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Ergodic Rate Analysis of Reconfigurable Intelligent
Surface-Aided Massive MIMO Systems with ZF

Detectors
Kangda Zhi, Cunhua Pan, Hong Ren and Kezhi Wang

Abstract—This letter investigates the reconfigurable intelli-
gent surface (RIS)-aided massive multiple-input multiple-output
(MIMO) systems with a two-timescale design. First, the zero-
forcing (ZF) detector is applied at the base station (BS) based
on instantaneous aggregated channel state information (CSI),
which is the superposition of the direct channel and the cascaded
user-RIS-BS channel. Then, by leveraging the channel statistical
property, we derive the closed-form ergodic achievable rate
expression. Using a gradient ascent method, we design the RIS
passive beamforming relying only on the long-term statistical
CSI. We prove that the ergodic rate scales on the order of
O (log2 (MN)), where M and N denote the number of BS
antennas and RIS elements, respectively. We also prove the
striking superiority of the considered RIS-aided system with ZF
detectors over the RIS-free systems and RIS-aided systems with
maximum-ratio combining (MRC).

Index Terms—Reconfigurable intelligent surface (RIS), intelli-
gent reflecting surface (IRS), statistical CSI, massive MIMO, ZF.

I. INTRODUCTION

As an emerging technique, reconfigurable intelligent sur-
face (RIS) has been widely investigated and recognized as
a cost-effective complement for future systems [1], [2]. The
RIS mainly consists of a large number of passive reflecting
elements that have low hardware cost and energy consumption.
Besides, RIS can help conventional systems overcome the
blockage issue and assist the transmission by creating high-
quality transmission paths.

A well-acknowledged challenge for the RIS is that it may
introduce heavy channel estimation overhead. Fortunately, a
novel and more practical countermeasure, named as two-
timescale beamforming design, has been proposed and vali-
dated by some contributions [3]–[9]. On one hand, the two-
timescale scheme aims at designing the passive RIS beam-
forming based on purely statistical channel state information
(CSI), and this could effectively reduce the overhead and
the energy consumption in the operation of the RIS [5]. On
the other hand, the two-timescale scheme designs the BS
beamforming based on the instantaneous aggregated channel,
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Fig. 1. Uplink transmission in RIS-aided massive MIMO systems.

which is the superposition of the direct channel and cascaded
user-RIS-BS channel. As a result, the aggregated channel has
the same dimension as that in conventional systems. Thus,
two-timescale schemes possess the same channel estimation
overhead as conventional systems.

Inspired by the above benefits, the two-timescale design has
been recently exploited in RIS-aided massive MIMO systems
[10]. It has demonstrated that by integrating an RIS into
conventional massive MIMO systems, the rate performance
can be significantly improved, especially when the original
direct links are weak due to the blockage. However, only
the simple maximum-ratio combining (MRC) detector was
considered in [10], and it was revealed that the achieved gains
are limited by the multi-user interference. Therefore, it is
expected that the zero-forcing (ZF) detector, which can effec-
tively mitigate this interference, is more suitable for RIS-aided
massive MIMO systems. Different from [10], when using ZF
detectors, matrix inversion operator introduces the additional
technical challenges of deriving the ergodic capacity.

Against the above background, in this letter, we consider
an RIS-aided massive MIMO system with ZF detectors. We
derive the closed-form expression for the ergodic rate, which
only relies on the long-term CSI. We then design the RIS based
on a gradient ascent algorithm. By analyzing the rate expres-
sion, we find that it scales on the order of O (log2 (MN)),
which indicates that the RIS-aided massive MIMO system
with ZF detectors has the ability to achieve ultra-high system
capacity.

II. SYSTEM MODEL

As illustrated in Fig. 1, the uplink transmission of a massive
MIMO system is considered. Different from conventional
systems, an RIS is introduced and equipped at the facade of
a tall building close to K single-antenna users to improve
their channel conditions. The considered model is especially
suitable for the scenario where some cell-edge users suffer
from service degradation. Denote the number of BS antennas
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and RIS elements as M and N , respectively, where M > K.
Then, we can define the channel between the users and the
RIS, the channel between the RIS and the BS, the direct
channel between the users and the BS as H1 ∈ CN×K ,
H2 ∈ CM×N and D ∈ CM×K , respectively.

Define the phase shift matrix of the RIS as Φ =
diag

{
ejθ1 , . . . , ejθN

}
where θn is the phase shift of the n-

th RIS element. Herein, we can express the cascaded user-
RIS-BS channel as G = H2ΦH1 ∈ CM×K , and then
express the aggregated channel from users to the BS as
Q = G+D ∈ CM×K . It is worth noting that this aggregated
channel Q possesses the same dimension as conventional
massive MIMO systems.

Based on the above definitions, we next present the detailed
channel model for Q. Firstly, considering that the direct links
may be easily blocked [3], we adopt the Rayleigh channel
model for D as follows

D = D̃Ω
1/2
d , (1)

where Ωd = diag {γ1, . . . , γK}, and γk denotes the distance-
dependent path-loss factor. Each element of matrix D̃ ∈
CM×K is independent and identically distributed (i.i.d.) com-
plex Guassian random variables, whose mean is zero and
variance is unit.

Next, since we consider that the RIS is deployed close to the
users, and according to the fact that the RIS is often installed
above the ground, we assume that the user-RIS channels have
purely line-of-sight (LoS) paths. Then, we denote

H1 =
[√
α1 h1, . . . ,

√
αK hK

]
, (2)

where αk denotes the path loss. To specify the LoS channel
hk, we utilize the two-dimensional uniform squared planar
array (USPA) model [11]. Then, the array response vector for
a
√
X ×

√
X USPA can be expressed as follows

aX (ϑa, ϑe) =
[
1, ..., ej2π

d
λ (x sinϑe sinϑa+y cosϑe),

. . . , ej2π
d
λ ((
√
X−1) sinϑe sinϑa+(

√
X−1) cosϑe)

]T
, (3)

where 0 ≤ x, y ≤
√
X − 1 are element indices in the two-

dimensional planar array, d and λ denote the element spacing
and wavelength, ϑa and ϑe are azimuth and elevation angles
in the propagation path, respectively. Therefore, denoting by
the azimuth and elevation AoA of user k as ϕakr and ϕekr, we
can now express hk = aN (ϕakr, ϕ

e
kr).

Since the RIS is placed near the users, the distance between
the RIS and the BS could be a bit large. Even though both the
RIS and the BS have certain heights, it is still not guaranteed
that the RIS-BS channel is purely LoS. As a result, the Rician
model is suitable for the considered RIS-BS channel. Besides,
by adjusting the value of Rician factors, we can study the
impacts of scatterers in RIS-aided systems. This feature is
important, since many works have proven that rich scattering
environment is beneficial in conventional massive MIMO
systems [12], while the corresponding impact in RIS-aided
massive MIMO systems with ZF detector is still unknown.
Thus, we define

H2 =
√

βδ
δ+1H2 +

√
β
δ+1H̃2, (4)

where β is the path loss, δ represents the Rician factor. Note
that the Rician factor, varying from 0 to ∞, characterizes
the strength ratio between LoS and non-LoS (NLoS) paths.
The NLoS path H̃2 contains i.i.d. complex Gaussian random
variables with zero mean and unit variance. Recalling USPA
model (3), the LoS path, H2, is written as

H2 = aM (φar , φ
e
r)aHN (ϕat , ϕ

e
t ) , aMaHN , (5)

where a notational simplification H2 , aMaHN is applied in
the sequel of this paper. Note that the rank of matrix H2 is
one. This means that when δ → ∞, the cascaded channel G
may become rank-deficient, and then the achievable spatial
multiplexing gains may degrade.

We can now express the M × 1 received signal vector at
the BS as

y =
√
pQx + n =

√
p (H2ΦH1 + D)x + n, (6)

where x = [x1, . . . , xK ]
T ∼ CN (0, IK) includes the transmit

symbols from K users, and n ∼ CN
(
0, σ2IM

)
is the noise

vector. For simplicity, we assume that all users transmit with
the same power p.

To facilitate the analysis, we assume that in each channel
coherence time, the instantaneous aggregated channel Q is
perfectly known at the BS, which serves as an upper bound
for practical systems. Based on the two-timescale design
framework, we need to design the BS beamforming based on
instantaneous aggregated CSI, i.e., Q. Thus, the ZF detector
at the BS is designed as A = Q

(
QHQ

)−1
, which results in

AHQ = IK . Thus, the detected symbol vector is given by

r = AHy =
√
px +

(
QHQ

)−1
QHn. (7)

For ZF, there is no multi-user interference. As a result, the
signal-to-interference-plus-noise ratio (SINR) reduces to the
ratio of transmit power and noise. Based on (7), the SINR of
user k is given by

SINRk =
p
[
Ex

{
xxH

}]
kk

[En{(QHQ)−1QHnnHQ(QHQ)−1}]kk
=

p

σ2 [(QHQ)−1]kk
. (8)

Then, the k-th user’s ergodic rate is lower bounded by

Rk = E {log2 (1 + SINRk)} (9)
(a)

≥ log2

(
1 +

p

σ2E {[(QHQ)−1]kk}

)
, (10)

where (a) utilizes the Jensen’s inequality based on the fact
that function f(x)=log2

(
1 + 1

x

)
is convex with respect to x.

III. RATE ANALYSIS AND RIS DESIGN

In this section, we first derive the closed-form expression
for the rate Rk, and then use the derived expression to propose
a statistical CSI-based RIS design.

To derive Rk, we need to compute E
{[

(QHQ)−1
]
kk

}
. To

this end, we expand matrix QH as

QH =
√

βδ
δ+1HH

1 ΦHH
H

2 +
√

β
δ+1HH

1 ΦHH̃H
2 + Ω

1/2
d D̃H .

(11)
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For ease of exposition, we define QH , [q1, . . . ,qM ],
H
H

2 , [c1, . . . , cM ], H̃H
2 , [c̃1, . . . , c̃M ], and D̃H ,[

d̃1, . . . , d̃M

]
. Recalling that H̃2 and D̃ are all comprised of

i.i.d. complex Gaussian variables, and H̃2 and D̃ are mutual
independent, we therefore have

c̃m ∼ CN (0, IN ) , 1 ≤ m ≤M, (12)

d̃m ∼ CN (0, IK) , 1 ≤ m ≤M, (13)

where c̃i and c̃j are mutual independent for i 6= j; d̃i
and d̃j are mutual independent, for i 6= j; c̃i and d̃j are
mutual independent for all i and j. Then, since the linear
transformation for a standard Gaussian random vector is still
a Gaussian random vector [13], we obtain√

βδ
δ+1HH

1 ΦHcm +
√

β
δ+1HH

1 ΦH c̃m

∼ CN
(√

βδ
δ+1HH

1 ΦHcm,
β
δ+1HH

1 H1

)
,∀m

(14)

and Ω
1/2
d d̃m ∼ CN (0,Ωd) ,∀m, where the facts ΦHΦ = IN

and Ωd = ΩH
d were used.

Next, taking into account that the sum of independent
Gaussian vectors is still Gaussian distributed [13, Theorem
1.2.14], we can obtain the statistics of the m-th column of
aggregated channel QH as follows

qm ∼ CN
(√

βδ
δ+1HH

1 ΦHcm,
β
δ+1HH

1 H1 + Ωd

)
, (15)

where qm, 1 ≤ m ≤ M , are mutual independent. Therefore,
vec
(
QH

)
is a complex Gaussian vector with the following

mean and covariance matrices

E
{
vec
(
QH

)}
= vec

(√
βδ
δ+1HH

1 ΦHH
H

2

)
,

Cov
{
vec
(
QH

)}
= IM ⊗

(
β
δ+1HH

1 H1 + Ωd

)
,

(16)

where vec and ⊗ denote the vectorization by column stacking
and Kronecker product, respectively.

Then, using the distribution of vec
(
QH

)
and following the

notations in [12, Page 2], matrix Q is a complex Gaussian
distributed matrix, written as

Q ∼ CN
(√

βδ
δ+1H2ΦH1, IM⊗

(
β
δ+1HH

1 H1+Ωd

))
. (17)

Therefore, the product QHQ has a complex non-central
Wishart distribution [13, Definition 10.3.1], which can be
repressed as

QHQ ∼ WK

(
M, β

δ+1HH
1 H1 + Ωd

, ( β
δ+1HH

1 H1 + Ωd)
−1 βδ
δ+1HH

1 ΦHH
H

2 H2ΦH1

)
.

(18)

Even though the non-central Wishart distribution (18) is
accurate, its statistics are very complicated, and then we
cannot obtain a tractable expression for insightful analysis.
To facilitate the analysis, as in contributions [14]–[16], we
next approximate the non-central Wishart distribution (18) as a
central Wishart distribution with the same first-order moment.

To begin with, the first-order moment for the considered
non-central Wishart distribution is [15, Eq. (45)]

E
{
QHQ

}
=M

(
β

δ + 1
HH

1 H1 + Ωd

)
+

βδ

δ + 1
HH

1 ΦHH
H

2 H2ΦH1

=M

(
β

δ + 1
HH

1 H1 + Ωd

)
+M

βδ

δ + 1
HH

1 ΦHaNaHNΦH1,

(19)

where the last equality is obtained by using (5) and aHMaM =
M .

Therefore, a virtual central Wishart distribution with this
moment is given by [15, Sec. V. A]

QHQ∼WK

(
M, β

δ+1HH
1 H1+Ωd+

βδ
δ+1HH

1 ΦHaNaHNΦH1

)
.

(20)

Based on the obtained complex central Wishart distribution
(20), with the help of [17, Table I], we can obtain the
expectation of the matrix inverse as follows

E
{(

QHQ
)−1}

=

(
β
δ+1HH

1 H1+Ωd+
βδ
δ+1HH

1 ΦHaNaHNΦH1

)−1
M −K

.

(21)

Substituting (21) into (10), we obtain the lower bound of
the ergodic rate of user k as follows

Rk≥ log2

(
1+

p (M −K)

σ2(δ+1)
[
(Λ + βδHH

1 ΦHaNaHNΦH1)−1
]
kk

)
,

(22)

where Λ = βHH
1 H1 + (δ + 1)Ωd.

Note that the derived expression, (22), depends only on the
statistical CSI, since the instantaneous CSI-related variables
have been averaged out. Therefore, based on the two-timescale
design framework, we can use (22) to design the phase shifts
of the RIS only relying on statistical CSI. Since the statistical
CSI-based phase shifts design only needs to be done on a large
time-scale, the overhead can be effectively reduced. Besides,
it is clear that (22) is an increasing function of p and the RIS-
BS channel strength β, but it is a decreasing function of noise
power σ2.

Corollary 1 As M → ∞, the rate can maintain non-zero
when the power is scaled down proportionally to p = 1/M .

Proof: It can be proved by noticing that all the matrices in
the denominator of (22) do not depend on M . �

Corollary 2 When M → ∞ or p → ∞, RIS-aided massive
MIMO systems with ZF detectors perform much better than
that with MRC detectors.

Proof: Based on (22), when M → ∞ or p → ∞, we
have Rk → ∞, while the rate in RIS-aided massive MIMO
systems with MRC detectors is still bounded due to the multi-
user interference, as proved in [10, Eq. (7)]. �

Corollary 3 When β = 0, i.e., without the existence of the
RIS, the rate of user k reduces to

Rk ≥ log2
(
1 + p(M −K) γk/σ

2
)
, (23)
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which is the same rate as [18, Eq. (20)], and scales on the
order of O (log2 (M)).

Corollary 4 The ergodic rate of user k in (22) is further lower
bounded by

Rk ≥ log2

(
1 +

p (M −K)

σ2(δ + 1) [Λ−1]kk

)
(24)

≈ log2

(
1 +

p (M −K)

σ2

(Nαkβ
δ + 1

+ γk

))
, as N →∞.

(25)

which scales on the order of O (log2 (MN)).

Proof: Since we consider the existence of direct links, there
is Ωd � 0 and then Λ � 0 and Λ−1 � 0. Besides, we have
ΛH = Λ. Based on the Woodbury’s identity, we have[(

Λ + βδHH
1 ΦHaNaHNΦH1

)−1]
kk

=
[
Λ−1

]
kk
−
βδ
[
Λ−1HH

1 ΦHaNaHNΦH1Λ
−1]

kk

1 + βδaHNΦH1Λ−1HH
1 ΦHaN

(26)

=
[
Λ−1

]
kk
−

βδ
∣∣[Λ−1HH

1 ΦHaN
]
k

∣∣2
1+βδaHNΦH1Λ−1HH

1 ΦHaN
≤
[
Λ−1

]
kk
. (27)

Substituting (27) into (22), we arrive at (24). Note that the
k-th diagonal element of HH

1 H1 equals αkN , while the non-
diagonal elements are not proportional to N . When N →∞,
we can approximate HH

1 H1 as Ndiag {α1, . . . , αK}, which
results in the approximation in (25). �

Corollary 4 reveals a very promising capacity gain. It is
well-known that the ergodic rate of RIS-aided systems scales
as O

(
log2

(
MN2

))
in the single-user scenario [3]. Here, we

prove that by using ZF detectors in setup of multiple users,
the rate of each user could still scale as O (log2 (MN)),
which demonstrates that the considered systems can achieve a
promising sum user rate. Besides, comparing (25) with (23), it
is shown that the RIS-aided massive MIMO systems with ZF
detectors always outperform RIS-free massive MIMO systems.
Meanwhile, it can be observed that the lower bound (25) tends
to (22) when δ → 0 and tends to (23) when δ →∞.

Next, we design the RIS phase shifts based on (22), which
depends only on the statistical CSI. The sum-rate maximiza-
tion problem can be formulated as follows

max
Φ

Rs =
∑K

k=1
Rk, (28a)

s.t. |[Φ]nn| = 1, 1 ≤ n ≤ N. (28b)

Problem (28) is non-convex due to the non-convex unit
modulus constraint. However, we can still obtain a sub-optimal
solution based on the gradient ascent method. For tractability,
we rewrite Φ = diag

{
vH
}

, where v = [ejθ1 , . . . , ejθN ]H .
Then, we provide the gradient vector with respect to v in the
following lemma.

Lemma 1 The gradient of the objective function in (28) is

∂Rs(v)

∂v∗
=

K∑
k=1

Bv
vHAkv

− vHBvAkv
(vHAkv)2

ln(2)
(
1 + vHBv

vHAkv

) , (29)

where

Ak =
σ2(δ + 1)

p(M −K)

([
Λ−1

]
kk

B− βδsksHk
)
, (30)

B =
1

N
IN + βδ diag

(
aHN
)
H1Λ

−1HH
1 diag (aN ) , (31)

with sHk ,
[
Λ−1HH

1 diag (aN )
]
(k,:)

corresponds to the k-th
row vector.

Proof: Substituting ΦHaN = diag (aN )v into (26) and
utilize (31), we have[(

Λ + βδHH
1 ΦHaNaHNΦH1

)−1]
kk

=
[
Λ−1

]
kk
−
βδ
[
Λ−1HH

1 diag(aN )vvH diag
(
aHN
)
H1Λ

−1]
kk

1 + βδvH diag
(
aHN
)
H1Λ−1HH

1 diag (aN )v

=
vH
{[

Λ−1
]
kk

B− βδsksHk
}

v

vHBv
. (32)

Then, substituting (32) into (22), the sum rate can be
rewritten as Rs =

∑K
k=1 log2

(
1 + vHBv

vHAkv

)
. Based on the

chain rule, the gradient of a real function with respect to
complex vector variable is given by [19]

∂Rs (v)

∂v∗
=

K∑
k=1

1

ln(2)
(
1 + vHBv

vHAkv

) ∂
(

vHBv
vHAkv

)
∂v∗

. (33)

Using
∂{vHBv}

∂v∗ = Bv, and
∂{vHAkv}

∂v∗ = Akv, we have

∂
(

vHBv
vHAkv

)
∂v∗

=

{
∂(vHBv)

∂v∗

}
vHAkv − vHBv

{
∂(vHAkv)

∂v∗

}
(vHAkv)

2

=
BvvHAkv − vHBvAkv

(vHAkv)
2 =

Bv

vHAkv
− vHBvAkv

(vHAkv)
2 .

(34)

Substituting (34) into (33) completes the proof. �
Assume the variable in the t-th iteration is vt. Then, the

next variable vt+1 in the (t+ 1)-th iteration is given by

ṽt+1 = vt + µ
∂Rs (v)

∂v∗

∣∣∣∣
v=vt

, (35)

vt+1 = exp
(
j arg

(
ṽt+1

))
, (36)

where µ is the step size which can be chosen by using
backtracking line search [4], [9]. (36) is a projection operation
for meeting the unit modulus constraint (28b).

IV. SIMULATION RESULTS

Unless otherwise stated, we consider K = 4 users evenly
located on the half-circle centered of an RIS with a radius
dUI = 20 m. The distance between the RIS and the BS is
dIB = 700 m. Using dUI and dIB , the distance between
the users and the BS can be calculated by their geometric
relationship as [10]. Based on the distances, the path loss
factors αk, β and γk are calculated the same as [10]. Besides,
we set M = N = 64, p = 30 dBm, δ = 1 and σ2 = −104
dBm. The angles in the LoS channels are generated randomly
from [0, 2π]. The Monte Carlo simulations are obtained based
on (9) with 104 times average.
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Fig. 4. Rate versus the Rician factor δ.

In Fig. 2, it can be observed that ZF-based RIS design
outperforms the random phase shifts-based design, the MRC-
based design, and the RIS-free systems. The superiority of ZF
over MRC lies in the fact that RIS-aided systems suffer from
severe multi-user interference [10]. This is because users share
the same RIS-BS channel and then their cascaded channels
are highly correlated. Therefore, by effectively eliminating the
interference, ZF can achieve a higher ergodic rate than MRC.
In addition, Fig. 2 validates the accuracy of the approximate
in (25). In Fig. 3, we verify the power scaling law as expected
in Corollary 1. It again emphases the advantages of ZF-based
RIS systems. Besides, all numerical results show that the
derived lower bound (22) is very tight with the Monte Carlo
simulations.

Fig. 4 plots the rate versus Rician factor δ. It can be seen
that when dIB = 700 m, the rate with large δ performs worse,
while a contrary result is observed when dIB = 300 m. This
is because when dIB is large, the direct channel becomes
weak, and then the cascaded channel G becomes a dominant
factor. In this case, when δ is large, the channel G becomes
rank-deficient, which degrades the rate. However, when dIB
is small, the direct links are strong. Since the direct links have
full-rank, the aggregate channel could always have full-rank.
As shown in (22), the variable Φ can play more roles when δ is
large, which results in large performance gains. Furthermore,
Fig. 4 validates the tightness of (25) under all Rician factors.

V. CONCLUSION

An RIS-aided massive MIMO system with ZF detectors
was considered in this paper. We first derived the closed-form
ergodic rate expressions, whose lower bound demonstrates that
the rate can scale on the order of O (log2 (MN)). Then, using
the gradient ascent algorithm, we optimized the phase shifts
of the RIS based on statistical CSI. Finally, simulation results
validated the correctness of our analytical results.
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