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Abstract—In frequency division duplex mode of massive
multiple-input multiple-output systems, the downlink channel
state information (CSI) must be sent to the base station (BS)
through a feedback link. However, transmitting CSI to the BS
is costly due to the bandwidth limitation of the feedback link.
Deep learning (DL) has recently achieved remarkable success in
CSI feedback. Realizing high-performance and low-complexity
CSI feedback is a challenge in DL based communication. We
develop a DL based CSI feedback network in this study to
complete the feedback of CSI effectively. However, this network
cannot be effectively applied to the mobile terminal because
of the excessive numbers of parameters. Therefore, we further
propose a new lightweight CSI feedback network based on the
developed network. Simulation results show that the proposed
CSI network exhibits better reconstruction performance than
that of other CsiNet-related works. Moreover, the lightweight
network maintains a few parameters and parameter complexity
while ensuring satisfactory reconstruction performance. These
findings suggest the feasibility and potential of the proposed
techniques.

Index Terms—Massive MIMO, FDD, CSI feedback, deep
learning, lightweight neural network.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) systems

are widely regarded as the main technology of 5G wireless

communication systems [1]. These systems refer to a commu-

nication system that uses hundreds of antennas at the same

time-frequency resource to serve tens of user equipment (UE)

simultaneously. In frequency division duplex (FDD) mode, a

massive MIMO system must feedback the downlink channel

state information (CSI) to the base station (BS) to realize its

potential gain. However, transmitting CSI to the BS is costly

due to the bandwidth limitation.

In recent years, deep learning (DL) technology has been

widely applied in the field of wireless communication [2], [3].

The authors in [4] used DL technology to build a new type

of CSI sensing and recovery neural network called CsiNet.

This network can learn how to use the channel architec-

ture effectively for the conversion from CSI to codeword

and vice versa. The reconstruction performance of CsiNet is

superior to that of traditional compressed sensing methods.

Subsequent related studies expanded the original scope of the

network. [5] considered the time correlation to improve the

reconstruction performance of the network. [6] utilized the

correlation between the up-link and downlink to reduce the
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CSI feedback payload remarkably. [7] used a deep recurrent

neural network to learn temporal correlation and adopted deep

separable convolution to shrink the model, thereby improving

the reconstruction performance. [8] minimized the effect of

feedback transmission errors and delays. [9] proposed a novel

quantization CSI feedback network that considers non-uniform

µ-law quantization to obtain uniformly distributed quantization

symbols. [10] introduced a quantization-based entropy coding

with an architecture comprising convolutional layers, followed

by quantization and entropy coding blocks. [11] proposed

a DL-based multi-user collaborative feedback architecture,

which is a distributed feedback. The encoders of two nearby

UEs cooperate to extract the information of different channel

paths under this framework, thereby reducing the overhead of

repeated feedback of shared information. [12] considered the

security issues of DL-based CSI feedback. [13] investigated

interference and non-linear effects in practical scenarios.

Previous studies suggested that the architecture of the CSI

feedback network is roughly divided into the feedforward

neural network and the convolutional neural network (CNN).

The latter exhibits more satisfactory performance than the

former, but with extremely high computational complexity.

We use a convolutional autoencoder in the present study to

develop the network structure and complete the CSI feedback

to preserve the spatial information of 2D signals effectively.

The implementation of the CSI feedback network on the

mobile terminal is challenging because this network, which

is based on the CNN architecture, has excessive numbers of

parameters and computational complexity. Thus, we adopt a

lightweight structure based on the developed network to build

a new one to reduce the complexity and number of parameters.

The contributions of this study are summarized as follows.

We propose a DL-based CSI feedback structure called

ConvCsiNet for FDD MIMO systems. This structure uses con-

volutional layers to extract features, while the mean-pooling

and upsampling layers are used to compress and expand the

matrix dimension multiples. Considering the application of

mobile devices in the field of modern communications, we also

propose a DL-based CSI feedback lightweight structure called

ShuffleCsiNet. This structure can acquire accurate downlink

CSI while consuming low memory space and core computing

power. The experimental results show that ConvCsiNet is

superior to CsiNet and other CsiNet-related works considering

reconstruction performance. Moreover, ConvCsiNet improves

the performance of the network at the cost of complex-

ity. Compared with ConvCsiNet, the parameter number and

algorithm complexity of ShuffleCsiNet are low, while the

reconstruction performance is only slightly degraded.

http://arxiv.org/abs/2005.00438v1
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Fig. 1. Architecture of ConvCsiNet: An encoder structure constructed with convolutional layers and encoded convolution network (ECN) units, which include
mean-pooling and convolutional layers; a decoder structure with convolutional layers, two series-connected RefineNet units, and DN units, which include
upsampling and convolutional layers (conv: convolutional layer)

II. SYSTEM MODEL

This study considers a simple massive single-cell FDD

downlink MIMO system with a BS and a UE. The BS is

configured with a uniform linear antenna array, the number of

transmitting antennas is Nt ≫ 1, and the UE uses a single

receive antenna. An OFDM system, which transmits informa-

tion on Nc orthogonal subcarriers, is also considered. In a

time-varying channel, the signal on the n (n = 1, 2, . . . , Nc)

subcarrier received by the UE can be expressed as follows:

yn = h
T

n
vnxn + zn, (1)

where hn ∈ CNt×1, vn ∈ CNt×1, xn ∈ C, and zn ∈ C

respectively denote the instantaneous channel vector in the

frequency domain, precoding vector, data symbol transmitted

in the downlink, and additive Gaussian white noise. The

channel vector on all subcarriers is the instantaneous downlink

CSI matrix necessary for the UE to facilitate feedback. At this

time, the CSI matrix can be denoted as H = [h1, . . . ,hNc
]T ∈

CNc×Nt . After receiving the CSI matrix H fed back by the

UE, the BS can design the vn precoding vector to reduce the

interference among users. In actual situations, the UE must

continuously estimate and feedback the instantaneous CSI to

the BS to enable tracking of changes in the time-varying

channel and adjust the corresponding precoding matrix. A

total of NtNc complex numbers must be transmitted for a

complete CSI matrix due to a large number of antennas. These

data occupy a substantial amount of feedback resources, which

is undesirable for massive MIMO FDD systems in practical

situations. Using a 2D discrete Fourier transform (2D-DFT),

the CSI matrix H can be converted into an angular-delay

domain matrix denoted as [4]

H
′ = FdHFa, (2)

where Fd ∈ CNc×Nc and Fa ∈ CNt×Nt are two DFT

matrices. As proven in [4], the CSI matrix H
′ is sparse in

the angular-delay domain when performing DFT on the spatial

domain channel vectors (i.e., row vectors of H) if the number

of transmit antennas Nt → +∞ is excessively large [14]. Only

the first N ′

t
row contains non-zero values for the angular-delay

domain channel matrix H
′. Therefore, we only keep the first

N ′

t
rows of H

′ and obtain H
′′ ∈ CN

′

c
×Nt . The total number

of parameters for the feedback is then reduced to N = N ′

c
Nt.

We mainly consider the autoencoder network for the down-

link CSI feedback in this study. The channel matrix H
′′

is transmitted to the autoencoder network, and the encoder

compresses this matrix into codeword s according to a given

compression ratio. After s is fed back to the BS, the decoder

reconstructs s to H
′′.

III. TWO PROPOSED DL-BASED CSI NETWORKS

We develop the DL-based CSI feedback network in this

section using a convolutional autoencoder. On this basis,

we then propose a new lightweight structured CSI feedback

network. The specific model structure and parameter details

are presented in the following subsections.

A. CSI feedback neural network architecture based on convo-

lutional autoencoder

The CsiNet in [4] demonstrates superior performance to

traditional CS algorithms considering CSI sensing and recov-

ery. However, this algorithm uses the fully connected layer

to change the dimensions. Moreover, CsiNet employs a fully

connected autoencoder structure and a fully connected layer

to generate codewords. Thus, this network cannot effectively

retain the characteristics of 2D image signals. We propose a

CSI feedback network based on a convolutional autoencoder

called ConvCsiNet to address this issue. The neural network

of ConvCsiNet uses convolutional layers instead of fully

connected ones to extract features. In theory, the network

trained under this architecture can satisfactorily extract the

features of 2D image signals. Thus, ConvCsiNet is conducive

to improving the reconstruction performance.

The architecture of ConvCsiNet shown in Fig. 1 is divided

into the following two modules: encoder and decoder. The

encoder includes a convolutional layer and four ECN units.

The first convolutional layer contains 64 convolutional kernels

with a size of 3 × 3 and a sliding step size of 1. The

padding methods of this layer is set to ”same” to generate

a 64-channel feature map with the same size as the input

CSI matrix to complete the initial feature extraction. The

ECN is used to complete the dimensionality reduction and

further feature extraction. Each ECN unit comprises average

pooling and convolutional layers. The average pooling layer

maintains the number of feature map channels and completes

the downsampling which doubles the length and width of the

feature map. The convolutional layers in the ECN units use

the same features as those of the first convolutional layer. The
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Fig. 2. (a) Encoder structure of ShuffleCsiNet constructed with convolutional and mean-pooling layers and SN units, which include convolutional, depthwise
convolutional, concat, and channel shuffle layers. (b) Schematic of the channel shuffle layers (conv: convolutional layer; dwconv: depthwise convolutional
layer)

convolutional layers of all other ECN units, except those of

the last unit, maintain the feature map length and width, and

the number of channels is doubled to further extract features.

The number of channels of the convolutional layer in the

last ECN unit is adjusted in accordance with the specific

compression ratio. Each convolutional layer is added to the

batch normalization (BN) layer and uses the Leaky ReLU

activation function. The M-dimensional codeword s outputted

by the encoder is presented in the form of a feature map with

a size of 2× 2 and the number of channels is M/(2× 2).

The decoder part comprises four deconvolution network

(DN) units, two RefineNet units, and a convolutional layer. The

DN unit is used to restore codeword s to the original chan-

nel dimension and complete the preliminary reconstruction.

Each DN unit comprises a bilinear up-sampling layer and a

convolutional layer. The upsampling layer maintains the same

number of feature map channels and completes the upsampling

which doubles the length and width of the feature map. The

convolutional layers in the DN units use a 3×3 convolutional

kernel with a sliding step of 1 and the padding methods is

set to ”same”. The convolutional layer of the first DN unit

increases the number of feature map channels to 512 layers. By

contrast, those of the second and third DN units maintain the

feature map length and width, and the number of channels is

doubled. The convolutional layer of the last DN unit generates

a two-channel feature map, that is, two real number matrices,

as the initial estimates of the real and imaginary parts of the

original CSI matrix. These estimates then enter two similar

RefineNet units to further improve the reconstruction quality.

The last convolutional layer uses a 3× 3 convolutional kernel

with a sliding step size of 1 and the same padding and a

Sigmoid activation function to normalize the output elements

to the [0,1] interval. The remaining convolutional layers are

added to the BN layer, and the Leaky ReLU activation function

is used.

B. CSI feedback neural network architecture based on

lightweight structure

The ConvCsiNet aims to optimize the CSI feedback network

theoretically despite its complexity. Today, mobile terminals

and embedded devices are widely used in the field of modern

communications. The parameters and calculations of the Con-

vCsiNet network model are excessively large. Large memory

space and core computing power are necessary to achieve

an accurate downlink CSI. Therefore, the lightweight CSI

feedback network model is important to ensure a sufficiently

accurate training effect. The convolutional layer in ConvC-

siNet has numerous parameters and computational complexity.

Therefore, we propose a new autoencoder-based CSI feedback

network called ShuffleCsiNet. This network replaces the av-

erage pooling and the convolutional layers with a lightweight

downsampling structure.

The encoder and decoder parts of the CSI feedback network

are located at the UE and BS, respectively. The mobile end

has higher parameter requirements than those of the BS.

Therefore, ShuffleCsiNet focuses on optimizing the structure

of the encoder part, and the decoder part is the same as that

in ConvCsiNet.

Fig. 2(a) shows that the encoder part of ShuffleCsiNet

includes a convolutional layer, three shuffle network (SN)

units, and a pooling structure. The first convolutional layer

contains 64 convolutional kernels with a size of 3 × 3 and a

sliding step size of 1. The padding methods of this layer is set

to ”same” to generate a 64-channel feature map with the same

size as the input CSI matrix to complete the initial feature

extraction. The SN is used to complete the dimensionality

reduction and further feature extraction. Each SN unit divides

the input into the following two parts: one part passes through

a 3×3 depthwise convolutional layer and a 1×1 convolutional

layer; the other part successively passes through a 1 × 1
convolutional layer, a 3 × 3 depthwise convolutional layer,

and another 1 × 1 convolutional layer. The sliding step of

the depthwise convolutional layer is two. The depthwise and

the next convolutional layers with respective sizes of 3 × 3
and 1× 1 can form a depthwise separable convolutional layer.

This formed layer uses a 1×1 convolution kernel for the linear

combination on the channel correlation and then performs con-

volution on the obtained feature map, which can jointly map

the correlation of all dimensions. Moreover, this structure can

achieve almost the same effect as the traditional convolution

structure but with considerably reduced parameters. Afterward,

the two branches pass the concat layer, which halves the size
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of the feature space and doubles the number of channels

to achieve feature reuse. Finally, channel shuffle can ensure

information exchange between the two branches.

The SN unit can double the number of channels while

maintaining the length and width of the feature map to

further extract features. The pooling structure, which can

also complete the downsampling function, comprises average

pooling convolutional layers with a size of 3 × 3. Each

depth separable convolutional layer is added to the BN layer,

and each convolutional layer is added to the BN layer and

uses the Leaky ReLU activation function. The M-dimensional

codeword s outputted by the encoder is presented in the form

of a feature map with a size of 2 × 2, and the number of

channels is M/(2× 2).

The structure of the channel shuffle is shown in Fig. 2(b).

The channel shuffle can reduce element-level operations and

increase the information flow after its placement in the concat

layer [15]. The most important parameter in the channel shuffle

structure is the feature map, that is, the number of shuffle

groups. A wide feature map can obtain improved performance

benefits within the range allowed by the model. After several

experiments, we set the number of shuffle groups to 8 to obtain

satisfactory reconstruction performance.

Let the transformation formula and all parameters of the

entire network be f(·) and Θ = {Θen,Θde}, respectively,

where the parameters include encoder and decoder parameters.

The CSI matrix recovered from the CSI feedback network

model proposed in this study can then be expressed follows:

Ĥ
′′ = f(H′′; Θ) , fde(fen(H

′′; Θen); Θde). (3)

We use the adaptive moment estimation (ADAM) algorithm

to update the parameter set of the network. This algorithm

is different from the traditional gradient descent algorithm,

which uses a fixed learning rate. The ADAM algorithm can

adaptively update the learning rate through training. The loss

function of the network is represented by the mean squared

error (MSE). Therefore, the prediction loss of the model is

defined as follows:

L(Θ) =
1

M

M
∑

m=1

T
∑

t=1

‖f(H′′; Θ)−H
′′‖2

2
. (4)

where M is the total number of samples in the training set

and ‖ · ‖2 is the Euclidean norm.

IV. NUMERICAL RESULTS AND ANALYSIS

We compare and analyze the experimental data of ConvC-

siNet and ShuffleCsiNet, including their reconstruction perfor-

mance, parameter amount and FLOPs.

We use the COST 2100 model [16] to obtain the train-

ing and testing data and generate channel matrices for two

environments. The two environments include indoor cellular

and outdoor rural environments in the 5.3 GHz and 300 MHz

bands, respectively. We set the bandwidth of the MIMO system

to 20 MHz, and the number of subcarriers is Nc = 256.

A uniform linear array with Nt = 32 antennas is used at

the BS. The experiments in this study will be performed

with CSI compression ratios (CR) of 1/16 and 1/32. The

training, validation, and test sets used for offline training

contain 75,000, 12,500, and 12,500 samples, respectively.

The entire training process is performed in the Keras

framework. We utilize the ADAM optimizer using MSE loss

to configure the training model. The parameters in ADAM are

set as β1 = 0.9, β2 = 0.999, and ǫ = 1 × 10−8. This study

also uses a small batch training scheme with a batch size of

200, a training round set of 1000, and a learning rate of 0.001.

CsiNet, ConvCsiNet, and ShuffleCsiNet are trained and tested

on NVIDIA Tesla V100.

A. CSI reconstruction performance of the networks

The normalized MSE (NMSE) is used to evaluate the

reconstruction performance and can be defined as follows:

NMSE = E

{

1

T

T
∑

t=1

‖H′′ − Ĥ
′′‖2

2
/‖H′′‖2

2

}

. (5)

The following cosine similarity is also calculated to facili-

tate comparison with the CsiNet.

ρ = E

{

1

T

1

Nc

T
∑

t=1

Nc
∑

n=1

|ĥH
n hn|

‖ĥn‖2‖hn‖2

}

, (6)

where ĥn denotes the reconstructed channel vector of the

nth subcarrier at time t, and ρ measures the quality of

the beamforming vector when the vector is set as vn =
ĥn/‖ĥn‖2 because the UE will achieve the equivalent channel

ĥ
H
n ĥn/‖ĥn‖2.

TABLE I
NMSE PERFORMANCE OF CSI FEEDBACK NETWORK DESIGNS.

CR Method
Indoor Outdoor

NMSE ρ NMSE ρ

1/16

CsiNet -8.65 0.93 -4.51 0.79

CRNet -11.35 0.95 -5.44 0.80

DS-NLCsiNet -12.45 0.97 -5.28 0.82

ConvCsiNet -13.79 0.98 -6.00 0.85

ShuffleCsiNet -12.14 0.97 -5.00 0.82

1/32

CsiNet -6.24 0.89 -2.81 0.67

CRNet -8.93 0.94 -3.51 0.71

DS-NLCsiNet -8.21 0.92 -3.34 0.71

ConvCsiNet -10.10 0.95 -5.21 0.82

ShuffleCsiNet -9.41 0.94 -3.50 0.74

Table I summarizes the performance comparison consid-

ering NMSE. We compare the two proposed CSI feedback

networks with CsiNet, CRNet [17], and DS-NLCsiNet [18].

The table shows that the reconstruction performances of

ConvCsiNet and ShuffleCsiNet are superior to that of CsiNet.

Compared with the two other CSI feedback networks, Con-

vCsiNet has an advantage when the compression ratio is

1/32. Notably, ShuffleCsiNet can maintain satisfactory recon-

struction performance when parameter quantity and algorithm

complexity are substantially reduced. Such a phenomenon

is due to the functional reuse in the SN structure of the

concat layer and due to the channel shuffle structure, thereby

increasing the robustness of the network.
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B. Parameter numbers and FLOPs of the networks

The ShuffleCsiNet aims to obtain a light network structure

and low algorithm complexity. Therefore, the corresponding

reconstruction performance of ShuffleCsiNet is slightly lower

than that of ConvCsiNet. This study considers the convolu-

tional , depthwise convolutional , BN layer, and fully con-

nected layers when estimating the parameters of the network

model. The parameter numbers of the convolution layer can

be expressed as follows:

Nconv = K2 × Ci × Co, (7)

where K is the size of the convolution kernel, Ci is the number

of input channels, and Co is the number of output channels.

The parameter numbers of the depthwise convolutional, BN,

and fully connected layers can be respectively expressed as

follows:

Ndwconv = K2 × Ci,

Nbn = 2× Ci,

Nfc = Ci × Co.

(8)

Conversely, the convolution, depthwise convolutional, pool-

ing, and fully connected layers are considered when estimating

the FLOPS of the network model. The FLOPs of the convo-

lution layer can be expressed as follows:

Oconv = Ho ×Wo ×K2 × Ci × Co, (9)

where Ho, Wo, Ci, Co, and K denote the height of the output,

width of the output, number of input channels, number of out-

put channels, and size of the convolution kernel, respectively.

The FLOPs of the depthwise convolutional, pooling, and fully

connected layers can be respectively expressed as follows:

Odwconv = Ho ×Wo ×K2 × Ci,

Opool = Ci ×Hi ×Wi,

Ofc = 2× Ci × Co.

(10)

Table II shows the model parameter numbers and FLOPs

of the two proposed CSI feedback network designs. The

model parameters of ShuffleCsiNet are much lower than

those of ConvCsiNet. When the CR is 1/32, the parameter

amount of ShuffleCsiNet can be reduced to 21.05% of that of

ConvCsiNet. FLOPs can be used to measure the algorithmic

complexity of network models. The results show that the

complexity of the ShuffleCsiNet algorithm is considerably

much lower than that of ConvCsiNet.

TABLE II
PARAMETER NUMBER AND FLOPS OF CSI FEEDBACK NETWORK

DESIGNS.

CR Method numbers FLOPs

1/16
ConvCsiNet 1,697,144 58,515,456

ShuffleCsiNet 415,528 11,845,632

1/32
ConvCsiNet 1,623,416 58,220,544

ShuffleCsiNet 341,800 11,550,720

V. CONCLUSION

We developed CsiNet and proposed a CSI feedback network

called ConvCsiNet in this study based on a convolutional

autoencoder. It can effectively extract the features of 2D image

signals and exhibits satisfactory reconstruction performance.

Subsequently, we proposed a lightweight structured CSI feed-

back network called ShuffleCsiNet based on ConvCsiNet.

The experiments show that the proposed ConvCsiNet displays

satisfactory reconstruction performance and the ShuffleCsiNet

can substantially save memory space and kernel computing

power while ensuring satisfactory reconstruction performance.

Both CSI feedback architectures exhibit potentials for practical

deployment on realistic MIMO systems.
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