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Uniqueness of Stationary Distributions in Random Access Poisson Networks

Plínio S. Dester , Pedro H. J. Nardelli , Senior Member, IEEE, and Paulo Cardieri

Abstract— This letter presents sufficient conditions for the
existence and uniqueness of the limiting stationary distribution in
random access Poisson networks with packet queueing and under
Rayleigh fading and a general path loss model. This system model
is traditionally used in the literature assuming uniqueness of the
stationary distribution. We demonstrate here through a coun-
terexample that this assumption might not always hold. From the
sufficient conditions, an interesting and perhaps counterintuitive
result emerged, that is, the arrival rate of packets per node
greater than 1/e guarantees uniqueness of the limiting distri-
bution. When that is the case, then setting the medium access
probability to 1 minimizes the proportion of unstable nodes.

Index Terms— Wireless networks, stochastic geometry, queue-
ing theory, fixed point theory, slotted ALOHA.

I. INTRODUCTION

SEVERAL letter that use stochastic geometry and queue-
ing theory to model large-scale wireless networks have

recently been reported in the literature [1]. These works
capture the spatio-temporal behavior of the network through
the introduction of static elements in the mathematical model.
The objective of this letter is to show that these models
may not have unique limiting (stationary) distributions. This
is true even for simple “well-behaved” models like the ones
presented in [1]. Hence, we expect that this will also be true
for more realistic theoretical models as well as for real-world
deployments. Despite its importance, the uniqueness of the
distribution is usually assumed without further considerations.
To the best of our knowledge, this letter is the first contribution
in the literature to present the non-uniqueness problem of
stationary distributions in Poisson networks, which is mainly
motivated by the works [2], [3].

In [2], a performance analysis of a high-mobility network
with N classes of users is presented. The letter results are ana-
lytically tractable and can adapt to different network scenarios
using a large number of classes. However, this framework is
not enough for our purposes because it works under stability
conditions for all users, and the non-uniqueness of a limiting
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distribution emerges when there is a portion of unstable queues
in the network, caused, for example, by static elements.

In [3], the authors tackle the difficult task of taking into
account spatial correlation, which causes a portion of nodes to
be unstable. For that, they consider the active link probability
of receivers in the network conditioned to the distance to a
typical receiver. They use mean-field approximation and per-
form queueing analysis in the steady state. Although desirable,
the same approach is unsuitable for our study because it leads
to nonanalytically tractable expressions, and thus, it makes
some mathematical derivations prohibitive.

In this letter, different from the existing literature that
usually (implicitly) assumes the uniqueness of a valid sta-
tionary distribution, we do prove its existence and further
establish sufficient conditions for its uniqueness. When these
conditions are not enough to guarantee uniqueness (since
they are only sufficient), we provide a simple method to
verify uniqueness. We also present the conditions for which
increasing the transmit probability decreases the proportion
of unstable queues, thus improving the performance of the
network. Then, we show the existence of a scenario that has
two very different limiting stationary distributions, which are
validated through simulations.

The rest of the letter is organized as follows. Section II
presents the system model, Section III shows the theoretical
results of the letter, Section IV provides a counterexample
to uniqueness of stationary distributions, and Section V con-
cludes the letter.

II. SYSTEM MODEL

We consider a Poisson bipolar network under slotted
ALOHA protocol, where transmitter locations are distrib-
uted according to a homogeneous Poisson point process
(PPP) Φ ⊂ R

2 of a spatial density λ > 0. Each transmit-
ter is located at Xi ∈ Φ, i ∈ N, and has a dedi-
cated receiver Yi at a fixed distance Ri = ||Yi − Xi||
and a uniformly distributed random direction. Time is slot-
ted and denoted by t ∈ N. The distances {Ri}i∈N are
defined at the first time slot independently and according to
some proper distribution with a cumulative distribution func-
tion (CDF) FR : R+ −→ [0, 1]. Thus, the receiver locations
{Yi}i∈N = Φ̂ ⊂ R

2 also form a homogeneous Poisson point
process with a spatial density λ according to the Displacement
Theorem [4, Th. 1.3.9.].

We assume unit transmit power for all users, signals subject
to small-scale Rayleigh fading independent and identically
distributed (iid) across space and time, and a general omnidi-
rectional monotone decreasing path loss model � : R+ −→ R+

that satisfies
�

R+
x �(x) dx < ∞ to guarantee that the inter-

ference is not infinite almost surely.
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Packets arrive independently at each transmitter queue
according to a Bernoulli process of parameter a ∈ [0, 1]. The
queue service discipline is general, i.e., it does not matter
in which order the queued packets are transmitted, because
this study deals with the distribution of queued packets and
not queueing delay. If the transmitter has a nonempty queue,
then it tries to transmit with an access probability p ∈ [0, 1].
We assume a < p, otherwise the limiting distribution is
trivial with all queues being unstable almost surely. Packet
transmissions occur in time slots with equal duration, and
we assume that the Rayleigh fading coefficient is constant
during this time. If a packet is successfully received, then
the corresponding receiver instantly sends an acknowledgment
through an error-free channel and the packet is removed from
the queue.

The Signal-to-Interference Ratio1 at the ith receiver, with
i ∈ N and associated with receiving a packet at time t,
is computed as

SIRi(t) =
Hii �(Ri)�

j �=i ej1{Qj>0}Hji �(||Xj − Yi||) , (1)

where Hij is exponentially distributed with a parameter 1 and
represents the Rayleigh fading coefficient from transmitter j
to receiver i, ej ∈ {0, 1} is iid Bernoulli distributed with
a parameter p and represents if user j gained access to the
channel, and 1{Qj>0} ∈ {0, 1} is equal to zero if the queue
of user j is empty and one otherwise. Assuming the capture
model, the packet is successfully received if SIRi(t) is greater
than the threshold θ ∈ R+ [6]. Slivnyak’s Theorem [4, Th.
1.4.5.] allows us to concentrate on the typical user, which we
denote by the index i = 0, without changing the distribution
of the PPP.

Spatiotemporal correlation leads to the coupling of queues,
which results in a highly complicated analysis. Thus,
we assume that the interference on the typical receiver is
iid across time and use the mean-field approximation [7] to
maintain the analytical tractability. This method considers a
typical queue and substitutes the interaction with other queues
for an effective mean interaction, reducing the problem to the
analysis of a single entity and its interdependence with the
distribution of the population of entities in each state. For
more details about the method, please refer to [1, Page 28].

Let us define the stationary packet success probability of
the typical user as

ps(r) � lim
t→∞ P(SIR0(t) > θ). (2)

In view of the mean-field approximation, we define the
stationary mean queue load ρ̄ as the limiting probability of
finding the typical transmitter with a nonempty queue, i.e.,

ρ̄ � lim
t→∞ P(Q0(t) > 0), (3)

and the stationary queue load of a typical transmitter with the
link distance equal to r as

ρ(r) � lim
t→∞ P(Q0(t) > 0 | R0 = r), (4)

1We assume an interference-limited network because, for the most part of
large-scale networks, the effect of noise is negligible with respect to that of
aggregate interference [1], [5].

where Q0(t) ∈ N corresponds to the number of packets in the
typical queue at time t.

III. STATIONARY ANALYSIS

At first, let us suppose that the limiting distribution exists
and the mean queue load converges to ρ̄ ∈ [0, 1]. Then,
at stationary conditions, the active transmitters form a thinned
Poisson point process Φa ⊂ Φ of a density λa = λ p ρ̄.
It is known that the stationary packet success probability of a
typical link with a transmission distance r > 0 is given by [6]

ps(r) = exp (−J�(r)λa) , (5)

where

J�(r) �
�

R+

2π x θ�(x)
�(r) + θ�(x)

dx,

which is a strictly monotone increasing function and tends to
infinity in the positive infinity, because � is a strictly monotone
decreasing function and tends to zero in the positive infinity.

Then, from Queueing Theory, the stationary queue load of
a typical user with the link distance r > 0 is

ρ(r) = min
�

a

p ps(r)
, 1
�

, (6)

because the service rate is given by p ps(r). However, to calcu-
late ps(r) in (5) we need the density of active users λa, which
depends on the mean queue load ρ̄. This, in turn, depends on
ρ(r). The following proposition provides a solution to this
problem.

Proposition 1: If the stationary mean queue load ρ̄ ∈ [0, 1]
exists, it must satisfy the fixed point equation T (ρ̄) = ρ̄, where

T (x) � 1 − a

p

� ln(p/a)

0

eu F∗(u/px) du, x ∈ (0, 1], (7)

T (0) = a/p, and F∗ is the CDF of the random variable
λJ�(R).

Proof: See Appendix A.
Because J� is strictly monotone, it is invertible, and then

F∗(x) =

⎧⎨
⎩FR



J−1

�


x

λ

��
, if x > λ lim

r→0+
J�(r),

0, otherwise.
(8)

An important remark is that we are dealing with the
general path loss function � and a general distribution of link
distances R, so care must be taken with F∗, in the sense that
the derivative F �

∗ may not exist.
The following theorems provide results on the existence and

uniqueness of a valid stationary mean queue load ρ̄.
Theorem 1: The function T has a fixed point.

Proof: Because T is an integral of a function, we can show
that it is continuous.2 Further, T (0) = a/p < 1 and a/p ≤
T (1) ≤ 1. Thus, the result follows from the Intermediate Value
Theorem [8, Th. 4.23.] on T (x) − x, x ∈ [0, 1].

Theorem 2: If a > p Χ, where Χ is the solution of
Χ eΩ = 1, then the function T has a unique fixed point.

Proof: See Appendix B.

2T is c-Lipschitz continuous. From Appendix B, c = (p/a) ln(p/a).
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Theorem 3: If the derivative F �
∗ exists and a > p/e, then

the function T has a unique fixed point.
Proof: See Appendix C.

Because Χ > 1/e, Theorems 2 and 3 complement each
other. While one has a larger set of valid functions, the other
has a larger set of arrival rates that guarantee uniqueness.

Remarkably, we do not need any information about the dis-
tribution of the link distances, the path loss model, the thresh-
old for successful communication, or the density of users to
guarantee uniqueness through Theorems 2 and 3 (except for F∗
being differentiable in Theorem 3).

Let ε represent the proportion of unstable queues3 in the
network, then in view of the mean-field approximation and
Loynes Theorem [10] we can define

ε � lim
t→∞ P

�
p P(SIR0(t) < θ | R0) < a



. (9)

Then, using (5), (8), and Proposition 1, we can show that

ε = 1 − F∗

�
ln(p/a)

p ρ̄

�
≤ ρ̄. (10)

This inequality is expected because ε takes into account
only the queues with a load equal to 1.

Proposition 2: If the derivative F �
∗ exists and a > p/e, then

∂ρ̄

∂p
< 0 and

∂ε

∂p
< 0.

Proof: See Appendix D.
From the above proposition, if a ≥ 1/e, then the access

probability p that minimizes the proportion of unstable nodes
and the load on the queues is p = 1. Other works [2], [11]
also reached an equivalent result in a different framework. This
appears to be a powerful theoretical result because it is valid
for almost any set of system parameters, general path loss
model, and general distribution of link distances. However,
we must remember that one of the model assumptions is PPP
independence of the location of active transmitters across time
slots, and this assumption becomes less valid as we increase
the value of p [12]. Thus, a more sensible conclusion is that,
instead of setting p = 1, we should increase p as long as the
system model assumptions remain valid. Section IV presents
more material on this topic.

Now, let us turn our attention to the scenarios that have
multiple limiting distributions, i.e., when T admits more than
one fixed point. We can build a sequence that converges to
the least or the greatest solution of the fixed point equation,
depending on the initial conditions. Let the recurrence equation
that defines the sequence {ρ̄n}n∈N be ρ̄n+1 = T (ρ̄n), n ∈ N.

Proposition 3: When ρ̄0 = 0, the sequence {ρ̄n}n∈N con-
verges to the least solution of T (ρ̄) = ρ̄. Otherwise, if ρ̄0 = 1,
it converges to the greatest solution.

Proof: See Appendix E.
Note that the fixed point is unique if and only if the greatest
solution is equal to the least solution. This is a simple form
to verify whether the stationary distribution is unique when
neither of the uniqueness theorems (2 and 3) are satisfied.

3In the literature [9], it is common to define the ε-stability region. However,
in the present work, it is more convenient to simply define ε.

Using the concept of dominant networks [2], [9], [13],
we can build a physical interpretation of Proposition 3. Sup-
pose a dominant network where all nodes transmit dummy
packets. The density of active transmitters is λa = λp, and
thus, we can calculate the typical queue distributions to find
the mean queue load, which we shall denote by ρ̄1. This
value can be used as an upper bound to the density of active
transmitters in the original network. Then, we can define a
new dominant network, whose density of active transmitters
is given by λa = λpρ̄1 and find the corresponding ρ̄2, and so
on. The process described above is equivalent to calculating
ρ̄n+1 = T (ρ̄n) with ρ̄0 = 1. We can also perform an analogous
reasoning for the lower bound, i.e., we assume that the density
of active users is λa = λa, which corresponds to a system
operating with a packet success probability equal to 1, and
calculate the typical mean queue load in this network, which
again we shall denote by ρ̄1. This can be used to estimate
another lower bound on the density of active users in the
original network, and the process continues analogously to
the upper bound case with the sole difference that ρ̄0 = a/p.

IV. EXAMPLE OF A NON-UNIQUE SOLUTION

Here we present a scenario where the conditions of the
uniqueness theorems are not satisfied and there is more than
one solution to the fixed point equation T (ρ̄) = ρ̄.

As commonly chosen in the literature [2], [11], [12],
[14], [15] , let the path loss function �(r) = r−α, where α > 2,
the distribution of R be Rayleigh with mean μR, and let us
define the auxiliary parameters κ � sin(δπ)

4λθδδπμ2
R

, δ � 2/α. Then,

F∗(x) = 1 − e−κx and for x > 0,

T (x) =

⎧⎪⎪⎨
⎪⎪⎩



a
p

�
κ
px −



a
p

� κ
px

κ
px − 1

, if x �= κ/p,

a
p

�
1 + ln

�
p
a




, otherwise.

(11)

For the simulations we set a = 0.002 packets per time
slot per node, p = 0.1, λ = 1 node per unit of area,
α = 5, θ = 2, μR = 3.457 units of length, which gives
a κ ≈ 0.012. However, any combination of parameters that
results in κ < 0.248 would work, because in this case we can
find a and p that give non-unicity of the fixed point, as long
as α > 2. Nevertheless, when α approaches 2 the simulations
become expensive, because we need to increase the number
of nodes to properly simulate the large-scale network effect.
The simulations are of static Poisson networks and do not
consider the simplifying assumptions of the system model,
such as mean-field approximation or independence of the SIR
across time and space.

We show in Fig. 1 the attractors and repellers4 of the
chosen scenario, which can be intuitively seen as “stable” and
“unstable” equilibrium points, respectively. Fig. 2 shows some
simulations, which converge for both attractors depending on
the initial conditions of the queues. For example, we notice

4We define attractor as a fixed point xa of T that satisfies T n(x) → xa as
n → ∞ for all x in some neighborhood Va of xa, where T n denotes repeated
composition of the function with itself. This neighborhood Va is called basin
of attraction. A fixed point xr of T is a repeller if there exist n0 ∈ N and a
neighborhood Vr of xr such that T n(x) /∈ Vr for all n > n0, x ∈ Vr\{xr}.
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Fig. 1. Red dots are the attractors and the blue point is the repeller.

Fig. 2. System simulation with four different initial conditions for the queues.
We show the average proportion of nonempty queues as an estimation of the
value of ρ̄. The horizontal red lines are the attractors and the blue line is the
repeller.

that when queues start heavy loaded, the probability to con-
verge to the upper fixed point increases. The brown curve
illustrates that even when we start with initial conditions above
the repeller, the system may still surpass it. This is due to
the fact that the initial conditions do not depend only on the
initial mean queue load of the system but also on the number
of packets on each one of the queues. In addition, there is
“noise” in the curves, because we are using a finite number of
queues in the simulation, and it tends to vanish as the number
of queues tends to infinity.

It is clear that the difference in performance from the upper
fixed point to the lower fixed point is immense, e.g., the pro-
portion of unstable queues in one case is ε ≈ 0.407, and in the
other it is ε ≈ 9·10−9. Thus, when multiple limiting stationary
distributions exist, it is then of key importance to operate in
the smallest fixed point.

For that, a simple working strategy is to keep p low, for
example p < e a (which satisfies the uniqueness Theorem 3),
until reaching a stationary state, then slowly increase p for
all nodes. This would improve the performance (Proposi-
tion 2) and decrease the probability of converging to another,
presumably worse, stationary state. In Fig. 3 we show the
theoretical attractors and simulate the system using different
initial conditions for the queues. Even when employing the
strategy of the slowly increasing p, we could not make the
system converge to the lower fixed point for p > 0.4. That was
expected at some point, because when p increases, the basin
of attraction of the lower fixed point becomes smaller and the
stochastic nature of the process makes it exit this region and
converge to the upper fixed point.

Fig. 3. Solution of T (ρ̄) = ρ̄ as a function of p. The marks are simulation
results. The dashed curve is the repeller and divides the basins of attraction.

V. CONCLUSION

Considering a general path loss model and general distribu-
tion of link distances, we provided simple sufficient conditions
for the uniqueness of a stationary limiting distribution.

The developed mathematical formulation guided us in find-
ing a counterexample to a general uniqueness assumption.
We verified through extensive simulations that the proposed
scenario indeed possesses two very different limiting station-
ary distributions, which remain valid even when considering a
static Poisson network without the main simplifying assump-
tions of the original system model.

Furthermore, from the uniqueness theorems, we are inclined
to conclude (in a more general setting) that this phenomenon
of non-unicity is more likely in light traffic scenarios. So those
are the cases one must be most wary.

APPENDIX A
PROOF OF PROPOSITION 1

Using (5), (6), integration by parts, and the substitution
u = pρ̄w, we have

ρ̄ = E [ρ(R0)] = E

�
min

�
a

p
eλJ�(R0)pρ̄, 1

��

= 1 − F∗

�
ln(p/a)

pρ̄

�
+

a

p

� ln(p/a)/pρ̄

0

epρ̄w dF∗(w)

= 1 − a

p

� ln(p/a)

0

eu F∗(u/pρ̄) du = T (ρ̄),

where dF (w) is the Lebesgue–Stieltjes notation, and if
the probability density function exists we can write it
as F �(w)dw.

Further, T (x) → a/p as x → 0+, because F∗(y) → 1
as y → ∞, which comes from R being a proper random
variable.

APPENDIX B
PROOF OF THEOREM 2

Let us prove for all x, y ∈ [a
p , 1], |T (x) − T (y)| <

|x−y|. Then, by the Banach fixed point Theorem [8, Th. 9.23.],
the function T admits a unique fixed point.
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Without loss of generality let x < y, then

|T (x) − T (y)|

=
a

p

�� ln(p/a)

0

euF∗(u/px)du −
� ln(p/a)

0

euF∗(u/py)du

�

(i)
= a

�� ln(p/a)/px

ln(p/a)/py

xepxwF∗(w)dw

−
� ln(p/a)/py

0

(yepyw − xepxw)F∗(w)dw

�

≤ a

� ln(p/a)/px

ln(p/a)/py

xepxwdw = 1 − e− ln(p/a) y−x
y

≤ ln(p/a)
y

(y − x)

≤ ln(p/a)
a/p

|x − y| <
ln(1/Χ)

Χ
|x − y| = |x − y|.

In (i) we perform the change of variables u = (px)w for
the left integral and u = (py)w for the right one, and split the
intervals of integration of the left integral.

APPENDIX C
PROOF OF THEOREM 3

Let ρ̄ be a solution to T (ρ̄) = ρ̄. Then,

T �(ρ̄) =
a

(pρ̄)2

� ln(p/a)

0

u eu F �
∗(u/pρ̄) du

=
1
ρ̄

�
ln(p/a)F∗(ln(p/a)/pρ̄)

− a

p

� ln(p/a)

0

(1 + u)euF∗(u/pρ̄) du

�

≤ ln(p/a) − (1 − T (ρ̄))
ρ̄

<
T (ρ̄)

ρ̄
= 1,

where we used integration by parts in the second equality.
As T is a continuous function and (T (x) − x)�|x=ρ̄ < 0,
the fixed point equation cannot have more than one root,
because T (x) − x always crosses the x-axis downwards.

APPENDIX D
PROOF OF PROPOSITION 2

Taking the derivative with respect to p on both sides of
the fixed point equation T (ρ̄) = ρ̄ and after some tedious
manipulations we have

p

ρ̄

∂ρ̄

∂p
= − (1 − ln(p/a))F∗(Υ) + A

1 − ln(p/a)F∗(Υ) + A
, (12)

where A � a

p

� ln(p/a)

0

u euF∗(u/pρ̄) du ≥ 0 and Υ �
ln(p/a)

pρ̄
.

Since a > p/e, then ln(p/a) < 1. Using this, it is easy
to see that both the numerator and denominator of (12) are
positive. Thus, ∂ρ̄

∂p < 0.
Note that ε monotonically decreases with Υ from (10).

Then, let us calculate the derivative of Υ with (12). After

some tedious manipulations,

p

Υ
∂Υ
∂p

=
1

ln(p/a)
1 − ln(p/a) + A

1 − ln(p/a)F∗(Υ) + A
.

Again, it is easy to see that both the numerator and the
denominator are positive. Thus, ∂Υ

∂p > 0 and ∂ε
∂p < 0.

APPENDIX E
PROOF OF PROPOSITION 3

The function T is monotonic increasing because F∗ is a
monotonic increasing function. Also, 0 ≤ T (0), then

T (0) ≤ T (T (0)) ≤ · · · ≤ T n(0) � T n−1(T (0)).

Hence, when ρ̄0 = 0, the sequence {ρ̄n}n is increasing.
Clearly it is also limited, and thus, it converges [8, Th. 3.14.].

Let x = T (x) be a fixed point. We have that 0 ≤ x, then
T (0) ≤ T (x) = x. Repeating n times we get T n(0) ≤ x.
As n → ∞ we know T n(0) = ρ̄n converges, thus it converges
to a value smaller or equal to x. But x is an arbitrary fixed
point. This concludes the proof for ρ̄0 = 0.

The proof when ρ̄0 = 1 is analogous.
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