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Abstract—We design a new scheduling policy to minimize
the general non-decreasing cost function of age of information
(AoI) in a multiuser system. In this system, the base station
stochastically generates time-sensitive packets and transmits
them to corresponding user equipments via an unreliable channel.
We first formulate the transmission scheduling problem as an
average cost constrained Markov decision process problem.
Through introducing the service charge, we derive the closed-
form expression for the Whittle index, based on which we design
the scheduling policy. Using numerical results, we demonstrate
the performance gain of our designed scheduling policy compared
to the existing policies, such as the optimal policy, the on-demand
Whittle index policy, and the age greedy policy.

Index Terms—Age of information, Markov decision process
problem, scheduling policy, Whittle index.

I. INTRODUCTION

Ultra-reliable and low-latency communication (URLLC) has

been acknowledged as one of the enabling communication

paradigms for the fifth generation (5G) networks [1]. As

many real-time URLLC applications emerge [2], e.g., intel-

ligent transportation and factory automation, the timeliness

of information becomes increasingly critical. In order to

fully characterize the freshness of delivered information, a

new performance metric – Age of Information (AoI) – was

proposed [3]. In particular, the AoI is defined as the time

elapsed since the latest successfully received information was

generated by the transmitter, which captures both the latency

and the generation time of each information update.

Since being introduced in [3], the concept of AoI has

reaped a wide range of attention. Starting from analyzing

the AoI performance in [4]–[8], some transmission policies

were designed to effectively improve the AoI performance [9]–

[16]. Among them, the transmission scheduling policy was

optimized to minimize the average AoI for multiple-source

systems in [14]–[16]. In particular, [14] proposed a Whittle

index based scheduling policy to minimize the average AoI,

where both a deterministic packet generation model and a

reliable link were considered. [15] extended it to a stochastic

packet generation model, while considering a system without

buffer. In [16], buffers were introduced and a Whittle index
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based scheduling policy was designed to minimize the average

AoI under an unreliable link.

In the aforementioned studies, the performance metric em-

ployed to design the scheduling policy is the average AoI.

Recently, the general function of the AoI has been introduced

as a natural extension to the average AoI [17]–[20], which

characterizes how the level of dissatisfaction depends on

data staleness. In [17], the weighted sum of the AoI of all

sources was adopted as the performance metric to optimize

the scheduling policy. Then the non-linear functions of the

AoI were proposed in [18]–[20]. In [18], the average cost of

AoI was derived for three sample functions in an M/M/1 queue

model with a first-come-first-served (FCFS) queue discipline.

In [19], a threshold based scheduling policy was proposed

to optimize a general average cost of AoI in network control

systems. Considering a general non-decreasing functions of the

AoI, [20] designed the Whittle index based scheduling policy.

However, only the deterministic packet generation model was

considered in [20], while the stochastic packet generation

model remains unexplored. This motivates our work.

In this paper, we design a new scheduling policy that

minimizes the general non-deceasing cost function of AoI in a

multiuser system with stochastic packet arrivals and unreliable

channels. Comparing with [12] and [13], we analyze the

impact of stochastic packet arrivals on the scheduling policy

design to minimize the general non-deceasing cost function

of AoI, instead of AoI itself. In particular, we first derive

the closed-form expression for Whittle index and establish the

corresponding indexability. Comparing with [20], which con-

sidered deterministic packet generation, the index derivation is

more challenging since we analyze the impact of the stochastic

packet arrival on the scheduling policy design. By considering

stochastic packet generation, the queuing delay forms the

second-dimension of the system state. The one-dimensional

analysis in [20] cannot be applied to the two-dimensional sys-

tem. Based on the closed-form expression for Whittle index,

we propose a scheduling policy to minimize the general non-

deceasing cost function of AoI. Aided by numerical results,

we show that our proposed policy achieves profound AoI

performance improvement compared to the existing policies,

for given non-decreasing functions. We also show that our

proposed policy achieves a larger AoI performance gain in

the heterogeneous case where user equipments (UEs) have

different packet generation probabilities than the homogeneous

case where UEs have the same packet generation probability.

http://arxiv.org/abs/2109.05869v1
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Fig. 1. Illustration of our considered time-slotted system where BS transmits
the packets to N UEs.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a time-slotted multiuser system, as depicted

in Fig. 1, where the base station (BS) transmits packets to

N different UEs, denoted by ΦU = {U1, U2, · · · , UN}. We

assume that there are N buffers at the BS, each of which

corresponds to one UE. At the beginning of each time slot,

the BS generates the packet of Un with a probability λn,

n ∈ {1, 2, . . . , N}1. When the packet of Un is generated, it

is stored in its corresponding buffer. We further assume that

each buffer stores one packet such that the newly generated

packet replaces the previous one in the buffer.

We assume that the BS schedules at most one packet

transmission in each time slot, and hence, only the packet

of one UE can be transmitted at a time. We denote a binary

variable un(t) = {0, 1} as the scheduling indicator of Un

during time slot t. If Un is scheduled for transmission during

time slot t, un(t) = 1. Otherwise, un(t) = 0. Thus, we obtain

N
∑

n=1

un(t) ≤ 1, ∀t. (1)

We assume that during each time slot, packet transmission

occurs prior to new packet generation. Thus, only the packets

generated in previous time slots can be transmitted by the BS.

By considering practical signal propagation between the BS

and UEs, the transmitted packets may not be successfully

detected by UEs. We denote a binary variable δn(t) = {0, 1}
as an indicator of whether or not Un successfully detects its

packet transmitted by the BS during time slot t. If the packet

is successfully detected by Un during time slot t, δn(t) = 1.

Otherwise, δn(t) = 0. The transmission error probability of

Un is denoted by ǫn, i.e., Pr(δn(t) = 0) = ǫn. When Un

successfully detects a packet, it immediately sends back an

acknowledgement (ACK) to the BS via an error-free control

channel. The feedback overhead is assumed to be negligible

as the ACK length is much smaller than the packet length.

Once an ACK is received from Un, the BS empties the

corresponding buffer by dropping the successfully received

packet. Otherwise, this packet is held in the buffer.

1We assume that the packet generation process is independent but not
identical among UEs.

We denote Vn(t) as the generation time of the last success-

fully detected packet at Un during time slot t. Then, the AoI

of Un during time slot t is given by

hn(t) = t− Vn(t). (2)

Let us define Wn(t) as the generation time of the newest

generated packet of Un. Until time slot t, the queuing delay

of this packet is computed as an(t) = t − Wn(t). The

duration between the generation time of the last successfully

detected packet and that of the newest generated packet is

dn(t) = Wn(t) − Vn(t). Then, we express the AoI of Un as

hn(t) = an(t) + dn(t). Thus, the evolution of the AoI of Un

is given by

hn(t+ 1) =

{

an(t) + 1, if un(t)δn(t) = 1,

hn(t) + 1, otherwise.
(3)

It is noted that when the BS successfully transmits a packet to

Un but does not generate a new packet, this successfully trans-

mitted packet is considered as the newest generated packet.

When this happens, we have dn(t) = 0 and hn(t) = an(t).

Based on (2), we define the average cost of AoI as

Ξ = lim
T→∞

1

TN

T
∑

t=1

N
∑

n=1

v(hn(t)), (4)

where v(hn(t)) is a general non-decreasing function of AoI,

characterizing the importance level of packet freshness. We

observe from (3) that the AoI is determined by the adopted

transmission scheduling policy, i.e., un(t). Thus, we can

optimize the transmission scheduling policy to minimize the

average cost of AoI in (4). The optimization problem is

formulated as

Ξc = min
c∈C

lim
T→∞

1

NT

T
∑

t=1

N
∑

n=1

v(hn(t)),

s.t.

N
∑

n=1

un(t) ≤ 1, ∀t, (5)

where C denotes the set of all potential transmission

scheduling policies. In fact, this optimization problem is

an infinite time horizon average cost constrained Markov

decision process (CMDP) problem, with the state space

{(a1(t), d1(t)), · · · , (aN (t), dN (t))}. We note that, due to the

countably infinite state space of (5), it is infeasible to obtain

the optimal scheduling policy by using conventional CMDP

methods, e.g., value iteration and policy iteration. To address

this infeasibility, we exploit the Whittle index method to obtain

a sub-optimal scheduling policy. In particular, we introduce

a constant service charge m as the minimum service charge

of the system to schedule transmission [21]. Based on this

introduction, we decouple the original CMDP problem into

sub-problems with a smaller state space, where each sub-

problem only involves one UE. Therefore, in order to solve

the problem in (5), we optimize the average cost of AoI of
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each UE individually by a Lagrange function with a multiplier

m, given by

J∗ = min
u(t)∈{0,1}

1

T

T
∑

t=1

E

[

v
(

a(t) + d(t)

× (1− u(t)δ(t))
)

+mu(t)
]

. (6)

Since the AoI analysis for each UE is identical, we omit

the index n from an(t), dn(t), un(t), and δn(t) in (6) to

allow easy readability. Finally, to guarantee the existence

of a finite average cost of AoI, we clarify that the cost

function of AoI, v(h), needs to satisfy
∑∞

k=0 ǫ
kv(k) < ∞

and
∑∞

k=0(1− λ)kv(k) <∞. Otherwise, the average cost of

AoI goes to infinity.

III. INDEX POLICIES

In this section, we derive the Whittle index and propose a

Whittle index based scheduling policy. To derive the Whittle

index, we first obtain the minimum average cost of AoI by

solving (6). Here, we omit the time index t and present the

Bellman equation as

J∗ + f(a, d) = min {µ0(a, d), µ1(a, d)} , (7)

where

µ0(a, d) =v(a+d) +λf(1, a+d)+(1−λ)f(a+1, d), (8)

µ1(a, d) =m+ǫ(v(a+d)+λf(1, a+d)+(1−λ)f(a+1, d))

+(1−ǫ) (v(a)+λf(1, a)+(1−λ)f(a+1, 0)) , (9)

and f(a, d) is the differential cost-to-go function with

f(1, 0) = 0. We assume that given a, f(a, d) in (7) is non-

decreasing with d, i.e., f(a, 0) ≤ f(a, 1) ≤ f(a, 2) ≤ · · · .
Based on this, the optimal policy in (6) is proven to be

threshold-based [22], denoted by cD . In particular, the action

of state (a, d) is to idle when d < Da, and to schedule

when d > Da, where Da is the threshold and satisfies

D1 ≤ D2 ≤ · · · ≤ Da ≤ · · · . In addition, both idle and

schedule actions are equally appealing for state (a,Da). Thus,

the design of this threshold-based policy cD is equivalent to

obtain the threshold Da. We next derive the threshold Da in

the following Theorem.

Theorem 1: For the threshold-based policy cD, the threshold

Da satisfies

λǫω(a+Da) + ψ(a+Da)− ǫθ(D1 + 1)

=
1

D1

(

a+
1

λ
−1

)

(

m

1−ǫ
+

D1
∑

h=1

v(h)

)

−

a−1
∑

h=1

v(h), (10)

for a < D1, and

ψ(a+Da) + λǫω(a+Da) =
m

1− ǫ
+ ψ(a) + λǫω(a), (11)

for a ≥ D1, where θ(h) =
∑∞

k=0 ǫ
kv(h+k), ψ(h)=

∑∞
k=0(1−

λ)kv(h+k), and ω(h)=
∑∞

k=1 ǫ
k−1θ(h+k) if ǫ=1−λ; otherwise,

ω(h) = (ψ(h)− θ(h)) /(1− λ− ǫ).
Proof: See Appendix A.

Based on Theorem 1, we can derive the indexability of the

threshold policy in Theorem 2.

Theorem 2: Considering the decoupled model, the schedul-

ing policy c in Theorem 1 is indexable.

Proof: When m = 0, we obtain the thresholds Da in

Theorem 1 for all a as zero and hence, the idle state space

is empty. When m goes to infinity, the thresholds Da go to

infinity. Hence, the idle state space is the entire space. In

addition, for any cost m1 < m2, it is clear that any state

(a, d) is the idle state for m2 if it is the idle state for m1.

Hence, the idle state space for m1 is a subset of the idle state

space for m2.

The Whittle index is defined as the minimum auxiliary

service charge to ensure that both the action of being scheduled

and the action of being idle are equally appealing for the

current state [21]. In other words, the Whittle index is obtained

as the minimum m to obtain d = Da for the state (a, d). Based

on this, we derive the Whittle index in Theorem 3.

Theorem 3: Let us consider one UE has a packet generation

probability λ and a transmission error probability ǫ. When this

UE is in the state (a, d), its Whittle index is given by

Iv(a, d, λ, ǫ)

=



























(1−ǫ)
(

λ(1−ǫ)dω(d)−
d
∑

h=1

v(h)
)

, if a=1,

(1−ǫ)
(

λ(1−ǫ)D1ω(D1)−
D1
∑

h=1

v(h)
)

, if 2≤a≤D1,

(1−ǫ)
(

ψ(a+d)−ψ(a)+λǫ(ω(a+d)−ω(a))
)

, if a>D1,

(12)

where D1 is the minimum positive number satisfying

ǫθ(D1+1) + λ(1− ǫ)

(

a+
1

λ
−1

)

ω(D1)

=λǫω(a+ d) + ψ(a+ d) +

a−1
∑

h=1

v(h). (13)

Proof: See Appendix B.

We remark that when considering the special case with a

deterministic packet generation model, i.e., λ = 1, the Whittle

index in (12) coincides with the results in [20]. Furthermore,

when considering the average cost of AoI being given by the

average AoI, i.e., v(h) = h, the derived Whittle index in (12)

matches the result in [16]. Therefore, the derived Whittle index

in (12) is a general result for stochastic packet generation

models and any cost function of AoI.

Based on the derived Whittle index in (12), we propose

the optimal transmission scheduling policy that minimizes the

average cost of AoI. In particular, for each time slot, the BS

schedules the UE with the highest values of Whittle index for

transmission. This is because that for the UE with a larger

Whittle index, the transmission of its packet makes more

contributions to reducing the average cost of AoI in the system.

IV. NUMERICAL RESULT AND DISCUSSION

In this section, we present numerical results to demonstrate

the effectiveness of our proposed Whittle index based schedul-

ing policy in Section III. For comparison, we first compare

our scheduling policy with the optimal scheduling policy. We
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Fig. 2. The average cost of AoI for two users under the proposed Whittle
index scheduling policy and an optimal scheduling policy.
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Fig. 3. The average cost of AoI versus the packet generation probability with
N = 6.
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Fig. 4. The average cost of AoI versus the packet generation probability with
N = 6.

then employ the on-demand Whittle Index policy [20] and age

greedy scheduling policy [16] as the benchmark policies.

In Fig. 2, we compare the proposed scheduling policy with

the optimal scheduling policy for two users with an AoI

violation function as the cost function such that v(h) = 1
if h ≥ 6; otherwise, v(h) = 0. It turns out that the designed

scheduling policy almost achieves the minimum average cost

of AoI, which shows the optimality of our designed scheduling

policy.

Fig. 3. plots the average cost of AoI versus the packet

generation probability, λ, for the homogeneous case where all

UEs share the same packet generation pattern and the same

transmission error probability, i.e, λn = λ, and ǫn = ǫ for

n= 1, 2,· · ·, N . We employ an AoI violation function as the

cost function such that v(h) = 1 if h ≥ 10; otherwise, v(h) =
0. We observe that for all ǫ, the designed scheduling policy

achieves a lower average cost of AoI than the benchmark

policies, especially for small λh, which shows the advantage

of the designed scheduling policy over existing policies. This

is due to the fact that the impact of packet freshness on

the average cost of AoI increases when λ decreases and our

proposed policy design is forward-looking instead of myopic,

i.e., it evaluates the long term payoff.

Fig. 4. plots the average cost of AoI versus the packet

generation probability, λ, for the heterogeneous case where

half UEs have the same cost function such that v(h) = 1
if h ≥ 10; otherwise, v(h) = 0. The other half UEs

have another cost function such that v(h) = 1 if h ≥ 15;

otherwise, v(h) = 0. Given different cost functions among

UEs, we observe that compared to the benchmark policies,

our proposed policy achieves a larger AoI performance gain

for the heterogeneous case than for the homogeneous case.

This is due to the fact that UEs have different dissatisfaction

levels of data staleness, which results in different impacts of

UEs’ successful packet transmission on the reduction in the

average cost of AoI. Importantly, such impacts are addressed

in our proposed policy.

V. CONCLUSION

This paper considered a multiuser system where a BS

generates time-sensitive packets and transmits them to UEs

under an unreliable channel. We employed the average cost of

AoI as the metric to characterize the freshness of transmitted

packets. By introducing a constant service charge, we derived

the closed-form expression for the Whittle index. Based on

this expression, we proposed a Whittle index based scheduling

policy. Under this proposed scheduling policy, Whittle index

reveals the value of each packet and the BS intends to send

the most valuable packet to reduce the average cost of AoI.

Using simulations, we showed that the performance gain of

our proposed policy.

APPENDIX A

PROOF FOR THEOREM 1

We first give the expression of f(a, d) as

f(a, d)=







































(a+d−1)J∗−

a+d−1
∑

h=1

v(h) , if 1≤a+d ≤ D1,

m

1−ǫ
−
J∗

λ
+λǫω(a+ d) if a+d > D1

−ǫθ(D1+1)+ψ(a+ d) , and d ≤ Da,

f(a,Da)+ǫ (θ(a+d)−θ(a+Da)) , otherwise.
(14)

We then prove that (14) is a valid solution to (7).

Since the threshold Da can be obtained by computing

f(a, d), we derive f(a, d) for d > Da and d ≤ Da, separately.

We first derive f(a, d) for d > Da. For the threshold-

based policy cD with the threshold Da, the optimal action

of state (a, d) is to schedule, when d > Da. Then we

define ∆f(ξ; ρ, σ) , f(ξ, ρ) − f(ξ, σ). Given a, we obtain

∆f(1; d,Da) in (15). Since (15) holds for any a, we obtain

g(1, d)=

a−1
∑

k=1

λ(1−λ)k−1g(k, a+d−k)+(1−λ)a−1g(a, d),

(16)
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∆f(1; d,Da) =ǫ(θ(d+ 1)− θ(Da + 1)) +

a−1
∑

k=1

(

λ(1−λ)k−1
(

∆f(k; d+ a− k,Da + a− k)− ǫ(θ(d+ a)− θ(Da + a))
)

+(1−λ)a−1
(

∆f(a; d,Da)− ǫ (θ(d+ a)− θ(Da + a))
)

)

. (15)

where g(a, d)=∆f(a; d,Da)−ǫ(θ(a+d)−θ(a+Da)). We find

that g(a, d) = 0 is a valid solution to (16). Thus, we obtain

f(a, d) for d > Da as (14).

We then derive f(a, d) for d ≤ Da. For the threshold-based

policy cD with the threshold Da, the optimal action of state

(a, d) is to idle, when d < Da. Then, we obtain f(a, d) as

f(a, d) =− J∗+v(d+a)+λf(1, d+a) +(1− λ)f(a+ 1, d)

=− J∗+v(d+a)+λf(1, D1)

+ǫλ(θ(a+d+1)−θ(D1+1))+(1− λ)f(a+ 1, d),
(17)

for any a, d, and k satisfying d ≤ Da and a + d > D1.

Expanding the last term recursively, we obtain

f(a, d)=

k−1
∑

s=0

(1− λ)s (−J∗+v(d+a+s)+λf(1, D1))

+ǫλ
k−1
∑

s=0

(1− λ)s(θ(a+ d+ 1 + s)− θ(D1 + 1))

+(1−λ)kf(a+k, d)

=f(1, D1)−
J∗

λ
+λǫω(a+d)−ǫθ(D1+1)+ψ(a+d)

+(1−λ)k
(

f(a+k, d)−f(1, D1)+
J∗

λ
−λǫω(a+d+k)+ǫθ(D1+1)−ψ(a+d+k)

)

, (18)

From (18), we obtain f(a, d) as

f(a, d) =f(1, D1)−
J∗

λ
+ λǫω(a+ d)

− ǫθ(D1 + 1) + ψ(a+ d), (19)

for a + d ≥ D1. In addition, we observe from (19) that

f(a1, d1) = f(a2, d2) for any a1, a2, d1<Da1
, and d2<Da2

.

By combining (7) with f(a1, d1) = f(a2, d2), we obtain

f(a, 0) = J∗ − v(a− 1) + f(a− 1, 0),

= (a− 1)J∗ −
a−1
∑

h=1

v(h), (20)

for a ≤ D1. We clarify that both actions for the state (a,Da)
are optimal and formulate it as

µ0(a,Da) = µ1(a,Da). (21)

Based on (21), we obtain

f(a,Da) = µ0(a,Da)− J∗

= m− J∗ + ǫµ0(a,Da) + (1− ǫ)µ0(a, 0)

= m+ ǫf(a,Da) + (1− ǫ)f(a, 0). (22)

Hence, we obtain f(a,Da) as

f(a,Da) =
m

1− ǫ
+ f(a, 0). (23)

Moreover, based on f(1, 0) = 0, we obtain

f(1, D1) =
m

1− ǫ
+ f(1, 0) =

m

1− ǫ
. (24)

By substituting (24) into (19) and combining (19) with (20),

we obtain the solution of f(a, d) for d < Da as the first

and the second cases in (14). Furthermore, by combining (14)

with µ0(1,D1)=µ1(1,D1), we express the optimal AoI, J∗, as

a function of the threshold D1 and the service charge m, given

by

J∗ =
1

D1

(

m

1− ǫ
+

D1
∑

h=1

v(h)

)

. (25)

We then show that f(a, d) is non-decreasing with d. Since

f(a, d) are given for three cases in (14), we first prove that

f(a, d) is non-decreasing with d for these three cases sepa-

rately. We note that ψ(h), θ(h), and ω(h) are non-decreasing

functions with h, since v(h) is a non-decreasing function with

h. Based on the expression for f(a, d) in (14), we obtainBased

on the expression for f(a, d) in (14), we obtain

f(a, d2)− f(a, d1) = ǫ(θ(a+ d2)− θ(a+ d1)) ≥ 0, (26)

if Da ≤ d1 ≤ d2. Differently, if d1 ≤ d2 ≤ Da and D1 <
a+ d1 ≤ a+ d2, we obtain

f(a, d2)−f(a, d1)=λǫ(ω(a+d2)−ω(a+ d1))

+(ψ(a+d2)−ψ(a+d1)) ≥ 0. (27)

Based on (26) and (27), we have proved that f(a, d) is non-

decreasing with d for the second case, i.e., a + d > D1

and d ≤ Da, and the third case, i.e., d > Da, in (14),

respectively. We then prove that f(a, d) is non-decreasing with

d for the first case, i.e., 1 ≤ a + d ≤ D1, in (14). Since

µ0(a,Da) = µ1(a,Da), by substituting (a, d) = (1, D1) into

(19), we obtain

J∗ = λ(λǫω(D1 + 1)−ǫθ(D1+1)+ψ(D1 + 1))

= λ(1 − ǫ)ω(D1). (28)

We note that

ω(D1) =
ψ(D1)− θ(D1)

1− λ− ǫ

=

∞
∑

k=0

((1 − λ)k − ǫk)v(D1 + k)

1− λ− ǫ

≥

∞
∑

k=1

((1 − λ)k − ǫk)v(D1 + 1)

1− λ− ǫ

=
v(D1 + 1)

λ(1− ǫ)
. (29)

Hence, we obtain

J∗ = λ(1− ǫ)ω(D1) ≥ v(D1 + 1). (30)
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Based on the expression of f(a, d) in (14), we obtain

f(a, d2)− f(a, d1) = (d2 − d1)J
∗ −

a+d2−1
∑

a+d1

v(h) ≥ 0, (31)

if a+ d1 ≤ a+ d2 ≤ D1. Hence, we have proved that f(a, d)
is non-decreasing function with d for three cases in (14).

We note that f(a, d) for the first case and the second case

in (14) are equal to each other when a+ d = D1 + 1, i.e.,

D1J
∗−

D1
∑

h=1

v(h)

=
m

1−ǫ
−
J∗

λ
+λǫω(D1+1)−ǫθ(D1+1)+ψ(D1+1). (32)

Combining (27), (31), with (32), we obtain that f(a, d) is non-

decreasing for d ≤ Da.

Moreover, we note that

f(a, d1) ≤ f(a,Da) (33)

and

f(a, d2)=f(a,Da)+ǫ(θ(a+d2)−θ(a+Da)) ≥ f(a,Da),
(34)

when d1 ≤ Da ≤ d2. Combining (33), (34), (26), with the

fact that f(a, d) is non-decreasing for d ≤ Da, we obtain that

f(a, d) is a non-decreasing function with d.

Based on the cost-to-go function f(a, d) obtained in (14),

we next derive the threshold Da of the policy cD. Then, based

on (21), we express (21) as

µ0(a,Da)− µ1(a,Da)

= −m+(1−ǫ)
(

v(a+Da)−v(a)+λ∆f(1; a+Da, a)

+(1−λ)∆f(a+ 1;Da, 0)
)

= −

(

a+
1

λ
−1

)

J∗+

a−1
∑

h=1

v(h)+λǫω(a+Da)

−ǫθ(D1+1)+ψ(a+Da) = 0, (35)

when 1 ≤ a < D1. By substituting (25) into (35), we obtain

(10). It is noted that since both ω(h) and ψ(h) monotonically

increase with h, there is at most one possible number Da

satisfying (10).

When a ≥ D1, we express (21) as

µ0(a,Da)− µ1(a,Da)

= −m+(1− ǫ)
(

v(a+Da)−v(a)+λ∆f(1; a+Da, a)

+(1−λ)∆f(a+ 1;Da, 0)
)

= (1−ǫ) (ψ(a+Da)−ψ(a)+λǫ (ω(a+Da)−ω(a)))−m

= 0, (36)

which leads to (11).

APPENDIX B
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When a ≤ D1, we combine (25) and (28) as

Iv(1, d, λ, ǫ) = (1−ǫ)

(

λ(1−ǫ)D1ω(D1)−

D1
∑

h=1

v(h)

)

. (37)

We note that D1 = d holds for a = 1. Otherwise, by

substituting Da = d into (10), the threshold D1 is the

minimum positive number satisfying (13).

When a > D1, we obtain the Whittle index from (11) as

Iv(a, d, λ, ǫ) = (1− ǫ)
(

ψ(a+ d)−ψ(a)

+λǫ (ω(a+ d)−ω(a))
)

. (38)

With (37) and (38), the Whittle index is obtained as (12).
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