + GΨ)X + Z, (3)

where Ψ = [φ1, . . . ,φτ+1] with φ1 = 0N , X =
diag([x1, . . . , xτ+1]), and Z = [z1, . . . , zτ+1]. Without loss of
generality, we assume X = Iτ+1 for simplicity, which yields

Y =
√
P (hUB1Tτ+1 + GΨ) + Z. (4)

Based on the general pilot transmission model sketched
above, we investigate how to acquire reliable hUB and G with
low pilot overhead via DL in the following.

III. DL-BASED THREE-STAGE CSI ACQUISITION

In this section, a novel three-stage CSI acquisition frame-
work is proposed based on DL. We will first shed light on the
basic idea of the framework and then design a synthetic DNN
as its backbone for CSI acquisition. Finally, the online testing
procedure of the framework is described.

A. Basic Idea

In the proposed framework, hUB is first estimated via a
DNN while all RIS elements are turned off. After then,
a part of RIS elements are activated with their reflection
coefficients adapted as per the DFT matrix [8], [9] so that the
BS estimates the corresponding equivalent cascaded channel
by using another DNN1. Finally, the DNN-based channel
prediction is conducted to retrieve the equivalent cascaded
channel associated with those inactive RIS elements. These
three DNNs hook up in a sequential manner and compose a
synthetic DNN. To achieve a good overall estimation accuracy,
we design and train the DNNs separately in three stages2.

B. Three-Stage DNN Design

At the beginning of this subsection, we outright present the
overall structure of the proposed CSI acquisition framework
in Fig. 2 to facilitate the elaboration on the synthetic DNN
design in each stage.

1) Stage 1: At the first time instant during pilot transmission,
all RIS elements are turned off so that the BS can estimate
hUB from the received pilot signal, which is the first column
of Y in (4) and is written as

y1 =
√
PhUB + z1. (5)

Then the LS estimate of hUB can be obtained as ĥUB,ls =
y1√
P

.
As shown in Fig. 2, ĥUB,ls is then input into a Direct Channel

Estimation DNN (DE-DNN) in attempts to approximate the
true channel hUB. Thus DE-DNN is trained with the sample
tuple, 〈ĥUB,ls,hUB〉, and the loss function,

LDE =
1

Ntr

Ntr∑
n=1

‖h(n)
UB − ĥ

(n)
UB,dnn‖

2, (6)

where Ntr denotes the number of training samples, ĥ
(n)
UB,dnn

denotes the channel approximated by DE-DNN, and the super-
script (n) indicates the nth sample. In more detail, DE-DNN is
fully-connected (FC) and includes three hidden layers, each of
which applies rectified linear unit (ReLU) activation function
and batch normalization (BN) to avoid gradient vanishing and
overfitting. The output layer does not apply any activation
function so that the label values need not to be tailored to
fit the activation function.

2) Stage 2: In this stage, only a part of RIS elements,
denoted by set A with N1 = |A|, are activated to reflect the
pilot signals transmitted by the user to the BS. Considering
the efficient DFT matrix based reflection mode for the active

1By turning on only a part of RIS elements, relatively accurate LS channel
estimate for these active RIS elements can be obtained even with reduced
pilot overhead, which can be further exploited by the elaborated DNNs to
construct the complete channel.

2The DNNs are trained offline and thus the computational cost of training
is relatively trivial.



3

UB,ls
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ĥ

UB,dnn
ĥ
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Fig. 2. DL-based three-stage CSI acquisition framework.

elements [8], [9], the received pilot signals at the BS from the
second to the (N1 + 1)th time instant can be expressed as

YA =
√
P (hUB1TN1

+ GAΦN1) + ZA, (7)

where GA ∈ CM×N1 denotes the equivalent cascaded channel
associated with the active RIS elements whose columns are
fetched from G according to the indexes in A, the DFT matrix,
ΦN1

∈ CN1×N1 , indicates the reflection coefficients, and ZA
is the corresponding AWGN.

As hUB has been estimated by the DE-DNN, its estimate
ĥUB,dnn will be subtracted from YA, which yields the LS
estimate of GA, i.e.,

ĜA,ls =

(
YA√
P
− ĥUB,dnn1

T
N1

)
ΦH
N1

N1

= GA +

(
(hUB − ĥUB,dnn)1

T
N1

+
ZA√
P

)
ΦH
N1

N1
. (8)

From Fig. 2, ĜA,ls will be refined by an Active RIS Channel
Estimation DNN (ARE-DNN) to output a version closer to the
true channel, GA. Similarly, the loss function for ARE-DNN
training is given by

LARE =
1

Ntr

Ntr∑
n=1

‖G(n)
A − Ĝ

(n)
A,dnn‖

2
F , (9)

where Ĝ
(n)
A,dnn denotes the output of ARE-DNN.

Since ĜA,ls is corrupted by the residual estimation error of
Stage 1 in addition to AWGN, we invoke the more efficient
residual network structure to design ARE-DNN. As shown
in Fig. 2, the input, ĜA,ls, flows in ARE-DNN through two
ways, one of which includes several convolutional layers to
successively distill the aggregated noise from ĜA,ls while
another one is a shortcut representing the identity mapping.
The two ways intersect by subtracting the extracted noise from
the input, ĜA,ls, and then a more purified channel, ĜA,dnn, can
be obtained. Specifically, the first way consists of eight zero
padding (ZP) convolutional layers for feature extraction [14].
Each of the first seven layers applies 64 3× 3 kernels, ReLU
activation function and BN while the last layer only applies 2
3×3 kernels and directly output the filtered results. Simulation
trails show that further increasing the number of convolutional
layers will not improve the performance. In addition, using

the same or even a bit larger number of layers, stacking
multiple residual network units cannot beat the current one-
unit structure, which indicates that the uninterrupted layer
structure is more efficient to extract the high-order features
in this case.

3) Stage 3: Denote B as the index set of the inactive
RIS elements with N2 = |B|. The aim of this stage is to
infer the equivalent cascaded channel associated with B, GB,
from ĜA,dnn. A straightforward way to carry out this task is
inputting ĜA,dnn into a CNN to approximate GB. However,
it is challenging to uncover this matrix mapping relationship
since the structure of the equivalent cascaded channel is quite
different from that of the single-hop channel. This inspires
us to dissect the channel structure and find the more suitable
input that the neural network can digest well.

Since G = HRBdiag(hUR), we start with analyzing the
structure of HRB. According to Saleh-Valenzuela (SV) model,
HRB is given by

HRB =

√
MN

LRB

LRB∑
l=1

αRB,laB(θl)a
H
R (ϕl), (10)

where LRB, αRB,l, θl, and ϕl denote number of main paths, the
complex gain of the lth path, the azimuth angles of arrival and
departure (AoA/AoD) at the BS and the RIS, respectively. The
response vector aB(θl) can be further expressed as aB(θl) =
1√
M

[
1, e−j2π

d
λ sin(θl), . . . , e−j2π

d
λ (M−1) sin(θl)

]T
with d and λ

denoting the space between the adjacent antennas at the BS
and the wavelength of the carrier frequency, respectively. Then
the mth row of HRB can be written as

hRB,m =

√
N

LRB

LRB∑
l=1

αRB,le
−j2π dλ (m−1) sin(θl)aHR (ϕl). (11)

It is obvious that each row of HRB exhibits a unified form
containing all the channel information between the RIS and
the BS. Consequently, the mth row of G, which is given
by gm = hRB,mdiag(hUR), ∀m ∈ {1, . . . ,M}, inherits this
property with all the channel information of the RIS-relayed
channel included.

Denote gA,m and gB,m as the parts of gm corresponding to
A and B, respectively. Based on the perspective view of the
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channel mentioned above, we can focus on gA,m and gB,m,
instead of GA and GB, to extract the inherence underlaying
the mapping relationship, which facilitates the DNN design
and training with significantly improved prediction accuracy.
Specifically, as shown in Fig. 2, we design an Inactive RIS
Channel Prediction DNN (IRP-DNN) to approximate gB,m by
using ĝA,m,dnn, i.e., the mth row of ĜA,dnn, as the input with
m randomly selected from {1, . . . ,M}. The loss function for
IRP-DNN training is expressed as

LIRP =
1

Ntr

Ntr∑
n=1

‖g(n)
B,m − ĝ

(n)
B,m,dnn‖

2, (12)

where ĝ
(n)
B,m,dnn denotes the output of IRP-DNN. Since we fo-

cus on the level of vector mapping instead of matrix mapping,
IRP-DNN is designed in a FC structure. There are three hidden
layers applying ReLU activation function and BN while no
activation function is applied in the output layer.

C. Online Testing

After offline training, the CSI acquisition framework will
be deployed for online testing. From Fig. 2, ĥUB,ls, which
is obtained from y1, is first refined by DE-DNN to output
ĥUB,dnn, based on which the component of the direct channel
will be stripped from YA. Then ĜA,ls is obtained and will
be further purified via ARE-DNN to yield ĜA,dnn. Afterward,
each row of ĜA,dnn is input into IRP-DNN sequentially to pre-
dict the corresponding ĝB,m,dnn. Vertically stacking ĝB,m,dnn

(∀m ∈ {1, . . . ,M}) constructs ĜB,dnn and combining ĜA,dnn

and ĜB,dnn finally obtains Ĝdnn. It can be seen that the
proposed CSI acquisition framework is able to estimate hUB
and G with high accuracy while the pilot overhead can be
reduced by the ratio of N1+1

N+1 .
In addition, the computational complexities of DE-DNN,

ARE-DNN, and IRP-DNN are O(
∑LDE
i=2N

DE
i−1N

DE
i ), O(MN2

1

+MN1

∑LARE
i=1 K2

i Fi−1Fi), and O(M
∑LIRP
i=2 N

IRP
i−1N

IRP
i ), re-

spectively, where LDE, LARE, and LIRP denote the numbers
of (convolutional) layers of DE-DNN, ARE-DNN, and IRP-
DNN, NDE

i and N IRP
i denotes the corresponding numbers of

neurons of the ith layer, Ki is the side length of the filters used
by the ith convolutional layer, Fi−1 and Fi denote the numbers
of input and output feature maps of the ith convolutional layer.

IV. SIMULATION RESULTS

In this section, numerical results are presented to validate
the proposed DL-based CSI acquisition framework. The base-
line schemes for comparison include the LS estimator [8], [9],
orthogonal matching pursuit (OMP) [11] and ChannelNet [16].
The numbers of BS antennas and RIS elements are set as
M = 16 and N = 128, respectively. The numbers of paths of
hUB, hUR, and HRB are set as 3. The average noise power, σ2

0 ,
is normalized to 1 and the transmit power, P , is set as a relative
value with respect to σ2

0 . The signal-to-noise ratio (SNR) in
Figs. 3 and 4 is defined as SNR = 10 lg P

σ2
0

(dB). Without loss
of generality, assume that the pathloss has been absorbed into
the transmit power for simplicity. Then the average power gain
of each path of hUB, hUR, and HRB is set as 1 [19]. For the
proposed framework, the training, validation, and testing sets

TABLE I
STRUCTURES OF DE-DNN, ARE-DNN, AND IRP-DNN

Layer
type Tensor size Kernel

size
Activation
function

DE-
DNN

Input 2M - -
Dense 64 - ReLU
Dense 128 - ReLU
Dense 64 - ReLU
Output 2M - -

ARE-
DNN

Input M ×N1 × 2 - -
ZP Conv.
(7 layers) M ×N1 × 64 3× 3 ReLU

Output M ×N1 × 2 3× 3 -

IRP-
DNN

Input 2N1 - -
Dense 128 - ReLU
Dense 256 - ReLU
Dense 256 - ReLU
Output 2N2 - -

contain 90, 000, 10, 000, and 10, 000 samples, respectively.
Adam is applied as the optimizer and the batch size is set
as 128. The training of each DNN therein lasts 300 epochs
with the initial learning rates 1× 10−3 and 1× 10−4 for the
first 200 epochs and the remaining 100 epochs, respectively.
The detailed DNN structures are listed in Table I. For offline
training, the label of DE-DNN, hUB, is generated according
to the SV channel model and the input, ĥUB,ls, is generated
by ĥUB,ls = y1√

P
. Then the label of ARE-DNN, GA, is

obtained by fetching the corresponding columns from G as
per the indexes in A. The input, ĜA,ls, is calculated as (8),
where hUB is the training label of DE-DNN and ĥUB,dnn
is the corresponding output. The label of IRP-DNN, gB,m,
is the mth row of GB, where GB is the complementary
matrix of the training label, GA, and m is arbitrarily selected
from {1, . . . ,M}. The input, ĝA,m,dnn, is the mth row of
ĜA,dnn, which is the output of ARE-DNN when the input is
ĜA,ls. The testing samples are generated similarly to training
samples, but different path gains and AoAs/AoDs in the SV
model are used. The normalized mean-squared error (NMSE)
is used to evaluate the CSI acquisition performance and can
be expressed as NMSE = E

{
‖hUB−ĥUB,dnn‖2
‖hUB‖2

}
for hUB and

NMSE = E
{
‖G−Ĝdnn‖2F
‖G‖2F

}
for G. The pilot overhead ratio

for estimating G is defined as r = N1

N .
Fig. 3 plots the NMSE performance versus SNR for hUB.

From Fig. 3, both the ChannelNet and the proposed DE-DNN
are effective to refine the LS estimate and further improve the
accuracy. Compared with the ChannelNet, DE-DNN achieves
almost same or even better performance, indicating that the
DNN with FC structure is adequate to estimate the direct
channel with high accuracy.

The estimation performance of G versus SNR is shown in
Fig. 4 with r = 1

4 . The LS estimator keeps error floor over
the considered SNR regime because the performance will be
poor regardless of the SNR level once the pilot overhead N1

is less than N . The ChannelNet is based on the LS estimation
and thus also performs unsatisfactorily. The OMP approach
outperforms the LS estimator and ChannelNet but cannot
provide very accurate CSI due to the complication of the
cascaded RIS channel. By contrast, the proposed framework
divides the acquisition of G into estimation and prediction
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stages with respective dedicated DNNs, i.e., ARE-DNN and
IRP-DNN, which can learn the features of the RIS-relayed
channel more comprehensively and thus achieve the superior
performance. In addition, the performance will be a little worse
if the residual network structure of ARE-DNN is replaced by
a CNN with the same number of layers, which indicates the
effectiveness of the residual network structure.

In Fig. 5, we further investigate the NMSE performance of
G versus the pilot overhead ratio, r. The proposed framework
(ARE-DNN and IRP-DNN) always outperforms the LS esti-
mator, ChannelNet, and OMP at different values of r, which
demonstrates that the proposed framework is more robust to
the reduction of the pilot overhead. For the proposed frame-
work, the performance gap between different SNRs increases
with r since the dominating factor turns into SNR from the
pilot overhead.

Considering the time complexity for practical implementa-
tion, the runtimes of the proposed scheme and the ChannelNet
are 1.37×10−4 seconds and 2.75×10−4 seconds, respectively,
on the GTX 2080Ti GPU while the runtime of the OMP is
5.87× 10−3 seconds on the Intel(R) Core(TM) i7-3770 CPU.
The proposed scheme consumes minimum runtime owing to
elaborated design and efficient parallel computing.

V. CONCLUSION

In this article, we develop a three-stage CSI acquisition
framework for the RIS-aided MIMO uplink system based
on an elaborated synthetic DNN. It includes three dedicated
DNNs in charge of estimating the direct channel, estimating
the cascaded channel for active RIS elements, and predicting
the cascaded channel for inactive RIS elements, respectively.
The three DNNs with specialized structures are trained and
hook up sequentially. Simulation results show that the pro-
posed CSI acquisition framework can achieve superior per-
formance without relying on high pilot overhead and exact
knowledge on channel statistics. In future work, the proposed
framework can be extended to the broadband channel exploit-
ing frequency correlation or common sparsity [14], [18].
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