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Generalized Karagiannidis–Lioumpas Approximations and Bounds to the
Gaussian Q-Function With Optimized Coefficients

Islam M. Tanash and Taneli Riihonen , Member, IEEE

Abstract— We develop extremely tight novel approximations,
lower bounds and upper bounds for the Gaussian Q-function
and offer multiple alternatives for the coefficient sets thereof,
which are optimized in terms of the four most relevant criteria:
minimax absolute/relative error and total absolute/relative error.
To minimize error maximum, we modify the classic Remez
algorithm to comply with the challenging nonlinearity that per-
tains to the proposed expression for approximations and bounds.
On the other hand, we minimize the total error numerically using
the quasi-Newton algorithm. The proposed approximations and
bounds are so well matching to the actual Q-function that they
can be regarded as virtually exact in many applications since
absolute and relative errors of 10−9 and 10−5, respectively, are
reached with only ten terms. The significant advance in accuracy
is shown by numerical comparisons with key reference cases.

Index Terms— Gaussian Q-function, error probability.

I. INTRODUCTION

THE Gaussian Q-function and the related complementary
error function erfc(·) are very important entities for

communication theory (as well as in statistical sciences at
large). They emerge often when noise, interference, or a
signal is characterized by the normal distribution. Although
the Q-function, which has no exact closed form, can be
evaluated using many software packages, the literature is
rich in several approximations and bounds [1]–[10] based on
either the statistical definition [5, Eq. 1] or on the alternative
representation proposed by Craig [11]. Their significant value
is in facilitating closed-form calculations of error probabilities
for different digital modulations and fading models [12]–[14],
in which functions of Q-function usually appear in integrands.

The expression by Karagiannidis and Lioumpas in [1] is
one of the most common tools to approximate the Q-function
in the different problems of communication theory due to its
tractability and accuracy compared to others. In particular,
they approximate erfc(·) by an inverse factorial series which
is then truncated to a single term but the resulted expression
is loose for small arguments. Therefore, they multiply it by a
monotonically increasing function to tighten it there and, thus,
to approximate accurately the Q-function for all x ≥ 0 as

Q(x) ≈ a (1 − exp (−c x)) · exp
�−b x2

�
x

, (1)

where a = 1
1.135

√
2π

, b = 1
2 , and c = 1.98√

2
originally,

while [2] presents alternative coefficients for tailoring accuracy
in different applications or transforming it into a bound.
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Inspired by the Karagiannidis–Lioumpas (KL) approxima-
tion, our first main contribution is to propose a new expression
to approximate or bound the Q-function:

Q̃(x) � 1 − exp (−c x)
x� �� �

�g(x)

·
N�

n=1

an exp
�−bn x2

�
� �� �

�h(x)

, (2)

which is referred to as the generalized KL (GKL) expression
since it is reduced to the original KL expression in the special
case of N = 1 [1], [2] (but is novel herein for N > 1).
Conceptually, an approach analogous to that in [1] is used by
first approximating the Q-function with the sum of exponen-
tials h(x) as in [3, Eq. 8], which results in unbounded relative
error and thus lower accuracy for the higher arguments; then
it is multiplied by the term g(x) to bound the relative error
with b1 � min{bn}N

n=1 = 1
2 . This yields the accurate GKL

expression in (2) that is limited to the domain x ≥ 0,
not so unlike most related approximations, but the relation
Q(x) = 1 − Q(−x) extends it to x < 0.

As the second main contribution, we solve the research
problem of optimizing the coefficients, {(an, bn)}N

n=1 and c,
in order to minimize the global or total absolute/relative error
of the corresponding approximation. Furthermore, the coeffi-
cients are optimized in the minimax sense to derive tight lower
and upper bounds too. We show that the GKL approxima-
tions/bounds together with the optimized coefficients achieve
very high, increasing accuracy so that using not-so-large
number of terms they can become virtually exact, i.e., the error
may not be notable in many applications in communications
systems’ analysis. By these main contributions, we provide
researchers with accuracy-controllable approximations/bounds
in terms of several optimization criteria, from which they
can choose one that best suits their needs in order to ease
expression manipulations with extremely high accuracy.

Two types of complexity are of relevance herein, namely the
analytical and the computational. The former, which refers to
the difficulty of the analytical form of (2) and the tractability
thereof in symbolic calculations for mathematical operations,
is kept the same as for (1) while significantly increasing the
accuracy. On the other hand, the latter can refer herein either to
the difficulty and processing time of the proposed optimization
methodology or to those in using the approximation. The
offline complexity of coefficient optimization is hardly relevant
since it is already implemented by us and the coefficients
are released to public domain1 so that there is no need for
redoing it later, whereas the online complexity of using the
GKL expression is directly proportional to the number of
terms N used in the approximation. Hence, (2) with the
optimized coefficients can reliably substitute the Q-function
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Fig. 1. Comparison between our approximations and the reference ones for N = 1, N = 2 and N = 4 in terms of the absolute error.

in derivations of almost exact closed-form expressions for
different performance measures with exactly the same ana-
lytical tractability as with the original KL approximation and
with moderately increased computational complexity that is
controllable with the choice of the number of terms.

The remainder of this letter is organized as follows. The next
section presents our new approximations and bounds together
with the optimization methodologies used for solving the sets
of coefficients. The accuracy of the proposed approximations
and bounds is validated in Section III by numerical results.
After an overview of various applications of (2) in Section IV,
the conclusion is given in Section V.

II. NOVEL APPROXIMATIONS AND BOUNDS

This section finds the optimized coefficients, {(a∗
n, b∗n)}N

n=1

and c∗, for the proposed GKL expression that offer variety to
tailor accuracy for some specific application or to use bounds.
For this reason, several optimization criteria are considered and
each of them requires more or less different approach. The first
two minimize maximum absolute and relative errors, whereas
the remaining two minimize total absolute and relative errors.

A. Minimax Approximations and Bounds

The GKL expression in (2) is optimized herein in the
minimax sense by solving its corresponding coefficients as

{(a∗
n, b∗n)}N

n=1, c∗ � argmin
{(an,bn)}N

n=1, c

emax, (3)

where

emax � max
x≥0

|e(x)|, (4)

and the shorthand e ∈ {d, r} collectively represents both
the absolute and relative error functions which are defined
respectively as d(x) � Q̃(x) − Q(x) and r(x) � Q̃(x)

Q(x) − 1.
The minimax optimization results in uniform error functions

that oscillate between local maximum and minimum values
of equal magnitude and alternating signs as illustrated by the
minimax approximations in Fig. 1(a). The absolute and relative
error functions’ derivatives vanish at these extrema points
and are given respectively by d�(x) = Q̃�(x) − Q�(x) and

r�(x) = (Q̃�(x)Q(x) − Q̃(x)Q�(x))/[Q(x)]2 where Q�(x) =
− 1√

2π
exp

�− 1
2x2

�
and Q̃�(x) = − 1

x2

	N
n=1 an

�
(2bnx2 +1) ·

exp (c x) − 2bnx2 − c x − 1
�
exp(−bnx2 − c x).

We will shortly use the fact that the error functions converge
to explicit values, which may be local extrema, at both ends
of the non-negative real axis as follows:

d0 � lim
x→0

d(x) = c

N�
n=1

an − 1
2 , lim

x→∞ d(x) = 0,

r0 � lim
x→0

r(x) = 2 c

N�
n=1

an − 1,

lim
x→∞ r(x) =

⎧⎪⎨
⎪⎩
∞, if b1 < 1

2 ,√
2π a1 − 1, if b1 = 1

2 ,

−1, if b1 > 1
2 ,

(5)

where a1 is the counterpart of b1 � min{bn}N
n=1.

It can be concluded from the above limit that global approx-
imations and bounds exist in terms of the relative error if and
only if b1 = 1

2 , opposing to the absolute error function which
is always bounded regardless of b1’s value. Nevertheless, this
study shows that the absolute and total errors can be reduced
by allowing b1 < 1

2 . Thus, we consider herein two variations
of approximations w.r.t. absolute and total errors, namely, first
variation with b1 < 1

2 and second variation with b1 = 1
2 .

1) Approximations: The optimized coefficients can be found
by solving the following set of equations which describes the
shape of the corresponding error function, for which xk refers
to the location of the error function’s extrema and K refers to
their number excluding the endpoints:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f0(v) = e0 + emax = 0
fk(v) = e(xk) + (−1)k emax = 0, for k = 1, 2, . . . , K,

f �
k(v) = e�(xk) = 0, for k = 1, 2, . . . , K,

fK+1(v) = a1 + rmax−1√
2π

= 0, only when e = r.

(6)

Above, v is a vector of the approximation’s coefficients
with emax which are to be optimized. More specifically,
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v = [a1, a2, . . . , aN , b1, b2, . . . , bN , c, emax] with excluding
b1 for the second variation of the absolute error and for the
relative error since then b1 = 1

2 . In addition, fk(v) and f �
k(v)

are two equations that report the error function’s value and
zero-derivative at each of the extrema points, and f0(v) and
fK+1(v) result from evaluating the limits at both ends of the
range [0,∞) as in (5) to give one equation for the absolute
error and two equations for the relative error that converges
to −rmax as x tends to infinity. For both error measures, the
error function is assumed to start from e0 = −emax.

When considering the absolute error, K = 2 N + 1 for the
first variation and K = 2 N for the second variation. A total
of 2K + 1 equations including that at x = 0 are formulated.
On the other hand, for the bounded relative error, a total of
2K + 2 equations including those at the endpoint limits are
formulated with K = 2 N − 1. Generally, the number of
equations for both error measures are equal to the number
of unknowns, namely, v and {xk}K

k=1. It is worth mentioning
that the error function can also start from e0 = 0 to achieve
continuity at the origin when extended to the negative values
of x like for Q(x), but at the expense of slightly less accuracy.

2) Bounds: Here we need to find the optimized sets of
coefficients which, when substituted in (2), give uniform lower
and upper bounds for which e(x) ≤ 0 and e(x) ≥ 0,
respectively. Error of a lower bound oscillates between zero
and −emax, must have b1 = 1

2 and start from e0 = −emax for
both error types. In addition, when it is optimized in terms of
absolute error, K = 2N and its corresponding error function
converges to zero as x tends to infinity, whereas when it is
optimized in terms of relative error, K = 2N −1 and its error
function converges to −rmax as x tends to infinity.

On the other hand, the upper bound oscillates between zero
and emax and must always start from e0 = 0 and converge to
zero as x tends to infinity for both error types. In particular,
for its optimization in terms of absolute error, K = 2N + 1,
whereas K = 2N − 1 for its optimization in terms of relative
error. Using the aforementioned description, the optimization
problem can be easily formulated in the same way as in (6).

3) Implementation of the Minimax Optimization and the
Remez Exchange Algorithm: The sets of equations formulated
for each of the proposed approximations and bounds can be
straightforwardly solved using any numerical tool. However,
good initial guesses for the unknowns are required in order
for their values to converge to the optimized ones. The initial
guesses used herein are obtained heuristically and it was
quite a challenge to get good ones for N > 5. We have
solved this problem by proposing a variation of the Remez
exchange algorithm for acquiring the optimized coefficients
for N > 5 and establishing the same uniform minimax
error function but with K equations ({f �

k}K
k=1) less than the

approach introduced in Section II-A1. The absence of the
derivative equations makes it less sensitive to the right choice
of the initial guesses.

In particular, we construct a system of nonlinear equations
describing the values of the extrema points of the corre-
sponding error function, which alternate exactly L = K
times for the absolute error and L = K + 1 times for the
relative error, as f (v) � [f0(v), f1(v), . . . , fL(v)]T for which
fl, l = 0, 1, . . . , L and v are defined in (6), and f and v have

equal lengths. We set up the Remez algorithm by initializing
the locations of the K extrema while taking into consideration
both endpoints, which might be local extrema.

Next, we start the first iteration by solving f for v using
the iterative Newton–Raphson method whose iterations also
require initial guesses for v and are performed as

v(t+1) = v(t) −
�
J(t)

�
v(t)

� �−1

f
�

v(t)
�

, (7)

where t is its counter and J(·) is the Jacobian matrix defined as

J (v) =
�

∂f
∂v0

, ∂f
∂v1

, . . . , ∂f
∂vL

�
. For the absolute error, ∂f0

∂an
= c,

∂f0
∂bn

= 0, ∂f0
∂c =

	N
n=1 an, ∂fk

∂an
= (1−exp(−c xk))

xk
exp(−bn x2

k),
∂fk

∂bn
= −an xk (1 − exp(−c xk)) exp(−bn x2

k), ∂fk

∂c =
exp(−c xk)

	N
n=1 an exp(−bn x2

k), whereas for the relative
error, we multiply the above relations ∂f0

∂an
and ∂f0

∂c by two and
divide ∂fk

∂an
, ∂fk

∂bn
and ∂fk

∂c by Q(xk). Also, for the relative error

only, ∂fK+1
∂a1

= 1, ∂fK+1
∂an

|n�=1 = ∂fK+1
∂bn

= ∂fK+1
∂c = 0, and

∂fK+1
∂rmax

= 1√
2 π

. In addition, ∂f0
∂emax

= 1 and ∂fk

∂emax
= (−1)k

for both error measures. The Newton–Raphson iterations are
repeated until Δv = v(t+1)−v(t) is less than a threshold value.

Then, we locate the new extrema of the resulting error
function and use them for the following Remez iteration
which we repeat until the difference between the old and
new K extrema lies below a threshold value. Note that the
Newton–Raphson method is implemented in every iteration
of the Remez algorithm. Although the Remez algorithm still
requires initial guesses for the unknowns like the approach in
Section II-A1, it is much more robust against the accuracy of
the initial guesses and converges very rapidly to the optimal
solution. The optimized coefficients of minimax GKL approx-
imations and bounds are solved herein up to N = 10 for the
two variations of the absolute error and for the relative error
and released to public domain as a supplementary dataset.1

B. Numerical Optimization in Terms of Total Error

The coefficients of the GKL expression can also be opti-
mized in terms of the total integrated error as

{(a∗
n, b∗n)}N

n=1, c∗ � arg min
{(an,bn)}N

n=1, c

etot, (8)

where

etot �
� R

0

|e(x)| dx. (9)

For e = d, R → ∞ in order to obtain globally optimized
approximations since d(x) converges to zero when x tends
to infinity, whereas R is some constant for e = r which
converges to a constant value when x tends to infinity for
b1 = 1

2 . We apply the quasi-Newton algorithm to perform
the optimization herein. In particular, we used the fminunc
command in Matlab with setting its ‘Algorithm’ to
‘quasi-newton’ in order to minimize the target function
etot. The error function can also be forced to start from zero by
adding the constraint

	N
n=1 an = 1

2c , which results from the
limit at zero, and we then used fmincon command instead.

We start with heuristic initial guesses for the unknowns
that converge eventually to the optimized values. In fact,

1Available at https://doi.org/10.5281/zenodo.5806271 for download.
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Fig. 2. The proposed GKL approximations and bounds compared to existing ones from the literature including the original KL approximation.

we were able to use the minimax-optimized sets as mean
values around which small random variance is introduced to
work as initial guesses for their equivalent cases herein. Note
that the fminunc command finds the local minimum of the
target function. Therefore, we need to repeatedly run the local
solver to locate a solution that has the lowest target function
value. The optimized coefficients to the GKL approximations
are also solved herein for the two variations of the absolute
error and for the relative error with R = 10 in terms of the
total error.1

III. NUMERICAL RESULTS

This section demonstrates how excellent the GKL approxi-
mations and bounds perform, were they achieve world-record
low error levels as will be seen next. Figure 1 illustrates the
absolute error functions resulted from applying our approxima-
tions and key existing ones. Obviously, the proposed approxi-
mations are extremely tight and even more interestingly, they
substantially outperform all the reference cases for the whole
non-negative real axis even with only one term as can be noted
from the huge displacement in the corresponding curves in
Fig. 1(b). The accuracy increases considerably further when
increasing N as seen by the comparison between N = 1,
N = 2 and N = 4 for the minimax approximation.

Figure 2 plots the global error of the minimax
approximations and bounds proposed in Section II-A
together with the reference cases (solid lines and markers
with solid arrows), in addition to the total error of the
approximations proposed in Section II-B and the reference
cases (dashed lines and markers with dashed arrows), both
for N = 1, 2, . . . , 10 and in terms of both error measures.
With small N = 1, 2, 3, they already significantly outperform
the reference ones and their accuracy increases considerably
by increasing N . Ultimately, the proposed GKL expression
with optimized coefficients reaches extremely low levels
in the order of 10−9 and 10−5 for absolute and relative
errors, respectively, with N = 10. It should be noted that the
proposed approximations and bounds in the special case of
N = 1 are the same as those in [2].

IV. OVERVIEW OF APPLICATIONS

The applications of the original KL approximation and the
newly proposed GKL approximation (2)—both have the same
analytical complexity—are about the same and span different
areas of communication theory. A popular application example
would be evaluating the average symbol error probability for
coherent detection, which results in linear combinations of the
following integral with different integer values of P :

IP (γ̄) �
� ∞

0

QP (
√

γ)φγ(γ) dγ, (10)

where φγ(γ) is the fading probability density function of the
instantaneous signal-to-noise ratio γ with average γ̄.

When assuming generalized κ − μ distribution, (10) can
be evaluated using [15, Eqs. 3.351.3, 3.462.1, and 8.445]
after applying (2) to express tight approximations for the
P th integer power of the Gaussian Q-function using the
multinomial expansion. This yields

IP (γ̄) ≈
∞�

τ=0

μμ+2τ

exp(−κ μ)
κτ (1 + κ)μ+τ

Γ(μ + τ)τ !
ΨP (γ̄) (11)

and

IP (γ̄) ≈ mm

Γ(m)
ΨP (γ̄) (12)

in the general case and in the special case of Nakagami-m
fading (that occurs at κ = 0 and μ = m), respectively. The
convergent infinite series in (11) can be truncated to the desired
accuracy. For the above expressions,

ΨP (γ̄)

=
�

p1+p2+···+pN =P

P�
j=0

�
P

j

�
(−1)j 1

γ̄μ
GH

�
C−A−1

×Γ(A + 1)−C−A−3
2

�√
C Γ(A + 1)1F1

�
A + 1;

1
2
;
B2

4C

�

−B Γ
�

A +
3
2

�
1F1

�
A +

3
2
;
3
2
;
B2

4C

���
, (13)

in which the first summation is taken over all combinations
of non-negative integer indices p1 through pN such that the
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sum of all pn is P . The parameters are G =
�

P
p1,p2,...,pN

�
,

H = ap1
1 ap2

2 · · · apN

N , A = 2μ+2τ−2−P
2 > −1, B = c j, C =

Λ + μ(1+κ)
γ̄ , and Λ = b1 p1 + b2 p2 + . . . + bN pN ; moreover,

the parameters A and C reduce to A = 2m−2−P
2 > −1 and

C = Λ + m
γ̄ for the special case of Nakagami-m fading.

Let us then overview a few examples [16]–[20] from the
wide range of applications available in the literature for which
the proposed GKL expression is applicable as a substitute
for the KL expression that was originally used in those
publications. In particular, the GKL approximation/bound can
be used to calculate the sampling bit error probability of
binary phase shift keying [16], to approximate the phase noise
probability density function in the system considered in [17],
and to derive the coherent LoRa® symbol error rate under
additive white Gaussian noise [18]. Beyond communications,
it allows to approximate the distribution functions of parti-
cles experiencing compound subdiffusion [19] and to derive
the predictive error of the probability of failure [20], for
instance.

Furthermore, the simplified series expansion of the original
KL expression proposed in [21] can be applied likewise to (2)
with the optimized coefficients, which results in

Q(x) ≈
L�

l=1

N�
n=1

(−1)l+1 an cl

l!
exp

�−bn x2
�
xl−1. (14)

Since (14) can be used as a direct substitute for [21,
Eq. 3], the proposed GKL approximations are also useful for
the applications considered in [22]–[25] (and many others
that cite [21]) and improve the accuracy of the analysis
thereof.

V. CONCLUSION

This Letter presented a new tractable expression for approx-
imating the Gaussian Q-function together with multiple alter-
natives of coefficient sets for it1 that are optimized to minimize
either the global or total absolute/relative errors, from which
the best suitable set is chosen for any application at hand.
The extremely low error levels allow for their usage as highly
reliable substitutions to the Q-function in order to derive
virtually exact analytical expressions for different performance
metrics in communication theory. Moreover, we extended the
proposed expression to minimax bounds (with comparable
accuracy to that of the approximations) that are useful when
the worst/best case scenarios are of interest.
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