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Abstract—Reconfigurable intelligent surface (RIS) is consid-
ered as a revolutionary technology for future wireless commu-
nication networks. In this letter, we consider the acquisition of
the time-varying cascaded channels, which is a challenging task
due to the massive number of passive RIS elements and the
small channel coherence time. To reduce the pilot overhead, a
deep learning-based channel extrapolation is implemented over
both antenna and time domains. We divide the neural network
into two parts, i.e., the time-domain and the antenna-domain
extrapolation networks, where the neural ordinary differential
equations (ODE) are utilized. In the former, ODE accurately
describes the dynamics of the RIS channels and improves the
recurrent neural network’s performance of time series recon-
struction. In the latter, ODE is resorted to modify the relations
among different data layers in a feedforward neural network.
We cascade the two networks and jointly train them. Simulation
results show that the proposed scheme can effectively extrapolate
the cascaded RIS channels in high mobility scenario.

Index Terms—Deep learning, RIS, channel extrapolation, or-
dinary differential equation, recurrent neural network.

I. INTRODUCTION

Massive and diversified communication services put for-
ward higher requirements, such as low energy cost and full
coverage, to the upcoming 6G communication system. As a
promising new technology, reconfigurable intelligent surface
(RIS) has attracted more and more attentions. With the ar-
tificial electromagnetic structure, RIS can actively customize
the wireless propagation link. Specially, by applying control
signals to the tunable elements on the electromagnetic units,
the electromagnetic properties of these units can be controlled
dynamically [1]. Moreover, RIS can work in the passive model,
which can greatly decrease the system’s power consumption.
Recent studies demonstrate that RIS can improve the quality
of the received signal, expand the coverage range and enhance
the capacity of the wireless network [2] - [3].

In order to fully embrace the above advantages of RIS,
accurate channel state information (CSI) should be acquired.
In [4], Liu et al. proposed a message passing-based algorithm
to factorize the cascaded channels. The authors in [5] adopted
a two-stage channel estimation scheme by using atomic norm
minimization to sequentially estimate the channel parameters.
In [6], Kim et al. proposed a single-path approximated channel
and selective emphasis on rank-one matrices to enable prac-
tical IRS-empowered SU-MIMO systems with low training
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overhead. As mentioned in [4] - [6], the main challenge for
the channel estimation over RIS networks comes from the
large number of passive reflection elements at the RIS node.
In order to decrease the channel estimation overhead, more
and more researchers try to exploit the non-linear mapping
between channels either at partial or all RIS elements and
to implement effective channel compression over the antenna
space. Due to the universal approximation ability of the neural
networks, deep learning (DL)-based channel extrapolation
frameworks have been designed to infer the full channels
from the partial ones over the antenna domain. The authors in
[7] constructed a convolutional neural network (CNN)-based
framework to complete the channel extrapolation over the
antenna domain. Gao et al. developed a three-stage training
strategy and utilize both fully connected network and CNN to
realize the extrapolation task in [8].

However, in practice, the users can move and the channels
between RIS and users would vary in time. As is well
known, the higher the mobility speed is, the lower the channel
coherence time is. Then, it would be more challenging to
acquire a large number of unknown RIS channels within a
limited channel coherence time. In this scenario, to ensure
the system’s spectrum efficiency, we will utilize as few pilot
symbols as possible to achieve partial channel information
within a given time interval. Hence, the idea of the channel
extrapolation over the antenna domain could be applied for
time-domain as well.

Thus, in this paper, we consider the time-varying cascaded
channel estimation over RIS-assisted communication. We re-
sort to DL and utilize the idea of channel extrapolation in both
antenna and time domains. Correspondingly, the entire neural
network can be divided into two parts, i.e., the time-domain
and the antenna-domain extrapolation networks. Specially, in
the former, we merge the recurrent neural network (RNN)
with the neural ordinary differential equations (ODE), which
can accurately describe the dynamics of the RIS channels.
In the latter, we utilize another function of the ODE, i.e.,
modifying the structure of neural networks, and design an
enhanced feedforward neural network (FNN) to achieve better
extrapolation performance. Then, we cascade the two networks
and design a training scheme to jointly optimize them.

II. SYSTEM AND CHANNEL MODEL

Let us consider a scenario where a base station (BS)
communicates with a single antenna user equipment (UE) via
RIS. The BS’s M antennas are in the form of uniform linear
array (ULA), and RIS is equipped with N reflective elements
in the form of a uniform planar array (UPA), including Nv the
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vertical direction and Nh in the horizontal direction. The links
from the BS to UE include the direct link and the cascaded
one via RIS. The cascaded link consists of the channel from
BS to RIS and that from RIS to UE. Without loss of generality,
as BS and RIS are placed at fixed positions with limited local
scattering, the channel between them can be considered to be a
light-of-sight (LoS) and time-invariant link under a long time
interval and can be written as

H =
√
MNαaA(ψ)a

H
R(φh, ϕh) ∈ CM×N , (1)

where α is the complex channel gain. aR(φ, ϕ) and
aH
A(ψ) denote the steering vectors of the RIS and BS,

respectively, with φ and ϕ as the azimuth angle and elevation
angle of RIS, and ψh as the angle of departure (AoD).
aR(φh, ϕh) = ael(ϕh) ⊗ aaz(φh, ϕh) ∈ CN×1, aA(ψh) =
[1, ej

2π
λ d sinψh , . . . , ej

2π
λ d(M−1) sinψh ]T, where the Nv × 1

vector ael(ϕh) = [1, ej2π
d
λ cosϕh , . . . , ej2π

d
λ (Nv−1) cosϕh ]T

and the Nh × 1 vector aaz(φh, ϕh) =
[1, ej2π

d
λ sinφh cosϕh,i , . . . , ej2π

d
λ (Nh−1) sinφh cosϕh ]T. λ

is the carrier wavelength and d denotes the antenna spacing.
Furthermore, ⊗ is the Kronecker product operator and [·]T
represents the transpose.

Due to the mobility of UE, the channel between RIS and UE
experiences time-selective fading. Without loss of generality,
we assume that the channel is quasi-static during a time block
of Lc channel uses and changes from block to block. Then,
the value at the n-th time block is

gn =

√
N

Lg

Lg∑
i=1

βie
j2π(n vf

c
cos θiLcTs−fτi)aR(φg,i, ϕg,i) ∈ CN×1,

(2)

where βi is the complex channel gain along the i-th path and
Lg is the number of scattering paths. v, f, c and Ts separately
represent the moving speed of UE, the carrier frequency, the
speed of light, and the system sampling period. τi and θi
denote the time delay and the angle between the incident
direction of the electromagnetic wave and the movement
direction of UE for the i-th path.

Thus, at time n′ of the n-th time block, the received signal
at BS side is expressed as

y(n′) = HΦ(n′)g(n)s(n′) + v(n′), (3)

where the diagonal matrix Φ(n′) denotes the amplitude
and phase control information at RIS, i.e., Φ(n′) =
diag{β1(n′)ejϑ1(n

′), β2(n
′)ejϑ2(n

′), · · · , βN (n′)ejϑN (n′)} ∈
CN×N , s(n′) is the user’s transmitting data, and v(n′) denotes
the additive white Gaussian noise with zero-mean and variance
σ2
n. In order to represent the cascaded channel more clearly,

the received signal can be written as

y(n′) = Hdiag{g(n)}︸ ︷︷ ︸
C(n)

ρ(n′)s(n′) + v(n′), (4)

where C(n) is the cascaded channel of size M × N , and
the N × 1 vector ρ(n′) is formed by the diagonal elements
of Φ(n′). We can obtain the vector c(n) ∈ CMN×1 by
vectorizing C(n). Notice that n′ in y(n′), v(n′), Φ(n′), ρ(n′)
and s(n′) denotes the instant time index, while n in C(n),
G(n) represents the block index.

Fig. 1. The structure of the transmission frame.

III. DL-BASED CHANNEL ESTIMATION NETWORK

A. Proposed Problems

We assume that each uplink frame from UE to BS contains
L time blocks as shown in Fig. 1. Before proceeding, let us de-
fine L = {1, 2, . . . , L} and A = {1, 2, . . . , N}. To implement
data detection, BS should recover L matrices of size M ×N ,
i.e., {C(n)|n ∈ L}. In the RIS assisted communication with
time-selective fading, the estimation of {C(n)|n ∈ L} faces
the following problem. At each time block, the size of the
cascaded channel C(n) is proportional to the number of RIS
elements, i.e., N . To acquire C(n), the length of the required
pilot sequence is also proportional to N . In order to reduce this
length, fewer RIS elements could be selected to implement the
channel compression by controlling each RIS element’s on/off
state during each pilot block. Without loss of generality, we
assume that the RIS elements during these pilot blocks have
the same on/off pattern, and the indexes of all selected RIS
elements are collected into the setAp, where |Ap| = Ns � N .
Correspondingly, the amplitude control information of the
selected RIS elements in Ap is 1, while for the others is 0,
i.e., βi(n′) = 1, i ∈ Ap and βj(n

′) = 0, j /∈ Ap. Then,
within each pilot block, our objective channel becomes matric
of size M ×Ns, i.e., {C:,Ap(n)|n ∈ L}. Moreover, to ensure
the system’s spectrum efficiency, the number of pilot symbols
should not be too large, which means that it is not necessary
to insert pilot sequences in each time block. Define the set
of time blocks for insertion of pilots as Lp. Then, the n-th
pilot block can be utilized to achieve the information about
{C:,Ap(n)|n ∈ Lp}.

Due to the fixed RIS structure and channels’ time correla-
tion, the following mapping between {C:,Ap(n)|n ∈ Lp} and
{C(n)|n ∈ L} exists

Φi
H : {C:,Ap(n)|n ∈ Lp} → {C(n)|n ∈ L}. (5)

Since the spatial and time correlation of c(n) are uncoupled,
the above mapping can be achieved through two sequential
operations

Φt
H : {C:,Ap(n)|n ∈ Lp} → {C:,Ap(n)|n ∈ L}, (6)

Φa
H : {C:,Ap(n)|n ∈ L} → {C(n)|n ∈ L}, (7)

where the former denotes the channel interpolation along the
time-dimension, while the latter is the channel extrapolation
over the antenna-domain.
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B. Initial Cascaded Channel Estimation

In this part, we will resort to a simple linear estimator to
achieve coarse information about {C:,Ap(n)|n ∈ Lp}. Without
loss of generality, we assume that the pilot symbol from the
user at the i-th time block is

√
P
Np , where i ∈ Lp, Np is the

length of pilot sequence and P is the pilot power during this
time block. Let us collect Np observation vectors of size M×1
during the i-th time block inserted into M ×Np matrix Yp

i =
[y(nsi ),y(n

s
i +1), . . . ,y(nsi +N

p−1)], where nsi denotes the
left border of the pilot sequence in the i-th time block, i ∈ Lp.
Their corresponding Np control vectors of size |Ap| × 1 are
placed into the |A| × Np matrix Γi = [ρAp(n

s
i ),ρAp(n

s
i +

1), . . . ,ρAp(n
s
i +N

p−1)]. Then, with (4), Yp
i can be written

as

Yp
i =

√
P

Np
C:,Ap(n

s
i )Γi + Vp

i , (8)

where the M×Np matrix Vp
i = [v(nsi ),v(n

s
i+1), . . . ,v(nsi+

Np − 1)]. Let ΓiΓ
H = I|A| and Np ≥ |A|. Then, we can

achieve the coarse estimation of C:,A(i) as

C:,Ap(i) =

√
NP

P
Yp
i Γ

H
i , i ∈ Lp, (9)

where C:,Ap(i) denotes the initial information of C:,Ap(i).
Similar to the relation between C(i) and c(i), we define the
corresponding vector version of C:,Ap(i) as c̄Ap(i). Then, we
can achieve the coarse information about {C:,Ap(i)|i ∈ Lp}.

C. DL-based Spatial Extrapolation and Temporal Interpola-
tion for RIS Channels

We first consider the mapping Φt
H in (7). Since RNN

can effectively capture the time sequence’s dynamical char-
acteristics, we adopt it here. Before proceeding, let us define
the raw input of RNN as x(n). Moreover, when n ∈ Lp,
x(n) = c̄Ap(n), and if n ∈ L − Lp, x(n) = 0.

For a given time sequence set {x(n)|n ∈ L}, RNN
would extract the hidden dynamical state set {u(n)|n ∈ L}.
Hence, RNN-based channel interpolation contains two func-
tion blocks. The first one updates the hidden state u(n)
utilizing RNN with parameters ωR, which is denoted as
“RNNCellωR”. Here, x(n) is separately put into RNNCellωR
in the chronological order by taking n from 1 to L. At each
n, RNNCellωR deals with the current raw input x(n) and the
previous hidden state u(n − 1), and outputs the current state
u(n). Correspondingly, the second block needs to infer cAp(n)
from the hidden state u(n), where a decoding network with
parameters ωD (DecNetωD ) is utilized. In fact, the output of
DecNetωD at time n is the estimation of cAp(n), i.e., ĉAp(n).
Then, RNN-based channel interpolation can be formulated as{

u(n) = RNNCellωR(u(n− 1),x(n)),

ĉAp(n) = DecNetωD (u(n)), n ∈ L.
(10)

As we can observe from (10), u(n) remains the same
within the n-th and (n − 1)-th time blocks, which does not
fit the cAp(n)’s dynamical characteristics, especially when the
irregular pilot blocks are inserted. To deal with this problem,
we resort to the ODE and model the dynamical hidden state

···

DecNet

FC FC FC

ExtraNet

Space-domain extrapolation

FC FCFC FCFC

Time-domain extrapolation

1-

RNNCell (GRU)

ODE-RNN

ODE Solver

FC

Fig. 2. The architecture of the proposed neural network for channel estima-
tion.

u(n). Theoretically, ODE can be seen as a continuous-time
model and can be formulated as

dξ(t)

dt
= f(ξ(t), t), (11)

where ξ(t) is the continuous dynamical state and f(·) specifies
the dynamics of ξ(t). In neural networks, f(·) can be approx-
imated by a simple network with parameters ωf . Then, f(·)
can be written as fωf (·). With a given fωf (·) and the initial
value ξ(0), the numerical ODE solver, i.e., “ODESolver,” can
be utilized to evaluate the specific values of ξ(t) at any desired
time set {t0, t1, . . . , tT−1} as

{ξ(t0), ξ(t1), · · · , ξ(tT )} = ODESolver(fωf , ξ(0), {t0, · · · , tT }).
(12)

Plugging ODESolver into (10), we formulate the ODE-RNN
network structure, which can implement Φt

H as
u′(n) = ODESolver(fωf ,u(n− 1), (tn, tn−1)),

u(n) = RNNCellωR(u
′(n),x(n)),

ĉAp(n) = DecNetωD (u(n)),
(13)

where u′(n) is the middle hidden state output by ODESolver.
In particular, we adopt a fully connected neural network as

the network of ODESolver and DecNet, and adopt the Gated
Recurrent Unit (GRU) as hidden state update formula for the
RNNCell function, which is defined as follows:

r(n) = σ(Wr([u
′(n),x(n)])), reset gate (14)

z(n) = σ(Wz([u
′(n),x(n)])), update gate (15)

ũ(n) = tanh(Wũ([r(n)� u′(n),x(n)])), new memory (16)

u(n) = (1− z(n))� u′(n) + z(n)� ũ(n), hidden state (17)

where σ is the sigmoid function with the form of σ(x) =
1

1+e−x , and Wr(·), Wz(·) and Wũ(·) are the network of reset
gate, update gate, and new state update with different parame-
ters, respectively. Moreover, r(n), z(n) and ũ(n) are outputs
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TABLE I
LAYER PARAMETERS FOR THE PROPOSED MODEL.

Layer Output size Activation

ODESolver 3×FC layer Mb × |L| × (MN × 2× ra) Tanh

RNNCell
(Wr(·), Wz(·), Wũ(·))

6×FC layer Mb × |L| × (MN × 2× ra) Tanh

DecNet 6×FC layer Mb × |L| × (MN × 2× ra) Tanh

ExtraNet 8×FC layer Mb × |L| × (MN × 2) Tanh

of corresponding steps, and [a, b] denotes the concatenation
operation of a and b.

Then, we consider the mapping Φa
H in (7), which corre-

sponds to the channel extrapolation process over the antenna-
domain. Similar to the super-resolution in the field of image
processing, we can use the neural network to approximate
this mapping from ĉAp(n) to ĉ(n). In the last task, ODE
is employed to describe a dynamical changing process. In
fact, according to the numerical solutions of ODE, we can
modify the neural network structure and achieve better perfor-
mance [9]. Here, we adopt a numerical solution of ODE, i.e.,
Runge-Kutta method, to modify the structure of feedforward
neural network as the spatial extrapolation network [10].
Then, a network with parameters ωE called ExtraNetωE can
complete the following mapping as

ĉ(n) = ExtraNetωE (ĉAp(n)). (18)

Correspondingly, the proposed network architecture is
shown in Fig. 2. Further, the detailed layer parameters settings
we adopted in simulation are shown in TABLE I.

D. Learning Scheme

As shown in the previous sub-section, the raw input of
the neural network is {x(n)|n ∈ L}, and the total target is
{c(n)|n ∈ L}. Moreover, as mentioned above, the network
is divided into two parts: time-domain and antenna-domain
extrapolation networks. Accordingly, in the network training
stage, targets and loss functions should be set respectively
for the two sub-networks to achieve the purpose of realiz-
ing different functions. Similarly, the target of time-domain
extrapolation network, i.e., the ideal output of DecNetωD , is
{cAp(n)|n ∈ L}.

Let us define T as the network training dataset, where
|T | = Ntr is the number of training sample. One sample
in T contains three matrix sequences that are denoted as
({x(n)|n ∈ L}, {cAp(n)|n ∈ L}, {c(n)|n ∈ L}), where
{cAp(n)|n ∈ L} and {c(n)|n ∈ L}) are the labels of time-
domain and antenna-domain extrapolation networks, respec-
tively. Without loss of generality, we use the mean square
error (MSE) of the channel estimation as the loss function,
which can be separately written as

Lt =
1

MbMNs|L|

Mb∑
i=1

∑
n∈L

∥∥cAp(n)− ĉAp(n)
∥∥2
F
, (19)

La =
1

MbMN |L|

Mb∑
i=1

∑
n∈L

∥∥c(n)− ĉ(n)
∥∥2
F
, (20)

where ||A||F is the Frobenius norm of matrix A and Mb

denotes the batch size for training. The total loss function is
the weighted sum of Lt and La, i.e., Ls = Lt + γLa, where
and γ is the weighted coefficient. Here, the adaptive moment
estimation (Adam) [11] algorithm is adopted to achieve the
best network parameters ω = {ωf ,ωR,ωD,ωE}, which is
controlled by the learning rate η.

IV. SIMULATION RESULTS

In this section, we evaluate the performances of the pro-
posed time interpolation and space extrapolation scheme
through numerical simulation results. We first describe the
communication scenario and the adopted dataset, and then in-
troduce the parameter setting of the proposed neural network.
Finally, the simulation results for performance evaluation are
shown and explained.

We consider an environment with a BS, RIS, and UE. A
BS equipped with two antennas (M = 2) communicates with
the single antenna UE through RIS, which has 64 reflection
elements (N = 64). It is assumed that the positions of BS
and RIS are fixed, while UE can move at a high speed which
is set as 100 km/h. The generation of the data is based on
the DeepMIMO dataset [12], where the outdoor ray-tracing
scenario ’O1’ is adopted. The parameters α,ψ, φh, ϕh can be
extracted from the ’O1’ scenario to generate the time-invariant
channel H. For generating the time-varying channel sample,
we adopt the parameters Lg, βi, φg,i, ϕg,i from DeepMIMO,
and randomly select the angle between UE’s movement and
the direction of incident electromagnetic θi (θi ∈ [−20◦, 20◦]).
Then, we can generate the time-varying channel sample of
each user according to (2). Furthermore, the carrier frequency
of channel estimation is 28 GHz, and the system bandwidth
is set as 20 MHz. The antenna spacing is λ

2 (d = λ
2 ) and

the number of paths is set as 5 (Lg = 5). The time-domain
sampling rate rt =

|Lp|
|L| is set as a value in the set {0.3, 0.5, 1},

and the space-domain sampling rate ra = Ns
N is chosen in

{ 12 ,
1
4 ,

1
8 ,

1
16}.

The total number of cascaded channel samples is 20000.
We employ 80% of the data for training and the rest for
testing. When calculating the loss function, we set the weight
coefficient γ as 1 to train the two networks jointly. The total
number of epochs is 1000, and the batch size Mb is 200. We
set the initial learning rate η as 0.005, which decreases by 50%
for every 50 epochs, and the lowest learning rate as 0.00005.

Fig. 3 depicts the variation of normalized MSE (NMSE)
versus epoch on the validation set at different spatial sampling
rates. We adopt 1

2 ,
1
4 ,

1
8 and 1

16 sampling rates and consider the
case of no noise. Obviously, it can be checked that the NMSE
decreases with the epoch for all ra. Further, it achieves the
steady state within 1000 epochs, which proves the robustness
of the proposed scheme. Moreover, with the increase of
the number of RIS reflection elements, the performance of
the proposed channel extrapolation scheme becomes better,
converging to lower NMSE values.

Fig. 4 shows the channel extrapolation performance versus
the antenna-domain sampling rate under different SNRs. The
time-domain sampling rate rt is adopted as 0.3. As can be seen
from the figure, with the decrease of SNR at the same sampling
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Fig. 3. NMSE of channel extrapolation vs. network training epoches for
different ra values.
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Fig. 4. NMSE of channel extrapolation vs. different antenna-domain sample
rate for different SNR values.

rate, the NMSE gradually increases and the channel extrapo-
lation performance gradually deteriorates. Furthermore, when
noise is considered, the channel extrapolation performance
becomes better with the increase of sampling rate, which is
consistent with the results shown in Fig. 3.

Fig. 5 describes the extrapolation performance of the de-
signed network at both spatial and temporal sampling rates.
We set SNR 20 dB and investigate the network performance
under 4 different spatial sampling rates and 3 different tem-
poral spatial sampling rates, i.e., ra ∈ { 12 ,

1
4 ,

1
8 ,

1
16} and

rt ∈ {0.3, 0.5, 1}. It is obvious that the NMSE decreases
as the sampling rate increases, both for spatial and temporal
sampling. This can be explained as the smaller the number
of sampling points is, the less information about the cascaded
channels is available, which is not conducive for the designed
network to extrapolate the channel.

V. CONCLUSION

In this letter, we considered the time-varying channel ac-
quisition problem in RIS scenario. To reduce the overhead
of channel estimation, channel sub-sampling has been applied

1/16 1/8 1/4 1/2

Space-domain sample rate

-40

-35

-30

-25

-20

-15

N
M

S
E

 [d
B

]

r
t
 = 0.3

r
t
 = 0.5

r
t
 = 1

Fig. 5. NMSE of channel extrapolation vs. different space-domain sample
rate for different rt values.

in both time and antenna domains, and a two-part cascaded
neural network has been designed to accomplish channel
interpolation in time-domain and channel extrapolation in
antenna-domain through joint training. Furthermore, ODE has
been utilized to describe the dynamic process of temporal
interpolation in the former part of the network and promote the
network structure in the latter, i.e., the antenna extrapolation
part. Simulation results have illustrated that the cascaded
channel extrapolation performance is satisfactory under the
joint sampling of time and space domains, indicating that the
proposed scheme is effective for time-varying channels and
can also work well under the condition of noise, which proved
its robustness.
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