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Abstract

This paper investigates reconfigurable intelligent surface (RIS)-assisted full-duplex multiple-input

single-output wireless system, where the beamforming and RIS phase shifts are optimized to maximize

the sum-rate for both single and distributed RIS deployment schemes. The preference of using the

single or distributed RIS deployment scheme is investigated through three practical scenarios based on

the links’ quality. The closed-form solution is derived to optimize the beamforming vectors and a novel

deep reinforcement learning (DRL) algorithm is proposed to optimize the RIS phase shifts. Simulation

results illustrate that the choice of the deployment scheme depends on the scenario and the links’

quality. It is further shown that the proposed algorithm significantly improves the sum-rate compared

to the non-optimized scenario in both single and distributed RIS deployment schemes. Besides, the

proposed beamforming derivation achieves a remarkable improvement compared to the approximated

derivation in previous works. Finally, the complexity analysis confirms that the proposed DRL algorithm

reduces the computation complexity compared to the DRL algorithm in the literature.

Index Terms

Reconfigurable intelligent surface (RIS), full-duplex, deep reinforcement learning, single and distributed

RIS.

I. INTRODUCTION

Recently, the reconfigurable intelligent surface (RIS) technology has been proposed as a key

enabler to meet the demands of future technologies [1], [2]. RIS is a meta-surface consisting of
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low-cost passive elements that can be programmed to turn the random nature of wireless channels

into a partially deterministic space to improve the propagation of wireless signals [3]. In addition

to the RIS technology, full-duplex (FD) transmission has been regarded as a potential approach

to increase the spectral efficiency of wireless systems by enabling simultaneous transmission

and reception [4], [5].

Incorporating RIS into FD communications can provide new degrees of freedom, facilitating

ultra spectrum-efficient communication systems [6]. A number of existing works have studied

RIS-assisted FD wireless networks [7]–[9]. The works in [7], [8] considered alternating optimization

(AO) techniques to optimize the RIS phase shifts in FD systems. The authors in [9] considered a

multi RIS-assisted FD system to maximize the weighted system sum-rate, where the non-convex

problem was addressed using the AO approach.

The above works that used AO techniques exhibit both loss of optimality and high computational

complexity. Deep reinforcement learning (DRL) has emerged as a powerful approach to optimize

the RIS phase shifts by overcoming the practical implementation problems of AO techniques.

Furthermore, DRL approaches enable addressing mathematically intractable nonlinear problems

directly, without the need of prior relaxations requirements. The work in [10] proposed a DRL

algorithm to maximize the rate, where both half-duplex and FD operating modes are considered

together. However, only a single RIS deployment was considered. The rapid changes in dynamic

environments can obliterate/annihilate the RIS deployment benefits when the corresponding link

is blocked/weak. In such cases, deploying distributed power-efficient RISs can cooperatively

enhance the coverage of the system by providing multiple paths of received signals. Moreover, the

computational complexity can be further reduced. To the best of the authors’ knowledge, utilizing

DRL for investigating the performance of single and distributed RIS deployment schemes in FD

multiple-input single-output (MISO) systems has not yet been considered in the literature. Our

contributions are summarized as follows:

• Three practical scenarios are considered to investigate the sum-rate performance of deploying

a single or distributed RIS in a FD-MISO system.

• A closed-form solution is derived to optimize the transmit beamformers, which provides

a remarkable improvement in the sum-rate compared to the state-of-the-art approximated

derivation in [10].

• An improved DRL algorithm is proposed to optimize the RIS phase shifts for both deployment

schemes, which achieves a significant improvement in the sum-rate compared to the non-
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optimized scenarios.

• The proposed DRL algorithm provides a considerable reduction in the computational complexity

compared to the DRL algorithm in [10].

• The complexity analysis and Monte Carlo simulations support the findings.

The rest of this letter is organized as follows: Section II presents the system model and problem

formulation. The proposed DRL algorithm is introduced in Section III. Simulation results and

conclusions are presented in Sections IV and V, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider an RIS-assisted FD MISO system, where single and distributed RIS deployment

schemes are investigated. S1 and S2 represent the base station (BS) and user equipment (UE),

respectively. Both the BS and UE are equipped with M transmit antennas and one receive

antenna. The r-th RIS, Rr, consists of Nr programmable reflecting elements. Note that the total

number of elements for both deployment schemes is defined as N = NrΛ to ensure the same

number of RIS elements for all scenarios, where Λ is the number of RISs. As illustrated in

Fig. 1, three scenarios are investigated based on the links’ quality. In the first scenario, the

single and distributed RIS deployment schemes have strong line-of-sight (LoS) components in

all links. Scenarios 2 and 3 assume that the links of R1-S2 and S1-R2 are weak due to obstacles,

respectively. It is worth noting that from a practical point of view, it is more probable that the

longer distance links (i.e., R1-S2 and S1-R2) may experience blockage since the short-distance

links are planned deployment links. It also ensures a fair comparison between the two deployment

schemes as the RIS benefits are embraced in all scenarios.

Given ī = 3 − i ∀ i ∈ {1, 2}, let HSīRr
∈ CNr×M , hH

RrSi
∈ C1×Nr , and h

H
SīSi
∈ C1×M denote

the channel coefficients of the Sī-Rr, Rr-Si, and Sī-Si links, respectively. The self-interference

(SI) channels of both the BS and UE are denoted by h
H
SiSi
∈ C1×M . Hence, the noisy received

signal, yi, is

yi =
(

∑

r∈Λ

h
H
RrSi

ΘrHSīRr
+ h

H
SīSi

)

wīxī + h
H
SiSi

wixi + n,

i = 1, 2, Λ =











1 Single RIS

2 Distributed RIS,
(1)
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Single Distributed

(a) Scenario 1

Single Distributed

(b) Scenario 2

Single Distributed

(c) Scenario 3

Fig. 1: RIS-assisted FD MISO system.

where n ∼ CN (0, σ2) denotes the additive white complex Gaussian noise with zero-mean and

variance σ2. The diagonal matrix Θr = diag
(

ejϕr1, · · · , ejϕrn, · · · , ejϕrNr

)

∈ CNr×Nr represents

the phase shifts of Rr, where ϕrn ∈ [−π, π) is the phase shift introduced by the n-th reflecting

element. The source node, Si, employs an active beamforming wi ∈ CM×1 to transmit the

information signal, xi, with E{|xi|2} = 1, where E{·} denotes the expectation operation.

Based on (1), the received signal-to-interference plus-noise ratio, γi, and achievable rate, Ri,

measured in bit per second per Hertz (bps/Hz), are respectively given as

γi =

∣

∣

∣

(

∑

r∈Λ h
H
RrSi

ΘrHSīRr
+ h

H
SīSi

)

wī

∣

∣

∣

2

|hH
SiSi

wi|2 + σ2
,

i = 1, 2, Λ =











1 Single RIS

2 Distributed RIS,
(2)

and

Ri = log2 (1 + γi) . (3)

The objective is to maximize the sum-rate by optimizing the beamformers and RIS phase shifts,
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and is formulated as

(P1) max
wi, Θ̄

2
∑

i=1

Ri (4a)

s.t. −π ≤ ϕrn ≤ π, n = 1, · · · , Nr, (4b)

||wi||2 ≤ Pmax, i = 1, 2. (4c)

Here, Θ̄ = diag
(

Θ1,Θ2

)

is a block matrix whose diagonal entries contain the phase shifts of

the two RISs for the distributed RIS, and Θ̄ = diag
(

Θ1) when a single RIS is considered. Pmax

is the maximum transmitted power of Si. It is worth noting that (P1) is challenging to solve

due to the non-convexity of the objective function and constraints. Thus, an efficient solution is

proposed which decouples the problem into two sub-problems.

III. PROPOSED SOLUTION

This section proposes a novel algorithm to solve (P1). First, a closed-form solution is derived

to optimize the transmit beamformers, w∗
i , for a fixed Θ̄. Then, the RIS phase shifts, Θ̄, are

obtained using the proposed DRL algorithm. This process is repeated until Θ̄
∗

and w
∗
i converge.

In what follows, more details about the two-step solution are provided.

A. Beamformers Optimization for a Given Θ̄

The mutual information I(s; y) with an arbitrary input probability distribution p(s) for a

channel with input s, output y, and a transition probability of p(y|s) is given by

I(s; y) = max
q(s|y)

E
[

log (q(s|y))− log (p(s))
]

, (5)

where the optimal q∗(s|y) is the posterior probability [8], and is expressed as q∗(s|y) = p(s)p(y|s)
p(y)

,

p(s|y). Based on (5), the achievable rate of Si is

Ri = max
q(si|yī)

E
[

log (q(si|yī))− log (p(si))
]

, (6)

where the input probability distribution p(si) is CN (0, 1) and the channel transition probability

p(yī|si) is obtained from (1). According to [11], p(si|yī) follows the complex Gaussian distribution

of CN (f ∗
ī
yī,Σ

∗
ī
). Σ∗

ī
is defined as Σ∗

ī
= 1− f ∗

ī
b̄i, where f ∗

ī
and b̄i are respectively expressed as
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f ∗
ī =

b̄i
b2
ī
+ |hH

SīSī
wī|2

, (7)

b̄i =

∣

∣

∣

∣

∣

(

∑

r∈Λ

h
H
RrSī

ΘrHSiRr
+ h

H
SiSī

)

wi

∣

∣

∣

∣

∣

2

. (8)

To this end, (4a) in (P1) can be re-expressed as

max
wi, Θ̄, fi,Σi

2
∑

i=1

E
[

log(p(si|yī))− log(p(si))
]

. (9)

Let αī =
∑

r∈Λ h
H
RrSī

ΘrHSiRr
+h

H
SiSī

and b̄i = |αīwi|2. The expectation term in (9) is calculated

as

E
[

log(CN (fīyī,Σī))− log(CN (0, 1))
]

= exp

(

fiyī +
Σī

2

)

− exp

(

1

2

)

= −1
2
fī|αīwi|2 +wi

(

fīαī + fih
H
SiSi

)

. (10)

Furthermore, let βī = fīαī + fih
H
SiSi

. Thus, (10) can be defined as a convex quadratically

constrained quadratic program:

− 1

2
fī|αīwi|2 +wiβī, (11)

where its solution can be derived as

w
∗
i = (v∗ + fīαīα

H
ī )

−1βī. (12)

Here, v∗ is the optimal dual Lagrangian variable associated with the power constraint and is

found by performing a bisection search over the interval

[

0,
√

βT
ī βī/

√
Pmax

]

[12].

B. Phase Shift Optimization for a Given wi and wī

Model-free RL can be employed to address a decision-making problem by learning the optimal

solution in dynamic environments. Therefore, the RIS-assisted FD MISO system represents the

DRL environment and the RIS controller represents the DRL agent. At each time step t, the
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agent observes the current state, st, from the environment, takes an action, at, based on a policy,

π̃, receives a reward, rt, of executing at, and transitions to a new state st+1. The key elements of

DRL are defined as follows: The state space at time step t, includes ϕrn∀ n = 1, · · · , Nr and the

corresponding
∑2

i=1 Ri at time step t−1, i.e., st=
[

∑2
i=1R

(t−1)
i , ϕ

(t−1)
r1 , · · · , ϕ(t−1)

rn , · · · , ϕ(t−1)
rNr

]

.

The action space at time step t is expressed as at =
[

ϕ
(t)
r1 , · · · , ϕ(t)

rn, · · · , ϕ(t)
rNr

]

, and the reward

at time step t is rt =
∑2

i=1R
(t)
i .

The goal of a RL agent is to learn a policy that maximizes the expected cumulative discounted

reward from the start state, as: J(π̃) = E [R1|π̃]. The policy gradient based algorithms can be

used to learn the optimal policy for continuous at. In particular, the proposed algorithm aims

at maximizing the return by training deep neural networks (DNN) to approximate the Q-value

function. It is based on the actor-critic approach, which consists of two DNN models: actor,

µ(st|θµ), and critic, Q(st, at|θq), where θ represents the DNN parameters. The actor takes the

state as an input and outputs at = µ(st|θµ)+ ξ, where ξ is a random process that is added to the

actions for exploration, representing the policy network. The critic takes st and at as an input

and outputs the Q-value, representing the evaluation network [13].

At the initialization stage, four networks are generated, i.e., target and evaluation DNN. The

target networks are generated by making a copy of the actor and critic evaluation NNs, µ′(st|θµ′)

and Q′(st, at|θq′). The experience replay with memory D is built to reduce the correlation of

the training samples. During each episode, all the channel state information is obtained. Then,

the agent takes at generated by the actor network, calculates the rt, and transitions to st+1. The

experience is then stored (st, at, rt, st+1) into D, and the critic evaluation network randomly

samples a minibatch transitions, NB , to calculate the target value yj , as

yj = rj + ρQ′(sj+1, µ
′(sj+1|θµ′)|θq′), (13)

where ρ ∈ (0, 1] is the discount factor. The actor and critic NN parameters, θµ and θq, are

updated using the stochastic gradient descent and policy gradient, respectively, as

L =
1

NB

∑

j

(yj −Q(sj , aj|θq))
2 , (14)

and

∇θµ
=

1

NB

∑

j

∇aQ(s, a|θq)|s=sj,a=µ(sj)∇θµ
µ(s|θµ)|sj . (15)
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Fig. 2: The proposed DRL algorithm structure.

Finally, the target NN parameters are updated using a soft update coefficient, τ , as

θq′ ←− τθq + (1− τ)θq′, (16)

θµ′ ←− τθµ′ + (1− τ)θµ′ . (17)

This process is repeated for K and T until convergence is reached. The structure of the proposed

DRL algorithm is illustrated in Fig. 2 and summarized in Algorithm 1.

C. Proposed DNN Design

The proposed DNN models are designed as feedforward fully connected NNs. The proposed

algorithm contains four NNs (actor and critic for each evaluation and target network). Each NN

has an input layer, two hidden layers and output layer, as shown in Fig. 2. The input layer of

the actor and critic networks contains N + 1 neurons (i.e., size of st). The input of the actor

is passed to two hidden layers, each having ψi neurons, where ψi is the number of neurons of

the i-th layer. On the other hand, the input of the critic network is passed to the first hidden

layer that is concatenated with at (i.e., size of ψi + N), and then passed to the second hidden

layer. The two hidden layers for each of the actor and critic networks use the ReLU activation

function whereas the output layer of the actor network uses the tanh activation function. The

output layer of the actor and critic networks contains N neurons (i.e., size of at) and one neuron

(i.e., Q-value), respectively.
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Algorithm 1 Proposed DRL algorithm.

Initialize: θµ and θq with random weights, D, ρ, τ , learning rate ν, θµ′ ← θµ and θq′ ← θq;

1: repeat

2: Collect the channels of the k-th episode;

3: Randomly initialize ϕrn ∀ n = 1, · · · , Nr;

4: Calculate wī using (12);

5: Initialize ξ ∼ CN (0, 0.1);
6: repeat

7: Obtain at = µ(st|θµ) + ξ from the actor network and reshape it;

8: Repeat Line #4;

9: Observe the new state, st+1, given at;
10: Store (st, at, rt, st+1) in D;

11: When D is full, sample a minibatch of NB transitions (sj , aj, rj, sj+1) randomly from

D;

12: Compute the target value from (13);

13: Update the critic using (14);

14: Update the actor using (15);

15: Update the target NNs using (16) and (17);

16: until t = T ;

17: until k = K;

Output: Optimal action that corresponds to the optimal Θ̄
∗
.

D. Complexity Analysis

The computational complexity of the proposed DRL algorithm is analyzed in terms of the

number of NN parameters CP required to be stored, real additions CA, and real multiplications

CM. It is worth noting that, for simplicity, each activation function is considered to cost one real

addition. Henceforth, the complexity for the proposed DRL algorithm based on the NNs design

is given as

CP = 2

(

3
∑

i=1

(ψA
i + 1)ψA

i+1 +
3
∑

i=1

(ψC
i + 1)ψC

i+1

)

, (18)

CM = 2

(

3
∑

i=1

ψA
i ψ

A
i+1 +

3
∑

i=1

ψC
i ψ

C
i+1

)

, (19)

CA = 2

(

3
∑

i=1

ψA
i ψ

A
i+1 +

3
∑

i=1

ψA
i+1 +

3
∑

i=1

ψC
i ψ

C
i+1 +

3
∑

i=1

ψC
i+1

)

, (20)

where the actor and critic networks are expressed through the superscripts A and C, respectively.

The complexity reduction of using the proposed DRL algorithm over the algorithm in [10] for

the single RIS-assisted FD system is
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Single

Distributed

Fig. 3: Simulation setup.

Reduction = 1−
{

CA
χ + CC

χ

}

Proposed
{

CA
χ + CC

χ

}

[10]

, χ ∈ {P,A,M}. (21)

IV. SIMULATION RESULTS

Figure 3 illustrates the simulation setup, where the considered parameters are: dv1 = dv2 = 2m

and d1 = 50m. The distances between the links are: d11 =
√

d201 + d2v1 m, d12 =
√

d202 + d2v2 m,

d21 =
√

(d1 − d01)2 + d2v1 m, and d22 =
√

(d1 − d02)2 + d2v2 m. The path loss (PL) at distance dir

is modeled as PL = PL0−10ζ log10

(

dir
Dr

)

[14], where PL0 is the PL at a reference distance Dr

and ζ is the PL exponent, in which PL0 = −35.6 dB and Dr = 1m. The channels are modeled

as Rayleigh fading whenever a blocking element exists. Otherwise, the channels are modeled as

Rician with a factor of 10. The PL exponents of the S1-S2, S1-Rr, and S2-Rr channels are set

to ζBU = 4, ζBR = 2.1, and ζUR = 2.2, respectively [9]. The PL of the SI channels is −95 dB.

The total transmit power is P = 15 dBm, while the noise power is σ2 = −80 dBm [7].

The parameters of the proposed DRL are as follows: T = 800, K = 500, NB = 16, νA =

0.0001, νC = 0.0002, decaying rate = 0.0001, ρ = 0.99, τ = 0.001, and D = 50000. Both actor

and critic networks use the Adam optimizer for updating the parameters. The number of neurons

of the hidden layers are, ψ1 = 100 and ψ2 = 45. To validate the performance of the proposed

algorithm, it is compared with the non-optimized scheme, referred to as random phase shifts.

Furthermore, it is compared with the algorithm in [10] for the single RIS-assisted FD system to

show the superiority of the proposed beamforming derivations over the approximated derivations

in [10]. To ensure a fair comparison, it is assumed that N is the same for both deployment

schemes. Hence, each RIS in the distributed scheme has half the number of elements of the

single scheme.

Figure 4 studies the RIS deployment problem in both single and distributed RIS-assisted FD

system. In the single RIS scheme, the sum-rate gradually increases when the RIS gets closer to
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S1 or S2. In the distributed RIS scheme, two cases are considered: varying d01 when d02 = 49m

and varying d02 when d01 = 1m. As both RISs get near the ends or if one is fixed near S1 and

the other is near S2, the sum-rate increases. It is shown that when the RIS is located relatively far

from both S1 and S2 in the single RIS scheme, the distributed RIS scheme significantly improves

the sum-rate. This is because deploying distributed RISs enables providing alternative paths when

the other RIS experiences a poor quality link. For the rest of the paper, it is considered that

d01 = 1m and d02 = 49m.

Figure 5 illustrates the effect of increasing N on the system performance. Three practical

scenarios are considered to investigate the preference of using single or distributed RIS schemes.

In Scenario 1, the distributed and single RIS schemes achieve a similar performance due to the

strong LoS components (i.e., good quality links), and N is the same in both schemes. In Scenario

2, the results illustrate that the distributed RIS system significantly outperforms the single RIS

system when the R1-S2 link is blocked/weak. In this case, the distributed RIS scheme has a

higher sum-rate since it compensates for the poor quality link by providing an alternative path.

On the other hand, if the link between R2-S2 is blocked/week, as in Scenario 3, the single RIS

scheme outperforms the distributed RIS since the former has double the number of elements

compared to the latter. It is also worth noting that the proposed DRL algorithm provides a

significant improvement in the sum-rate for the single and distributed RIS schemes compared to

the random RIS phase shifts in all scenarios. The performance of the studied scenarios provides

important insights into the preference of each deployment scheme based on the link conditions.

Scenario 1 further points that the deployment cost should be considered if both schemes yield

similar performance, as the required channel state information of the single RIS scheme is less

than that of the distributed RIS scheme.

In the single RIS scheme, the proposed beamforming derivation improves the sum-rate performance

in all scenarios, when compared to [10], as depicted in Fig. 5. Moreover, as shown in Fig. 6, the

proposed DRL algorithm provides a complexity reduction percentage up to 40% for the range

of N from 20 to 60 compared to the DRL presented in [10], and it saturates at 57% when N

is very large.

V. CONCLUSION

This letter optimized the beamformers and RIS phase shifts to maximize the sum-rate for both

single and distributed RIS deployment schemes. Three practical scenarios were considered to
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Fig. 5: The impact of varying N on the system performance.

investigate the preference of using single or distributed RIS deployment schemes. A closed-form

solution is derived to obtain the optimal beamformers, and a novel DRL algorithm is considered

for the RIS phase shifts optimization. It was shown that the superiority of a deployment scheme

depends on the links’ quality. Compared to the non-optimized scenarios, the proposed algorithm

significantly improved the sum-rate for both deployment schemes. The proposed DRL algorithm

achieved up to 57% complexity reduction compared to the DRL algorithm in the literature. Future

works may consider generalizing the proposed DRL by jointly optimizing the beamformers and
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RIS phase shifts for multi-user systems.
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