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On the Performance of Uplink ISAC Systems
Chongjun Ouyang, Yuanwei Liu, and Hongwen Yang

Abstract—This letter analyzes the performance of uplink
integrated sensing and communications (ISAC) systems where
communication users (CUs) and radar targets (RTs) share the
same frequency band. A non-orthogonal multiple access (NOMA)
protocol is adopted in the communication procedure of the
ISAC system. Novel expressions are derived to characterize the
outage probability, ergodic communication rate, and sensing rate.
Besides, the diversity order and high signal-to-noise ratio (SNR)
slope are unveiled to gain further insights. It is found that
when achieving the same communication rate, the ISAC system
enjoys a higher sensing rate than the conventional frequency-
division sensing and communications (FDSAC) system where CUs
and RTs share isolated bands. All the results are validated by
numerical simulations and are in excellent agreement.

Index Terms—Communication rate, integrated sensing and
communications (ISAC), performance analysis, sensing rate.

I. INTRODUCTION

Integrated sensing and communications (ISAC) is believed

to be a promising spectrum-sharing candidate for future wire-

less networks [1]. By integrating the wireless communications

and radar sensing to share the same spectrum and infrastruc-

ture, ISAC is capable of improving the spectral efficiency,

reducing the hardware cost, and limiting the electromagnetic

pollution [1]. These advantages have attracted vibrant indus-

trial and academic interest in the ISAC technique [1]–[7].

Recently, a considerable literature has grown up around the

theme of ISAC. For a review, please see the recent papers

[1]–[7] and references therein. Yet, it is worth noting that

most studies in the field of ISAC have only focused on the

waveform or beamformig design. In contrast to this, there has

been little quantitative analysis of the basic performance of

ISAC systems, while only a couple of papers appeared recently

[8], [9]. For example, the communication-sensing performance

tradeoffs in ISAC systems with a single communication user

(CU) were discussed from an estimation-theoretical perspec-

tive by using the Cramér-Rao bound metric for radar sensing

and minimum mean-square error metric for communications

[8]. On a parallel track, the communication-sensing rate region

achieved in a single-CU ISAC system was characterized from

an information-theoretical perspective [9]. In a nutshell, these

works have laid a solid foundation for understanding the

fundamental performance of ISAC systems. However, in these

works, the influence of channel fading as well as multi-user

interference was not taken into account and no more in-depth

system insights, such as the diversity order and high signal-

to-noise ratio (SNR) slope, were unveiled.
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To fill this knowledge gap, this letter investigates the per-

formance of uplink multiple-CU ISAC systems where a non-

orthogonal multiple access (NOMA) protocol is involved in

the communication procedure. We use the outage probability

(OP) as well as the ergodic communication rate (ECR) metrics

for communications and maximal sensing rate metric for radar

sensing. Exact expressions for these metrics as well as their

high-SNR approximations are provided. Numerical results

suggest that when achieving the same communication rate, the

ISAC system yields a higher sensing rate than the frequency-

division sensing and communications (FDSAC) system where

isolated bands are used for communications and sensing,

respectively.

II. SYSTEM MODEL

In an uplink ISAC system shown in Fig. 1(a), one radar-

communications (RadCom) base station (BS) receives data

from 2K single-antenna communication users while simul-

taneously sensing the radar targets (RTs). There are two types

of CUs, namely near CUs and cell-edge CUs. Particularly, the

2K CUs communicate with the BS under a signal alignment-

based NOMA protocol [10]. Moreover, the CUs are grouped

into K groups and the kth group contains one near CU k
and one cell-edge CU k′ [10]. For sensing, the BS should

broadcast a radar waveform to the nearby environment and

extract environmental information from the radar waveform

reflected by the RTs. Since the time interval of a radar

waveform may be longer than the round-trip time of radar

waveform travelling between the BS and the RTs, the BS

should work on the full duplex mode [6]. To mitigate the

resultant self-interference, we consider that the BS is equipped

with two sets of spatially well-separated antennas [5]–[7], i.e.,

M transmit antennas and N receive antennas, whose structure

is illustrated in Fig. 1(b). For simplicity, we assume the self-

interference can be completely eliminated [5]–[7].

Let S = [s1 · · · sL] ∈ CM×L (L ≥ M , L ≥ N ) denote the

radar waveform sent by the BS, where L denotes the length

of the radar waveform and sl ∈ CM×1 denotes the waveform

at the lth time slot. Besides, the waveform is subject to the

power budget tr
(

SSH

)

≤ ps with ps denoting the sensing

SNR. In this letter, we consider the case where the BS receives

the communication messages sent by CUs and the reflected

radar waveform simultaneously. For brevity, we assume the

BS knows the perfect channel state information of CUs and

can remove the radar waveform reflected by CUs perfectly [5].

Hence, the signal received by the BS is given by

Y =
∑K

k=1

(√
αkhkxHk +

√
αk′hk′x

H

k′
)

+ GHS + N, (1)

where αi and hi ∼ CN (0, IN ) (i ∈ {k, k′}) model the influ-

ence of large-scale path loss and small-scale fading from CU
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Fig. 1: An ISAC system with 2K CUs and several RTs.

i to the BS, respectively; xi = [xi,1, · · · , xi,L]H (i ∈ {k, k′})

is the message sent by CU i with E

{

|xi,l|2
}

= pc being

the transmit SNR; N = [n1 · · · nL] ∈ C

N×L denotes the

additive white Gaussian noise (AWGN) with nl ∼ CN (0, IN );
G = [gi,j ] ∈ CM×N is the target response matrix to be sensed

with gi,j representing the target response from the ith transmit

antenna to the jth receive antenna [7]. The target response

matrix can be written as G =
∑

l βla (θl)bT (θl) [7], where

βl ∼ CN
(

0, σ2
l

)

is the complex amplitude of the lth RT

with σ2
l representing the average strength, a (θl) ∈ CM×1 and

b (θl) ∈ C

N×1 are the associated transmit and receive array

steering vectors, respectively, and θl is its direction of arrival.

Note that sensing or positioning the RTs can be regarded

as estimating the response matrix G [7]. Having G at hand,

one can perform further analyses to extract more information

from G, such as the direction and reflection coefficient of

each RT [5]. Assuming that the receive antennas of the BS

are widely separated, we can simplify the response matrix

to GH = QR
1/2
T [7], where RT ∈ C

M×M is the transmit

correlation matrix and Q ∈ CN×M contains NM independent

and identically distributed elements with zero mean and unit

variance. Since G needs to be sensed, we only assume the

correlation matrix RT is known by the RadCom BS [7].

After the BS receives the superposed signal matrix Y, it

can leverage a successive interference cancellation (SIC)-based

framework to decode the communication signals, xi, as well

as sensing the response matrix G [9]. Particularly, the BS first

decodes xi by treating the radar waveform as interference.

Then, xi can be subtracted from Y and the rest part will

be used for sensing G1. In the sequel, we will discuss the

performance of communications and sensing, respectively.

III. PERFORMANCE OF COMMUNICATION SIGNALS

A. Inter-Group Interference Cancellation

For simplicity, we only focus on the ith time slot. The

filtering matrix W = [w1, · · · ,wK ] ∈ C

N×K is adopted to

decode the messages transmitted by each group in parallel. In

this case, the data stream sent by the kth group is given by

yk,i = rk,i + wH

k (
√
αkhkxk,i +

√
αk′hk′xk′,i)

+
∑

j 6=k
wH

k

(√
αjhjxj,i +

√
αj′hj′xj′,i

)

+ nk,i,
(2)

1In fact, it makes sense to consider another SIC order where G is estimated
firstly by treating xi as interference. Yet, in this case, it is challenging to
quantify the influence of xi on estimating G as well as to evaluate the statistics
of the residual error in estimating G, which makes the subsequent analyses
intractable. Thus, in this letter, we adopt the SIC order utilized in [9] and
detect xi firstly. A more detailed discussion on the influence of the SIC order
on the performance of the ISAC will be left to our future works.

where rk,i , wH

kGHsi and nk,i , wH

kni. To avoid the inter-

group interference (IGI), we assume N ≥ 2K and resort to

the zero-forcing (ZF) combiner [10]. In this case, we have

wk =
pk

‖pk‖
, where pk denotes the (2k − 1)th column of

matrix Pk = Hk

(

HH

kHk

)−1
with Hk being the sub-matrix

of H = [h1h1′ · · · hKhK′ ] after removing the (2k)th column,

hk′ . Since I2K−1 = HH

kPk, we can simplify yk,i as

yk,i=wH

k (
√
αkhkxk,i+

√
αk′hk′xk′,i)+rk,i+nk,i. (3)

Afterwards, the BS can decode the message (xk,i, xk′,i) by

employing SIC [10]. Notably, for uplink NOMA, the sum

rate of each user group is always the same, no matter which

decoding order is used [10]. Thus, consider that xk,i is

decoded at first. From a worst-case design perspective [11],

the aggregate interference-plus-noise
√
αk′w

H

khk′xk′,i+rk,i+
nk,i is treated as the Gaussian noise. Besides, it is worth

mentioning that the RadCom BS has no full CSI of G.

Consequently, within the kth group, xk,i can be decoded

with the signal-to-interference-plus-noise ratio (SINR) γk,i =
αkpc|wH

khk|2
αk′pc|wH

k
hk′ |2+E{|rk,i|

2+|nk,i|
2} , whereas xk′,i can be decoded

with the SINR γk′,i =
αk′pc|wH

khk′ |2
E{|rk,i|

2+|nk,i|
2} . Taken together, the

communication rate of CU k, CU k′, and the kth CU group can

be written as Rk,i = log2 (1 + γk,i), Rk′,i = log2 (1 + γk′,i),
and Rg,k,i = Rk,i + Rk′,i = log2 (1 + γg,k,i) with γg,k,i =
αk|wH

khk|2+αk′ |wH

khk′ |2
p−1

c E{|rk,i|
2+|nk,i|

2} , respectively. In the sequel, we intend to

discuss the outage probability and the ergodic rate achieved

by communication signals.

B. Outage Probability

The OPs of CU k, CU k′, and the kth group are given by

Pk,i = Pr (γk,i < γ̄k,i) , (4a)

Pk′,i = 1− Pr (γk,i > γ̄k,i, γk′,i > γ̄k′,i) , (4b)

Pg,k,i = Pr (γg,k,i < γ̄g,k,i) , (4c)

respectively, where γ̄k,i = 2R̄k,i − 1, γ̄k′,i = 2R̄k′,i − 1, and

γ̄g,k,i = 2R̄g,k,i − 1 with R̄k,i, R̄k′,i, and R̄g,k,i being the

target rates of CU k, CU k′, and the kth group, respectively.

The following theorem provides closed-form expressions for

these OPs as well as their high-SNR approximations.

Theorem 1. The OPs Pk,i, Pk′,i, and Pg,k,i are given by

Pk,i = 1− e
−

γ̄k,i
αkρ

NK
∑

l=0

l
∑

n=0

α−l
k α

n
k′ρ

n−lγ̄lk,i

(l − n)!n!(ǫkγ̄k,i + 1)n+1 , (5a)

Pk′,i = 1−
NK
∑

l=0

l
∑

n=0

γ̄l
k,iα

n
k′

ρl−n Γ
(

n+ 1,
γ̄k′,i(ǫkγ̄k,i+1)

αk′ρ

)

αlke
γ̄k,i
αkρ (l − n)!n!(ǫkγ̄k,i+1)

n+1
, (5b)

Pg,k,i ≈
T
∑

l=0

(1− ǫk)
l
ǫNK+1
k γ

(

l+NK + 2,
γ̄g,k,i

αk′ρ

)

l!NK ! (l +NK + 1)
, (5c)

respectively, where NK = N−2K+1, ρ = pc

σ2 , ǫk = αk′/αk,

σ2 = 1 +
∣

∣sHi RTsi
∣

∣, T is a complexity-vs-accuracy tradeoff

parameter, Γ (s, x) =
∫∞

x
ts−1e−tdt denotes the upper in-

complete gamma function [12, eq. 8.350.2], and γ (s, x) =



3

∫ x

0
ts−1e−tdt denotes the lower incomplete gamma function

[12, eq. 8.350.1]. When pc → ∞, the OPs satisfy:

lim
pc→∞

Pk,i = lim
pc→∞

Pk′,i = 1−
∑NK

l=0

ǫlkγ̄
l
k,i/l!

(ǫkγ̄k,i+1)l+1
, (6a)

lim
pc→∞

Pg,k,i =

(

γ̄g,k,iσ
2

αk′pc

)N−2K+3
ǫN−2K+2
k

(N − 2K + 3)!
. (6b)

Proof: Please refer to Appendix A for more details.

Remark 1. The OPs of CU k and CU k′ converge to the

same floor in the high-SNR regime due to the principle of

uplink NOMA, indicating their diversity orders are both zero.

Remark 2. A diversity order of N −2K+3 is achievable for

the sum rate in the kth CU group, which can be improved by

increasing the number of receive antennas, N .

C. Ergodic Communication Rate

The ECRs of CU k, CU k′, and the kth group are given

by R̄k,i = E {Rk,i}, R̄k′,i = E {Rk′,i}, and R̄g,k,i =
E {Rg,k,i}, respectively. By definition, we have R̄g,k,i =
R̄k,i+R̄k′,i. Theorem 2 provides closed-form expressions for

the ECRs as well as their high-SNR approximations.

Theorem 2. The ECRs R̄k′,i, R̄g,k,i, and R̄k,i are given by

R̄k′,i = −e1/(βkρ)Ei (−1/(αk′ρ)) log2 e, (7a)

R̄g,k,i≈fTg,k,i=
T
∑

l=0

l+N̄K
∑

n=0

(1− ǫk)
l
ǫN̄K

k Γ
(

l+ N̄K
)

log2 e

l!NK !
(

l+N̄K−n
)

!(−ραk′)N̄K+l−n

×



−e
1

ρα
k′Ei

( −1

ραk′

)

+

N̄K+l−n
∑

j=1

(j − 1)!

( −1

ραk′

)−j


 , (7b)

R̄k,i ≈ fTg,k,i − R̄k′,i, (7c)

respectively, where N̄K = N − 2K + 2 and Ei (x) =
−
∫∞

−x
e−tt−1dt denotes the exponential integral function [12,

eq. (8.211.1)]. If the transmit SNR pc approaches infinity, the

ECRs can be approximated as follows:

R̄k,i ≈
∑T

l=0

Γ
(

l+N̄K
)

ψ
(

l+N̄K+1
)

(1−ǫk)−l l!NK !ǫ−N̄K

k ln 2
− ψ (1)

ln 2
, (8a)

R̄k′,i ≈ log2 (ραk′) + ψ (1) log2 e, (8b)

R̄g,k,i ≈ log2 (ραk′ )+

T
∑

l=0

Γ
(

l+N̄K
)

ψ
(

l+N̄K+1
)

(1−ǫk)−l l!NK !ǫ−N̄K

k ln 2
, (8c)

respectively, where ψ (x)= d
dx ln Γ (x) is the Digamma func-

tion [12, eq. (6.461)] and Γ (x) =
∫∞

0 tx−1e−tdt is the gamma

function [12, eq. (6.1.1)].

Proof: Please refer to Appendix B for more details.

Remark 3. The high-SNR slopes of CU k, CU k′, and the

kth CU group are given by 0, 1, 1, respectively, which are not

affected by the number of RadCom BS antennas.

Corollary 1. At the ith time slot, the ergodic sum commu-

nication rate of the 2K CUs satisfies R̄i =
∑K

k=1 R̄g,k,i ≈
K

(

log2 (ραk′)+
∑T
l=0

Γ(l+N̄K)ψ(l+N̄K+1)
(1−ǫk)

−ll!NK !ǫ
−N̄K
k ln 2

)

as pc → ∞.

Remark 4. A high-SNR slope of K is achievable for the uplink

sum rate of the K CU groups.

Remark 5. By setting αk′ = 0, Theorem 1 and Theorem 2 can

apply to ISAC systems where an orthogonal multiple access

(OMA) protocol is involved in the communication procedure.

D. Communication Performance of FDSAC

In this part, we consider FDSAC as a baseline scenario,

where the total bandwidth is partitioned into two sub-bands

according to some α, one for radar only and the other for

communications. Particularly, we assume α fraction of the

total bandwidth is used for communications with α ∈ [0, 1].
Under this circumstance, the ergodic sum rate of the K
groups can be written as R̄α

c,f = E

{

Rα
c,f

}

with Rα
c,f =

∑K
k=1 α log2

(

1 +
(

αk
∣

∣wH

khk
∣

∣

2
+ αk′

∣

∣wH

khk′
∣

∣

2
)

pc/α
)

. It is

worth noting that R̄c,f can be analyzed by following a similar

approach as that in analyzing R̄i.

IV. PERFORMANCE OF SENSING SIGNALS

After decoding all the information bits sent by the CUs, the

BS can remove the communication signal from the received

superposed signal matrix in (1), and then the rest part can be

used for radar sensing [9], which is expressed as

Ys = GHS + N. (9)

Since Ys and S are both available, the RadCom BS can

leverage them to sense the channel G. In this letter, we use

the sensing rate to evaluate the sensing performance, which is

defined as the sensing mutual information (MI) per unit time

[2]. There are two reasons for using this performance metric.

One is that the sensing rate tells how much information we

can extract from the nearby environment from an information-

theoretical point of view, the other is that maximizing the

sensing rate is equivalent to minimizing the mean-square error

in estimating the target response matrix G [7]. Assuming that

each waveform symbol lasts 1 unit time, we can characterize

the sensing rate as IL/L, where IL denotes the sensing MI

over the duration of L symbols. For convenience, we consider

the case of RT ≻ 0 and write the sensing MI as [7]

IL = I (Ys;G|S) = N log2 det
(

I + SHRTS
)

, (10)

where I (X ;Y |Z) denotes the MI between X and Y condi-

tioned on Z . Thus, the maximal achievable sensing rate is

Rs =
N

L
max

tr(SSH)≤ps

log2 det
(

IL + SHRTS
)

. (11)

Theorem 3 provides an exact expression for the maximal

sensing rate as well as its high-SNR approximation.

Theorem 3. The maximal achievable sensing rate of the

considered ISAC system can be written as

Rs =
N

L

∑M

m=1
log2 (1 + λms

⋆
m) , (12)

where {λm}Mm=1 denote the eigenvalues of RT

and s⋆m = max {0, 1/ν − 1/λi} with ν satisfying
∑M
m=1 max {0, 1/ν − 1/λi} = ps. The maximal sensing rate

Rs is achieved when the eigendecomposition (ED) of SSH

satisfies SSH = UH

T∆
⋆UT, where UH

Tdiag {λ1, · · · , λM}UT
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denotes the ED of RT with λ1 ≥ · · · ≥ λM > 0 and

∆
⋆ = diag {s⋆1, · · · , s⋆M}. If the sensing SNR ps approaches

infinity, the maximal achievable sensing rate satisfies

Rs ≈
NM

L

(

log2 ps +
1

M

∑M

m=1
log2

(

λm
M

))

. (13)

Proof: Please refer to Appendix C for more details.

Remark 6. A high-SNR slope of NM
L is achievable for the

maximal achievable sensing rate, which can be improved by

increasing the number of BS antennas.

Corollary 2. When the optimal radar waveform matrix is

adopted, the interference from the radar signals to the com-

munication signals can be simplified as follows:

E

{

∣

∣

∣
wH

kGHsi

∣

∣

∣

2
}

=

{

s⋆i λi 1 ≤ i ≤M

0 M < i ≤ L
. (14)

Proof: Please refer to Appendix D for more details.

Remark 7. The results in Corollary 2 suggest that the optimal

radar waveform will not influence the quality of service of

communication signals at the ith time slot (L ≥ i > M ).

In the following, we set RT = IM and L = M = N to

unveil more system insights.

Corollary 3. When RT = IM and L =M = N , the maximal

achievable sensing rate is Rs = N log2
(

1 + ps

N

)

, R(N).

By checking the first-order derivative of R(x) with respect

to x ≥ 1, we find that d
dxR(x) ≥ 0 (x ≥ 1). Additionally, it

can be found that limN→∞ R(N) = ps log2 e.

Remark 8. The fact of d
dxR(x) ≥ 0 (x ≥ 1) suggests that

the maximal achievable sensing rate, R(N), increases with

the RadCom BS antenna number, N , monotonically.

Remark 9. The facts of limN→∞ R(N) = ps log2 e and
d
dxR(x) ≥ 0 (x ≥ 1) indicate that the achievable sensing

rate is mainly limited by the power used for radar sensing.

Turn now to the sensing rate achieved in the FDSAC

system. As mentioned earlier, in FDSCA, (1 − α) frac-

tion of the total bandwidth is used for radar sensing,

and thus the maximal sensing rate is given by Rα
s,f =

N(1−α)
L max

tr(SSH)≤ps
log2 det

(

IL + (1− α)
−1

SHRTS
)

. We

notice that Rα
s,f presents a similar form as Rs, which can be

calculated by following the steps outlined in Appendix C.

V. RATE REGION CHARACTERIZATION

In this part, we characterize the rate region of the considered

ISAC system and the baseline FDSAC system. Particularly,

we use Rc and Rs to denote the achievable average ergodic

sum communication rate and sensing rate of the system,

respectively. Therefore, the communication-sensing rate region

of the ISAC system can be characterized as
{

(Rc,Rs) |0 ≤ Rc ≤ L−1
∑L

i=1
R̄i, 0 ≤ Rs ≤ Rs

}

, (15)

whereas the rate region of the FDSAC system satisfies
{

(Rc,Rs) |0 ≤ Rc ≤ Rα
c,f, 0 ≤ Rs ≤ Rα

s,f, α ∈ [0, 1]
}

. (16)

VI. NUMERICAL RESULTS

In this section, numerical results will be used to demonstrate

the performance of the ISAC system and also verify the
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accuracy of the developed analytical results. The complexity-

vs-accuracy tradeoff parameter is T = 30. The parameters

used for simulation are listed as follows: N = 4, M = 4,

L = 5, K = 2, αk = 1 (∀k), αk′ = 0.8 (∀k), and the

eigenvalues of RT are {5, 2, 1, 0.5}.

Fig. 2(a) and Fig. 2(b) present the OP and ECR of CUs

versus the communication SNR pc, respectively, where the an-

alytical results are calculated by (5) or (7) and the asymptotic

results are calculated by (6) or (8). We find the analytical

results fit well with the simulated results and the derived

asymptotic results track the numerical results accurately in

the high-SNR regime. Besides, as shown in Fig. 2, the ISAC

system at the 5th time slot enjoys a higher ECR as well as a

lower OP than that at the 1st time slot, which agrees with the

conclusion in Remark 7. Fig. 3 plots the maximal sensing rate

achieved by the optimal radar waveform versus the sensing

SNR ps, where the asymptotic results are calculated with

(13). We observe the asymptotic results track the numerical

results accurately in the high-SNR regime. For comparison,

the sensing rate achieved by the orthogonal waveform design,

i.e., SSH = ps

M IM , is also plotted. As shown, the optimal

waveform outperforms the orthogonal one in terms of the

sensing rate, especially in the low-SNR region. Yet, in the

high-SNR regime, these two waveforms achieve virtually the

same sensing rate as well as the same high-SNR slope.
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Fig. 4(a) compares the rate region of the considered ISAC

system (presented in (15)) and the baseline FDSAC system

(presented in (16)). Specifically, the rate region of the FDSAC

system is plotted by changing the bandwidth allocation factor

α from 0 to 1. As shown, when achieving the same commu-

nication rate, ISAC yields a higher sensing rate than FDSAC,

which highlights the superiority of ISAC. In this work, we as-

sume that the communication signals can be perfectly removed

by the SIC technique before the radar sensing procedure. This

means that the communication signals will not influence the

sensing rate. Yet, it can be observed from (3) that the radar

signals can decrease the performance of communications. To

illustrate this influence, Fig. 4(b) plots the rate region of the

ISAC system when the sensing SNR satisfies ps = βpc with

various 0 ≤ β ≤ 1. As shown, with the increment of β,

the communication rate decreases monotonically, whereas the

sensing rate increases, thus indicating a performance tradeoff

between communications and sensing.

VII. CONCLUSION

Theoretical analyses characterize the communication-

sensing rate region of uplink ISAC systems. It is found that

the ISAC system yields a higher sensing rate than the FDSAC

system when achieving the same communication rate.

APPENDIX A

PROOF OF THEOREM 1

Proof: We note that GHsi ∼ CN
(

0,
∣

∣sHi RTsi
∣

∣ IN
)

,

which yields E
{

|rk,i|2 + |nk,i|2
}

=
∣

∣sHi RTsi
∣

∣wH

kwk + 1 =
∣

∣sHi RTsi
∣

∣+1 = σ2. Furthermore, the random variable
∣

∣wH

khk
∣

∣

2

follows the chi-square distribution with the PDF fk (x) =
1

(NK)!x
NK e−x [13]. It is worth noting that wk is independent

of hk′ , which together with the facts of ‖wk‖ = 1 and

hk′ ∼ CN (0, IN ), suggests that
∣

∣wH

khk′
∣

∣

2
is independent of

∣

∣wH

khk
∣

∣

2
and the PDF of

∣

∣wH

khk′
∣

∣

2
is fk′ (x) = e−x. By [14],

we find that the PDF of αk
∣

∣wH

khk
∣

∣

2
+ αk′

∣

∣wH

khk′
∣

∣

2
satisfies

fk̄ (x) ≈
∑T

l=0
(1−ǫk)

lyl+N̄K e
−x/α

k′

NK !l!α
N̄K
k αl+1

k′
(l+N̄K)

. By (4), the OPs can be

calculated as Pk,i =
∫∞

0
fk′ (y)

∫ γ̄k,i(ǫky+1/(ραk))

0
fk (x)dxdy,

Pk′,i = 1 −
∫∞

γ̄k′,i/(ραk′ )
fk′ (y)

∫∞

γ̄k,i(ǫky+1/(ραk))
fk (x)dxdy,

and Pg,k,i =
∫ γ̄g,k,i/ρ

0 fk̄ (x)dx, respectively. Inserting the

obtained PDFs into the expressions of OPs and calculat-

ing the resultant integrals, we arrive at the results in (5).

When pc → ∞, using the properties of limx→0 ex = 1,

limx→0 Γ (l + 1, x) = l!, and limx→0
γ(s,x)
xs → 1

s [12, eq.

(8.354.1)], we can get the results in (6).

APPENDIX B

PROOF OF THEOREM 2

Proof: Inserting the obtained PDF expressions into the

expressions of the ECRs and calculating the resultant integrals

with the aid of [12, eq. (4.337.5)], we can obtain the results in

(7). By continuously using the fact of limx→∞ ln(1+x) ≈ lnx
and the integral identity [12, eq. (4.352.1)], we can get the

approximated results in (8).

APPENDIX C

PROOF OF THEOREM 3

Proof: We note that IT , log2 det
(

IL + SHRTS
)

can

be treated as the transmission rate of a virtual MIMO chan-

nel ȳ = R
1/2
T Sx̄ + n̄ with E

{

x̄x̄H
}

= IL and n̄ ∼
CN (0, IM ). Consequently, when IT is maximized, the eigen-

vectors of SSH should equal the left eigenvectors of R
1/2
T ,

with the eigenvalues chosen by the water-filling procedure

[13]. Hence, the maximal achievable sensing rate is given

as Rs = N
L

∑M
m=1 log2 (1 + λms

⋆
m), where {λi}Mi=1 denote

eigenvalues of RT and s⋆m = max
{

0, 1/ν − σ2/λi
}

with
∑M
m=1 max

{

0, 1/ν − σ2/λi
}

= ps. When the power used for

sensing approaches infinity, namely ps → ∞, we have ν → 0,

which yields
∑M

m=1 max
{

0, 1ν − 1
λi

}

= M
ν − ∑M

m=1
1
λi

=

ps. Therefore, the high-SNR sensing rate can be written as

Rs =
N
L

∑M
m=1 log2 (λm/M) + NM

L log2

(

ps +
∑M
m=1

1
λm

)

.

The final result follows immediately.

APPENDIX D

PROOF OF COROLLARY 2

Proof: By Appendix A, we can get E
{

|rk,i|2
}

=
∣

∣sHi RTsi
∣

∣. Besides, the optimal waveform matrix satisfies

SSH = UH

T∆
⋆UT, where UH

TΛTUT denotes the ED of RT

with UH

T UT = IM and ΛT = diag {λ1, · · · , λM}. Hence, we

can get SHRTS = diag {λ1s⋆1, · · · , λMs⋆M , 0, · · · , 0} ∈ CL×L.

The final result follows immediately.
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