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SDGNet: A Handover-aware Spatiotemporal Graph
Neural Network for Mobile Traffic Forecasting

Yini Fang, Salih Ergüt, and Paul Patras, Senior Member, IEEE

Abstract—Accurate mobile traffic prediction at city-scale is
becoming increasingly important as data demand surges and
network deployments become denser. How mobile networks and
user mobility are modelled is key to high-quality forecasts. Prior
work builds on distance-based Euclidean (grids) or invariant
graph representations, which cannot capture dynamic spatiotem-
poral correlations with high fidelity. In this letter we propose
SDGNet, a handover-aware spatiotemporal graph neural network
that hinges on Dynamic Graph Convolution and Gated Linear
Units to predict traffic consumption over short, medium and long
time-frames. Experiments with a real-world dataset demonstrate
SDGNet outperforms state-of-the-art neural model, attaining up
to 4× lower prediction errors.

Index Terms—mobile traffic forecasting, graph neural net-
works, deep learning

I. INTRODUCTION

The total global monthly mobile data traffic consumption
exceeded 66 exabytes (EB) in Q1/2021 and is expected to
surpass 300 EB across different mobile technologies combined
by 2026 [1]. This continual rise in demand poses evermore
pressing challenges on mobile networks and highlights the
need for accurate traffic prediction as a driver for intelligent
management of resources, reduced operational expenditure,
and smaller network carbon footprint. For instance, traffic
forecasts can enable mobile operators to switch off parts of
their infrastructure or measurement equipment in order to save
both energy and cost. On the other hand, anticipating traffic
surges allows provisioning the right resources in advance, so
as to maintain user quality of experience.

Making highly-accurate mobile traffic predictions at city-
scale is however challenging, as services continues to diversify
and exhibit highly dynamic patterns, while spatiotemporal cor-
relations across different parts of a deployment are not straight-
forward to elucidate given unpredictable user mobility or
terrain/coverage irregularities. Previous forecasting solutions
build on Euclidean distance-based representations of RAN
layouts, which are mapped onto grids, before employing Long
Short Term Memories (LSTMs) [2], Convolutional Neural
Networks (CNNs) [3], or a combination of these [4], [5]–[7].
Such approaches (i) ignore that there may be multiple base sta-
tions at each grid cell, each with multiple sectors and multiple
carriers/sector, and users are often handed off between these,
sometimes among different technologies (e.g. from 4G to 3G),
and (ii) relationships between these stations change over time.
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of Edinburgh, UK. P. Patras is also with Net AI, UK. E-mail: {yini.
fang,paul.patras}@ed.ac.uk. S. Ergüt is with OREDATA, Turkey. E-mail:
salih.ergut@oredata.com This work was partially supported by Cisco through
the Cisco University Research Program Fund (Grant no. 2019-197006).

To be able to capture inter-sector/-base station dependencies
at different timestamps and produce more accurate forecasts,
in this work we use graphs to represent cellular networks,
where vertices correspond to antenna sectors, and weights
quantify the dependency between. Recent studies on Graph
Convolutional Network (GNN) model such dependency as
the distance between two locations [8]; however, location
proximity of base stations may not reflect strong dependency
due to terrain constraints (users connected to a base station
in a valley are unlikely to be handed off to another one
on the other side of an edge, but may be handed off to
a base station across a stretch of water, given favourable
signal propagation conditions), while distant base stations may
exhibit strong dependencies because of user daily commute
patterns (e.g. along a motorway). Therefore we harness fine-
grained handover frequency information, which reflects user
mobility to some extent and better captures traffic dynamics.

As such, we propose SDGNet (Spatiotemporal Dynamic
Graph Network), a handover-aware spatiotemporal graph
neural network for mobile traffic forecasting. We model the
cellular network as a directed and weighted dynamic graph,
which captures spatiotemporal correlations from both traffic
consumption and handover frequency. In particular, vertices
keep information about the volume of traffic at a particular
sector and time, while the weights are handover frequencies
between vertices over fixed observation windows. We leverage
Gated Linear Units (GLU) to extract temporal features, and
unlike RNN-based models, output traffic predictions at all
the base stations in a deployment simultaneously, while the
structure is faster to train. We propose a novel approach to
dynamic graph convolution, combining dynamic graph spectral
convolution and diffusion graph convolution, thereby capturing
spatial correlations both short- and long-term. We validate
SDGNet with a real-world mobile traffic dataset, demonstrat-
ing that our model achieves traffic forecasting with up to
75.2%, 59.4% and 56.0% higher short-, mid- and resepectively
long-term accuracy in terms of Mean Absolute Error (MAE),
compared with a range of benchmarks.

The rest of the letter is organised as follows: §II for-
malised the problem tackled, §III gives a brief introduction to
graph convolution, §IV presents our SDGNet architecture, §V
demonstrates the performance of our solution, §VI overviews
related work, and §VII concludes the letter.

II. PROBLEM FORMULATION

Consider a mobile network deployment comprising N base
stations. We denote by Ft = {Ft−T+1, ..., Ft} ∈ RT×N a
sequence of mobile traffic consumption measurements over T
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Fig. 1: Proposed SDGNet structure consisting of a feature
extraction block, several ST blocks, and a readout 2D Conv
layer (left). ST blocks consist of 2 temporal and 1 spatial layer
(the structure of each shown on the right).

timestamps up to the current time t, where Ft is the traffic
snapshot across all base stations, observed over an interval
[t −∆, t], i.e., Ft = {f t1, ..., f tN}, where f ti is the volume of
traffic at the i-th base station, and ∆ is the temporal granularity
of traffic observations configurable by a network administrator.

The mobile traffic network is represented as a directed,
weighted and dynamic graph. At the t-th time step, we define
a graph Gt = (vt, At), where vt ∈ RN×C is the graph signal
and C is the number of features (i.e., traffic consumption and
time information), and At ∈ RN×N is the adjacency matrix
where an element ati,j represents the handover frequency
between base stations i and j observed at that time.

Our objective is to predict the most likely mobile traffic
consumption in the next H time steps, given the past T
observations, i.e.,

F̂t+1, .., F̂t+H =

arg max
vt+1,...,vt+H

logP (Ft+1, ..., Ft+H | Gt−T+1, . . . , Gt) .

III. GRAPH CONVOLUTION PRIMER

Bruna et al. propose applying graph convolution (GCN) in
the Fourier domain [9], with applications to e.g. molecular
modelling [10]. The spectral graph convolution operator ∗G is
defined as the multiplication of a graph signal x ∈ Rn and
adjacency matrix A ∈ Rn×n with a kernel g ∈ Rn, i.e.

x ∗ Gg = g(L)x = g(UΛUT )x = Ug(Λ)UTx,

where L ∈ Rn×n is the normalised graph Laplacian, Λ is the
diagonal matrix of eigenvalues of L, and the graph Fourier
basis U ∈ Rn×n is the matrix of eigenvectors of L. The transi-
tion is based on the equation L = In−D−

1
2AD−

1
2 = UΛUT ,

where In is an identity matrix and D ∈ Rn×n is the diagonal
degree matrix with Dii = ΣjAij .

Kipf and Welling propose a first-order approximation of
spectral graph convolution [11], which aggregates and exploits
a node’s neighbourhood information, given by:

x ∗ Gg = θ(In +D−
1
2AD−

1
2 )x,

where θ ∈ RK are polynomial coefficients, given that the filter
function g(Λ) can be expressed by a function of a polynomial
of Λ. This optimization localizes the filter and significantly
reduces the computational complexity.

In contrast, Diffusion Graph Convolution (DCRNN) models
information flow as a diffusion process, and captures spatial
dependencies using bidirectional random walks on the graph
[12]. The DCRNN operator ∗D over a graph signal x ∈ Rn

and adjacency matrix A ∈ Rn×n with a kernel g ∈ Rn is:

x ∗ Dg =

K∑
k=0

(P k
f xθk,1 + P k

b xθk,2),

where K is the number of finite steps in the diffusion process,
θ ∈ RK×2 are the parameters of the filter and P k represents
the power series of the transition matrix. For directed graphs,
the diffusion process has a forward and backward direction,
with forward transition matrix Pf = A/ rowsum(A) and
backward transition matrix Pb = AT / rowsum(AT ).

Wu et al. propose Graph WaveNet [13] to produce road traf-
fic predictions, which uses a self-adaptive adjacency matrix to
learn hidden spatial dependencies. The graph convolution layer
in Graph WaveNet applies DCRNN for pre-defined spatial
dependencies and spectral graph convolution for self-learned
hidden dependencies. This model refines the graph topology
automatically in the case that such dependency information is
difficult to model or obtain.

IV. SDGNET

Inspired by Graph WaveNet [13], we propose SDGNet, a
deep neural network that solves the mobile traffic forecasting
problem posed in Sec. II. SDGNet captures spatiotemporal
correlations among traffic consumption at different locations
and dynamic adjacency matrices modelled from handover data.
The proposed model consists of a feature extraction block
followed by several spatiotemporal (ST) blocks, as shown in
Fig. 1. Each ST block comprises two temporal layers that
handle graph signals and adjacency matrices, and a spatial
layer for dynamic graph convolution. In what follows we
explain in detail the inner workings of these different modules.

a) Spatiotemporal feature extraction: The first block
generates feature maps for the next module by capturing
spatiotemporal correlations from graph signals V ∈ RT×N×C

and dynamic adjacency matrix A ∈ RT×N×N . The feature
dimension of A is first reduced by a Conv layer before
concatenating with V, so that features pertaining to A do not
dominate in the concatenated matrix. We then pass the results
through another Conv layer to extract feature maps that will
be handled by the subsequent spatiotemporal block.

b) Gated TCN: Each ST blocks encompasses two gated
temporal convolution networks (TCNs) and a Dynamic Graph
Convolution Network (DGCN). We adopt gated 1-D dilated
causal convolution [13] as Temporal convolution layer to
capture complex temporal dependencies. Dilated causal con-
volution can handle long-term sequences in a non-recursive
manner and converges faster compared to traditional RNN-
based models. The structure works by sliding over inputs and
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skipping elements with a given step, which increases with the
layer depth. Given an input x ∈ RT and filter g ∈ RK , the
dilated causal convolution operation step is represented as:

x ? g(t) =

K−1∑
s=0

g(s)x(t− d× s),

where d is the dilation factor determining the length of the
skipping step. Several dilated causal convolution layers are
stacked with increasing receptive fields.

A gating mechanism is applied to control the information
flow through layers [14], leading to the following output:

H(x) = z (x ? g1(t) + b)� σ (x ? g2(t) + c) ,

where b and c are model weights, � is the element-wise
multiplication, z(·) is an activation function, and σ(·) is the
sigmoid function which controls the information passed to the
next layer. We apply Gated TCNs on both inputs V and A, to
learn their temporal dependencies while reducing the temporal
dimension of the propagated output.

c) Dynamic Graph Convolution Network: To obtain
accurate forecasts both short- and long-term, we combine
spectral graph convolution and DCRNN into dynamic graph
convolution network. Intuitively, we can adopt spectral graph
convolution by applying the multiplication of x ∈ RT×N×C

and the adjacency matrix A ∈ RT×N×N along the first
dimension. This acts as T copies of spectral graph convolution,
each one working on one snapshot of the sequence. One
drawback is that these T copies share one weight, and have
no temporal correlations. To circumvent this issue, we adopt
EvolveGCN [15], where we assign a weight to each snapshot,
and these weights are temporally related. Mathematically, for
every snapshot xt and its corresponding adjacency matrix At,

xt = xt ∗ Gwt = σ
(
Ãtxtwt

)
,

wt = GRU(wt−1),

where Ãt = In + D−1/2AtD
−1/2 and wt is the weight

of t-th snapshot. Each GCN operation has a weight, which
is generated from the weight in the last snapshot using a
Gated recurrent unit (GRU). The GRU is used to capture
long-term temporal correlations. Compared to the Long Short-
Term Memory (LSTM), it has fewer gates and therefore is
faster to train and uses less memory. We initialize w1 at the
beginning. For the following recurrent steps, we use the last
output as both hidden state and the input to the GRU. Finally
we concatenate the output from every snapshot as the final
output of EvolveGCN. We denote the EvolveGCN operator as
∗E . We express the DGCN operation in matrix form:

Y(x,A) =x ∗ Ewe + x ∗ Dwd

=‖Tt=1Ãtxw
e
t +

K∑
k=0

(Pk
fxw

d
k,1 + Pk

bxw
d
k,2),

where ‖ denotes concatenation, Ã = In + D−1/2AD−1/2,
we ∈ RT×C×C′

, wd ∈ RC×C′
. C ′ is the dimension of the

hidden states. Finally, the formula of the l-th ST block given

Fig. 2: Avg. and std deviation of weekly traffic consumption
and normalised handover count, over the entire deployment.

the input graph signal vl ∈ RT×N×C′
and input adjacency

matrix Al ∈ RT×N×N , is given by:

vl+1 = Y(H(vl),H(Al)); Al+1 = H(Al).

d) Training Loss: We seek to minimise the Mean Square
Error (MSE) when training the overall neural model, i.e.

L(F̂t+1, .., F̂t+H) =
1

H ×N

H∑
i=1

N∑
n=1

(f̂ in − f in)2,

where H is the number of prediction steps and N is the
number of base stations in the deployment.

V. EVALUATION

We implement SDGNet using PyTorch, empirically choos-
ing a configuration with 8 ST blocks, following experiments
with different numbers and aiming to strike a good perfor-
mance/complexity trade-off. We train using the Adam opti-
mizer with learning rate λ = 10−4 and a batch size of 128.

A. Dataset

We evaluate our SDGNet using real-world mobile traffic
data collected by Turkcell between 5–29 March 2020 in a
medium-size city. The commercial-sensitivity of the dataset
precluded disclosure of antenna sector locations and its public
release. As such, our comparison is confined to graph neu-
ral models and excludes solutions that involve location re-
mapping to a grid [2]–[6]. Fig. 2 shows the weekly average
and standard deviation of the volume of traffic and respectively
the normalised handover count, across the entire deployment.
Traffic volume and handover count have peaks at slightly
different times due to their different scope: the former reflects
consumption and the latter user mobility. To ensure sufficient
data samples for training, we augment the dataset via bicubic
interpolation, enhancing the granularity from 1 h to 10 min.
This enhances the sample size by a factor of 6×, while also
aligning with finer time-frames typical of resource allocation
decisions in software-based networks. We split the data into
training, validation and testing with a 6:2:2 ratio. We confine
consideration to 100 base stations that exhibit the highest
traffic consumption.

To speed up training, we normalize the traffic consumption
data by log(1 + x)/x̄, where x is a traffic consumption
measurement and x̄ is the mean of log(1 + x) across all
data points. We further normalize the adjacency matrices by
a Softmax function (i.e. handovers counts from a base station
to other base stations sum up to 1). We add absolute time
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Fig. 3: Normalised traffic predictions between 16:00 and 23:00, averaged over 5 days, when forecasting window is 3 steps (30
min, left), 6 steps (60 min, middle), and 12 steps (120 right), at a heavily-loaded (top) and lightly-loaded (bottom) base station.

TABLE I: Model configurations

Model Configuration
Spatial operation Temporal operation

STGCN-HO GCN 1D CNN
DCRNN DCRNN Gated TCN

WaveNet GCN with self-adaptive
adjacency matrix +DCRNN Gated TCN

STAWnet GCN+DCRNN, both with
self-adaptive adjacency matrix Gated TCN

SDGNet EvolveGCN+DCRNN Gated TCN

information as additional features of the graph signals, namely
day of the week, hour of the day, and minute of the hour,
which we map to the [−1, 1] range. We use historical two-
hour windows as inputs to model input, i.e. 12 snapshots.
B. Result

We measure the prediction accuracy of our SDGNet over
3, 6 and 12 steps respectively (30, 60, and 120 min), in terms
of mean absolute area (MAE) and root mean squared error
(RMSE), which we compare against that of the following
graph neural network benchmarks (configurations in Table I):
• STGCN-HO [16] – also models dependencies through

handover frequency, but uses the average handover fre-
quency computed over four random days, without captur-
ing any handover dynamics.

• DCRNN [12] – as introduced before, DCRNN models the
traffic flow as a diffusion process on a directed graph.

• WaveNet [13] – introduces an adaptive adjacency matrix
which is initialised with the adjacency matrix and learned
in the training process.

• STAWnet [17] – introduces self-learned node embedding
by a dynamic attention mechanism; no prior knowledge
of the graph is needed; the adjacency matrix is not used
in attention learning.

All models considered are trained and evaluated with the
same dataset. The results are summarised in Table II. Observe
that our solution outperforms the existing models, reducing the
MAE of the best performing benchmark by 6.0% (DCRNN),

TABLE II: Forecasting performance comparison

30 min 60 min 120 min
Model MAE RMSE MAE RMSE MAE RMSE
STGCN-HO 3.14 4.78 3.23 4.85 4.29 6.12
DCRNN 1.03 1.70 2.17 3.53 3.81 5.92
WaveNet 0.83 1.38 1.99 3.16 3.23 5.03
STAWnet 1.16 1.74 1.85 3.11 3.00 4.84
SDGNet 0.78 1.28 1.31 2.42 2.75 4.49

7.2% (WaveNet) and 8.3% (STAWnet), when making 3-step,
6-step, and 12-step predictions respectively. Short-term, our
SDGNet provides 4× smaller errors than STGCN-HO (which
uses fixed adjecncy matrices), while over 2 hours our model
offers up to 36% lower MAE.

We delve deeper into the behaviour of SDGNet and that
of the benchmarks considered, and plot the predicted traffic
consumption using these models between times of the day
with low demand (16:00 hrs) and high demand (23:00 hrs),
zooming in on a heavily-loaded and lightly-loaded base station
and examining different forecasting windows. The results are
illustrated in Fig. 3, where dashed line stands indicate the
beginning of a prediction window as we apply a sliding
window with different numbers of predicted steps – 3 (left),
6 (middle), 12 (right). Observe that DCRNN always underes-
timates the traffic volume at the heavily-loaded base station,
while WaveNet tends to overestimate the traffic consumption
at both base stations. STAWnet performs worse when making
6-step predictions at the heavily-loaded base station. STGCN-
HO fails to capture the traffic patterns correctly, which results
in significant deviations from the ground truth. In contrast,
our SDGNet forecasts the traffic consumption accurately ir-
respective of the load regime or forecasting window length,
following closely the ground truth.

Long-term performance: We take a closer look at how
the different approaches compare when making long-term
predictions. To this end, in Fig. 4 we plot the average MAE
at each prediction step of 12-step (120 min) forecasting
windows. STGCN-HO performs modestly at the beginning
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Fig. 4: Average MAE of SDGNet and different benchmarks
at each step of 12-step forecasting windows.

Fig. 5: Time complexity of SDGNet and different benchmarks.

but approaches the performance of most models in the final
steps, while DCRNN predicts reasonably well at the beginning
but much worse in the final steps. This indicates that spectral
graph convolution is helpful for long-term prediction while
DCRNN structures benefit short-term forecasting. This is also
seen in the behaviour of the other three models where spectral
convolution-based and DCRNN are combined. Our SDGNet
yields the smallest error at every step, which confirms the ben-
efit of capturing handover dynamics when making predictions.

Time complexity: Fig. 5 shows the number of FLOPs
per inference instance of SDGNet and the benchmark models
considered. Because SDGNet works with adjacency matrices
of larger dimensionality and encompasses several GRUs that
process the data sequentially, the accuracy gains it achieves
come at the price of higher inference times. However, given
that off-the-shelf GPUs routinely handle over 20 TFLOPs per
second, the cost is affordable.

VI. RELATED WORK

Applying graph convolution to spatiotemproal tasks is gain-
ing wide interest. Seo et al. introduce a Graph Convolutional
Recurrent Network (GCRN) to predict structured sequences
of data [18]. The proposed model combines graph convo-
lution operations to identify spatial structures and RNN to
capture dynamic patterns. The authors found that simulta-
neously exploiting graph spatial and dynamic information
about data can improve both prediction accuracy and training
speed. Based on this principle, Li et al. propose Diffusion
Convolutional Recurrent Neural Network (DCRNN) for traffic
prediction, modelling traffic flows as a diffusion process [12].
In contrast, Spatiotemporal Graph Convolutional Networks
(STGCNs) consists of spatiotemporal convolutional layers and
a fully-connected output layer, with a residual connection and
bottleneck strategy applied inside each block [19].
where the neighbouring base stations are limited to those in

The performance of the GCN models relies on the structure
of the input graph [11], and which makes it difficult to capture
the complex spatial dependencies specific to mobile traffic. In
graphs, this dependency is reflected in the adjacency matrix,
as weight w(i, j) reflect how the traffic from an i-th base
station is related to that an j-th. This adjacency is modelled
as a function of distance between these two base station in [8],

close proximity. This approach harms prediction performance
because spatial correlations among traffic also exist between
distant base stations [20]. Zhao et al. consider the effect of
handover on the spatial characteristics of the traffic and build
graphs for base stations based on their handover frequencies
[16]. Kalander et al. use hybrid GCNs with three types
of binary adjacency matrices: spatial proximity, functional
similarity (i.e. similarity of average weekly traffic), and recent
similarity trends [21]. This requires substantial memory and
becomes impractical as the number of base stations is grows.

VII. CONCLUSION

In this letter we proposed SDGNet, a handover-aware
dynamic graph neural network for mobile traffic prediction.
Our architecture captures accurately dynamic spatiotemporal
correlations within both mobile traffic consumption and han-
dovers among base stations. We experimented with a real-
world mobile traffic data set, demonstrating that our solution
outperforms state-of-the art forecasting models and excels in
making long-term predictions. Improvements remain to be
further explored, such as hybrid graph structures that exploit
more detailed information about the cellular network without
becoming computationally heavy.
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