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Joint Successive Cancellation List Decoding for the Double Polar codes

Yanfei Dong, Kai Niu, Jincheng Dai, Sen Wang, and Yifei Yuan

Abstract—As a new joint source-channel coding scheme, the
double polar (D-Polar) codes have been proposed recently. In
this letter, a novel joint source-channel decoder, namely the
joint successive cancellation list (J-SCL) decoder, is proposed
to improve the decoding performance of the D-Polar codes.
We merge the trellis of the source polar code and that of the
channel polar code to construct a compound trellis. In this
compound trellis, the joint source-channel nodes represent both
of the information bits and the high-entropy bits. Based on the
compound trellis, the J-SCL decoder is designed to recover the
source messages by combining the source SCL decoding and
channel SCL decoding. The J-SCL decoder doubles the number
of the decoding paths at each decoding level and then reserves the
L paths with the smallest joint path-metric (JPM). For the JSC
node, the JPM is updated considering both the channel decision
log-likelihood ratios (LLRs) and the source decision LLRs.
Simulation results show that the J-SCL decoder outperforms the
turbo-like BP (TL-BP) decoder with lower complexity.

Index Terms—Double polar codes, joint source-channel de-
coder, joint successive cancellation list decoder.

I. INTRODUCTION

POLAR codes [1], invented by Arıkan, are the first theoret-

ically provable capacity-achieving error correction codes

for any binary-input discrete memoryless channels with low

encoding and decoding complexity. The successive cancella-

tion (SC) [1] and belief propagation (BP) decoders [2] are

two commonly decoding methods of polar codes. However,

the finite-length performance of polar codes is unsatisfying

under the SC and BP decoders. The successive cancellation

list (SCL) decoder [3]–[6] has been proposed to improve the

performance of polar codes. Moreover, the source polarization

has been introduced and investigated in [7] as the complement

of channel polarization. Polar codes are proved to be optimal

for lossy source coding [8], which can achieve the rate-

distortion bound for a binary symmetric source. For lossless

compression, a polar encoding algorithm achieving the optimal

compression rate asymptotically is developed in [9].

Polar codes have been used in the field of joint source and

channel coding (JSCC). By modeling the source redundancy

as a sequence of t-erasure correcting block codes, polar codes

have proven to be a good candidate to exploit the benefit

of source redundancy in a JSCD scheme [10]. For correlated

sources, a joint decoding scheme using systematic polar codes

is proposed in [11], which exploits the correlation among

the sources. In [12], a JSCC scheme using quasi-uniform

systematic polar code is proposed by introducing additional

bit-swap coding to modify original polar coding. Inspired
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by the double low-density parity-check (LDPC) codes [13]–

[15], a JSCC scheme using double polar (D-Polar) codes is

proposed in our previous work [16], in which the source is first

compressed by a source polar code, and then the compressed

bits are protected by a systematic polar code (SPC). And

a turbo-like BP (TL-BP) decoder is also designed for the

decoding of D-Polar codes, which suffers from severe error

floor and high complexity.

In this letter, we propose a joint successive cancellation

(J-SCL) decoding algorithm to improve the performance of

the D-Polar codes. In the D-Polar codes, the source is first

compressed by a polar code, and then another polar code is

employed to protect the compressed source. We find that the

information bit part of channel polar code is a copy of the high

entropy bit part of source polar code. Therefore, a compound

trellis can be constructed by using the joint source-channel

(JSC) nodes to represent both of the information bits and the

high-entropy bits, merging the trellis of the source polar code

and that of the channel polar code. In this combined trellis, the

variable nodes corresponding to frozen bits and low-entropy

bits are referred to as frozen nodes and low-entropy nodes,

respectively.

Based on the compound trellis, a JSCD scheme, namely

the J-SCL decoder, is proposed, which doubles the number

of paths at each JSC node and low-entropy node. When the

number of decoding paths exceeds the list size L, a pruning

procedure is used to select the L candidate paths with the

smallest joint path-metric (JPM) from the list. For the JSC

node, the update of the JPM considers both the channel

decision log-likelihood ratios (LLRs) and the source decision

LLRs. For the low-entropy node, the update of the JPM

considers only the source decision LLRs. Simulation results

show that the J-SCL decoder gains 0.42 dB compared to the

TL-BP decoder, while the error floor of bit error rate (BER)

is lowered from 10−4 to 10−6.

II. JOINT SUCCESSIVE CANCELLATION LIST ALGORITHM

In this section, we first introduce the D-Polar JSCC system

model. Secondly, we give the method to fuse the trellis of

the source polar code and that of channel polar code into a

compound trellis. Finally, we propose the J-SCL decoder for

decoding the D-Polar codes.

A. Notational Conventions

In this letter, the calligraphic characters, such as X , are

used to denote sets. We write the notation aN1 to denote a

row vector (a1, . . . , aN). Given such a vector aN1 , we use

aji , 1 ≤ i, j ≤ N , to denote the subvector (ai, . . . , aj), and

ai denotes the i-th element in aN1 . For positive integer N ,

JNK , {1, 2, . . . , N}. Given A ⊂ JNK, we write aA to denote

the subvector (ai : i ∈ A) of aN1 .

http://arxiv.org/abs/2201.02924v1
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Fig. 1. The D-Polar codes JSCC system framework.

B. System Model

Fig. 1 illustrates the framework of the D-Polar codes JSCC

system framework. Let S ∼ Ber(p) denote a binary Bernoulli

random variable and PS(1) = p. The source polar code can be

identified by a parameter vector (Ns,K,H), where Ns = 2ns

is the length of the source vector, and K specifies the size

of the high-entropy set H [7]. The ratio K/Ns is called the

compression rate Rs. The sequence of Ns i.i.d. source symbols

sNs

1 generated from S is first compressed into cH by using a

source polar code. In the source encoding process, we compute

cNs

1 = sNs

1 GNs
and output cH as the compressed word, where

GNs
= F⊗ns equals the ns-th Kronecker power of the matrix

F , [ 1 0
1 1 ].

Second, the compressed word cH is protected by another

polar code. The channel polar code can be identified by a

parameter vector (Nc,K,A, uAc), where Nc = 2nc is the

length of a codeword, K specifies the size of the information

set A and uAc denotes frozen bits [1]. The ratio K/Nc is

called the channel coding rate Rc and the overall rate of the

D-Polar codes JSCC system is R = Rc/Rs. For the channel

polar code, the compressed word cH is transmitted over the

information bits uA. The channel polar coding is executed by

xNc

1 = uNc

1 GNc

= uAGNc
(A)⊕ uAcGNc

(Ac)

= cHGNc
(A)⊕ uAcGNc

(Ac)

(1)

where GNc
= F⊗nc and GNc

(A) denotes the submatrix of

GNc
formed by the rows with indices in A. The codeword

xNc

1 is then transmitted through a channel. Having received

yNc

1 and known the PS(1) = p, the proposed J-SCL decoder

will build an estimate ŝNs

1 of sNs

1 .

C. Source-Channel Trellis Merging

The trellis of the source polar code and that of the channel

polar code can be merged into a compound trellis. From (1),

we have known uA = cH, which indicates that the information

bits are duplicates of the high-entropy bits. The merging of the

source trellis and the channel trellis is based on the fusion

of the high-entropy bits of the source polar code and the

information bits of the channel polar code.

For the sake of understanding, we give an example of the

compound trellis, as shown in Fig. 2. The source polar code

is identified by (Ns = 4,K = 2,H = {1, 3}) and the channel

polar code is indicated by (Nc = 4,K = 2,A = {2, 4}). In

Fig. 2, the channel polar code is represented by a blue trellis,

and the source polar code is described by a red trellis. In this

compound trellis, the leftmost variable nodes can be divided

into three types of nodes, i.e., frozen nodes, JSC nodes, and

low-entropy nodes. The frozen node and the low-entropy node

Fronzen node

JSC node

Low-entropy node

Channel output node

Source output node

1

2

3

4

5

6

Fig. 2. An example of the compound trellis.

correspond to the frozen bit of the channel polar code and the

low-entropy bit of the source polar code, respectively. And the

JSC node corresponds to the information bit of the channel

polar code as well as the high-entropy bit of the source polar

code. Let J denote the index set of JSC nodes andW denote

the index set of low-entropy nodes. For this compound trellis,

we have J = {2, 5}, W = {3, 6}, and N = 6, where N =
Ns +Nc −K denotes the number of the leftmost variables.

The D-Polar codes can be decoded as a compound trellis

using the J-SCL decoder. For polar codes, the sequential

decoding schedule of an SCL decoder can be determined

by the information set A. Correspondingly, the sets J and

W determine the sequential decoding schedule of the J-SCL

decoder.

Algorithm 1: The construction of the set J and W

Input: Ns, Nc,K,H,A
Output: J , W

1 for i = 1, 2, . . . ,K do

2 ǫ =
∑i

k=1(hk − hk−1 − 1);
3 ji ← ai + ǫ;

4 Set Hc ← JNsK \ H;

5 for i = 1, 2, . . . , Ns −K do

6 ε =
∑i

k=1(h
c
k − hc

k−1 − 1);
7 τ =

∑ε
k=1(ak − ak−1 − 1);

8 wi ← hc
i + τ ;

9 return J , W .

Given the source polar code and the channel polar code,

Algorithm 1 shows the construction method of the set J
and W . Let ai, hi, and ji denote the i-th element of A, H,

and J , respectively. For the leftmost variables of the channel

trellis, the construction of the compound trellis is equivalent

to inserting the low-entropy node into the channel trellis. The

number of low-entropy bits before the high-entropy bit chi
can

be calculated by ǫ =
∑i

k=1(hk − hk−1 − 1), where h0 is set

to 0. As shown in Line 3 of Algorithm 1, we can obtain ji by

adding ǫ to ai.
Similarly, the construction of the compound trellis is equiv-

alent to the insertion of the frozen node into the source trellis.

The setHc is the complement of the high-entropy setH, which
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is called the low-entropy set. The i-th element ofHc is denoted

by hc
i . The number of high-entropy bits before the low-entropy

chc

i
can be computed by ε =

∑i
k=1(h

c
k−hc

k−1−1), where hc
0

is set to 0. In the D-Polar codes, the high-entropy bit chε
is

carried by the information bit uaε
. The number of frozen bits

between uai
and uai−1

can be obtained by ai−ai−1−1, where

a0 is set to 0. Then, we can calculate the number of frozen bits

before the information bit uaε
by τ =

∑ε
k=1(ak − ak−1− 1).

As shown in Line 7 of Algorithm 1, the i-th element of W is

denoted by wi, which can be obtained by hc
i + τ . Finally, we

can get the set J and W .

D. Joint Successive Cancellation List Decoding

A J-SCL decoder is proposed for the joint source and

channel decoding of the D-Polar codes. Algorithm 2 shows

a description of the J-SCL decoder. The J-SCL decoding

algorithm is a breadth-first search with N levels, which is

governed by the list size L. The bits corresponding to the JSC

nodes and low-entropy nodes are decoded successively one-by-

one. At each decoding stage, L decoding paths are considered

concurrently. Let L represent the path list of the J-SCL

decoder, and vϕ1 denote a candidate path ℓ for 1 ≤ ϕ ≤ N .

The J-SCL decoder doubles the number of paths at each JSC

node and low-entropy node. At each level ϕ ∈ J ∪W of the

path ℓ, the path v̂ϕ−1
1 is split into two paths, e.g., ℓ and ℓ′.

Both of the path ℓ and ℓ′ have v̂ϕ−1
1 as a prefix, and the path

ℓ ends with “0” while the other path ℓ′ ends at “1”. For a path

ℓ at level ϕ, let the joint path-metric be denoted as JPM
(ϕ)
ℓ .

As soon as the number of paths exceeds L, L paths with the

smallest JPM
(ϕ)
ℓ are reserved (Line 20, Algorithm 2). At the

end of decoding, the decoding path with the smallest JPM
(N)
ℓ

is selected as the final decoding path.

1) JSC node decoding: The decoding of the JSC node is

shown in Lines 5-9 of Algorithm 2. The level ϕ ∈ J means

that the bit vϕ correspond to the JSC node. Therefore, the

update of JPM
(ϕ)
ℓ need to consider the channel decision log-

likelihood ratios (LLRs) L
(ic)
nc

[ℓ] and the source decision LLRs

L
(is)
ns

[ℓ] together, where ic and is denote the current decoding

levels for the channel SC decoding and source SC decoding

corresponding to the level ϕ. The decision LLRs L
(ic)
nc

[ℓ] and

L
(is)
ns

[ℓ] can be computed by the recursions [1], [6]

L
(2i)
n [ℓ] = f(L

2i−[i mod 2n−1]
n−1 [ℓ], L

2n+2i−[i mod 2n−1]
n−1 [ℓ]),

L
(2i+1)
n [ℓ] = g(L

2i−[i mod 2n−1]
n−1 [ℓ], L

2n+2i−[i mod 2n−1]
n−1 [ℓ], u2i

n [ℓ]),

where the operation f and g are defined as

f(α, β) , ln

(

eα+β + 1

eα + eβ

)

, (2)

g(α, β, u) , (−1)uα+ β, (3)

respectively. For the channel SC decoding, the recursions

terminate at

L
(i)
0 [ℓ] , ln

W (yi|0)

W (yi|1)
, ∀i ∈ JNcK, (4)

Algorithm 2: J-SCL Decoder

Input: N,J , W , p, yNc

1

Output: ŝNs

1

1 Initialize L ← {0}, JPM
(0)
0 ← 0, ic ← 0, is ← 0;

2 for ϕ = 1, 2, . . . , N do

3 for ℓ ∈ L do

4 if ϕ ∈ J then

5 Compute L
(ic)
Nc

[ℓ] and L
(is)
Ns

[ℓ];
6 Copy the path ℓ into a new path ℓ′ /∈ L ;

7 (v̂ϕ[ℓ], JPM
ϕ
ℓ )←

(0, φ̃(JPM
(ϕ−1)
ℓ , L(ic)

nc
[ℓ], L(is)

ns
[ℓ], 0));

8 (v̂ϕ[ℓ
′], JPMϕ

ℓ′)←

(1, φ̃(JPM
(ϕ−1)
ℓ , L(ic)

nc
[ℓ], L(is)

ns
[ℓ], 1));

9 ic ← ic + 1, is ← is + 1;

10 else if ϕ ∈ W then

11 Compute L
(is)
Ns

[ℓ];
12 Copy the path ℓ into a new path ℓ′ /∈ L ;

13 (v̂ϕ[ℓ], JPM
ϕ
ℓ )←

(0, φ(JPM
(ϕ−1)
ℓ , L(is)

ns
[ℓ], 0));

14 (v̂ϕ[ℓ
′], JPMϕ

ℓ′)←

(1, φ(JPM
(ϕ−1)
ℓ , L(is)

ns
[ℓ], 1));

15 is ← is + 1;

16 else

17 Compute L
(ic)
Nc

[ℓ];
18 (v̂ϕ[ℓ], JPM

ϕ
ℓ )←

(vϕ, φ(JPM
(ϕ−1)
ℓ , L(is)

ns
[ℓ], vϕ));

19 ic ← ic + 1;

20 Discard all but L paths with the smallest JPM
(i)
ℓ ;

21 ℓ∗ ← argminℓ∈L JPM
(N)
ℓ ;

22 ŝNs

1 ← v̂Ā[ℓ
∗]GNs

23 return ŝNs

1 .

where W (y|x) is the probability distribution function of the

output letter y when x is transmitted. Correspondingly, for the

source SC decoding, we have

L
(i)
0 [ℓ] , ln

1− PS(1)

PS(1)
, ∀i ∈ JNsK. (5)

The calculation of partial sums is written as

u
(2i−[i mod 2s−1])
n−1 [ℓ] = u

(2i)
n [ℓ]⊕ u

(2i+1)
n [ℓ],

u
(2s+2i−[i mod 2s−1])
n−1 [ℓ] = u

(2i+1)
n [ℓ],

(6)

which is computed starting from u
(i)
n [ℓ] , v̂ϕ[ℓ]. Since the

JSC nodes connect both the trellis of channel polar code and

that of source polar code, the update of the JPM
(ϕ)
ℓ needs

to merge the channel decision LLRs L
(ic)
nc

[ℓ] and the source

decision LLRs L
(is)
ns

[ℓ]. When the decision LLRs L
(ic)
nc

[ℓ] and

L
(is)
ns

[ℓ] are obtained, for the bits {vϕ|ϕ ∈ J }, the update of

JPM
(ϕ)
ℓ is written as

JPM
(ϕ)
ℓ = φ̃(JPM

(ϕ−1)
ℓ , L(ic)

nc
[ℓ], L(is)

ns
[ℓ], v̂ϕ[ℓ]), (7)
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where the function φ̃ is defined as

φ̃(µ, λc, λs, v) , µ+ln(1+e(2v−1)λc)+ln(1+e(2v−1)λs) (8)

2) Low-entropy node decoding: The decoding operation of

the low-entropy node is shown in Lines 11-15 of Algorithm 2.

Similar to the level ϕ ∈ J , we copy the path ℓ into a new path

ℓ′ /∈ L at the level ϕ ∈ W . The path ℓ and ℓ′ have the same

prefix, e.g., v̂ϕ−1
1 [ℓ]. The last bit of the path ℓ is set to “0”, and

the last bit of path ℓ is set to “1”. Since vϕ correspond to a

low-entropy node, the update of JPM
(ϕ)
ℓ only need to consider

the source decision LLR L
(is)
n , which can be written as

JPM
(ϕ)
ℓ = φ(JPM

(ϕ−1)
ℓ , L(is)

n [ℓ], v̂ϕ[ℓ]). (9)

The function φ(µ, λ, v) is defined as

φ(µ, λ, v) , µ+ ln(1 + e(2v−1)λ). (10)

3) Frozen node decoding: The decoding operation of the

frozen node is shown in Lines 17-19 of Algorithm 2. Let Ā =
J ∪W . The subvector vĀc equals the frozen bits uAc , which is

known to both the transmitter and the receiver. Therefore, the

v̂ϕ[ℓ] can be directly set to vϕ at each level ϕ /∈ (J ∪W). The

update of JPM
(ϕ)
ℓ only needs to consider the channel decision

LLR L
(ic)
n , which can be written as

JPM
(ϕ)
ℓ = φ(JPM

(ϕ−1)
ℓ , L(ic)

n [ℓ], vϕ). (11)

When the decoding level ϕ reaches N , the path ℓ with the

smallest JPM
(N)
ℓ is selected as the final decoding path ℓ∗. The

estimate ĉNs

1 of cNs

1 equals v̂Ā[ℓ
∗], and the source decision

ŝNs

1 can be calculated by

ŝNs

1 = v̂Ā[ℓ
∗]GNs

(12)

which is shown in Line 21 Algorithm 2.

III. PERFORMANCE EVALUATION

In this section, we provide simulation results and analysis of

the proposed J-SCL decoder over the binary phase shift keying

(BPSK) modulated additive white Gaussian noise (AWGN)

channel. The polar code used in simulations is constructed via

Gaussian approximation [17]. The length of source vector is

Ns = 512, and the overall rate R is set to 1/2. The maxi-

mum of simulated frame number is 108, and the simulation

terminates when the error frame number reaches 102 at each

Eb/N0. Note that Eb refers to energy per source bit.

A. Simulation Results

In Fig. 3, we compare the BER performance of various

decoding schemes for D-Polar codes with p = 0.07 and

Rs = 0.6. The TL-BP decoder can be referred to [16]. And

the Separate SCL (Sep. SCL) decoder refers to a channel

SCL decoder followed by an independent source SCL decoder.

From this figure, we can see that the performance gain of J-

SCL (L = 4) decoding versus Sep. SCL (L = 32) decoding

can reach 0.96 dB at BER = 10−4. When the list size L
increases to 8 and 32, the gain of J-SCL decoding compared

to the Sep. SCL (L = 32) decoding increases to 1.22 dB
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10
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10
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10
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TL-BP (NSPC)

Sep. SCL (L=32)

J-SCL (L=4)
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Fig. 3. BER performance of TL-BP decoder, Separate SCL decoder and
J-SCL decoder.

0.6
s
R =

0.5
s
R =

Fig. 4. BER performance of J-SCL (L = 32) decoding and TL-BP decoding
with various PS(1) = p and the compression rate Rs.

and 1.54 dB at BER = 10−4, respectively. The gain of J-

SCL decoding with respect to Sep. SCL decoding is due

to the residual redundancy of the source code considered

in the channel decoding. The residual redundancy that is

not removed by the source polar encoder gives additional

information to the channel SCL decoding. For the Sep. SCL

decoder, the independent channel SCL decoder cannot benefit

from the residual redundancy. Compared with existing JSCD

scheme of D-Polar codes, i.e., TL-BP decoder [16], the J-SCL

(L = 32) can obtain 0.36 dB gain at BER = 10−3. One of the

weaknesses of the TL-BP decoder is the high error floor, which

is due to the residual decoding errors introduced by the limited

length of source code. In contrast, a significant advantage of

the J-SCL (L = 32) is the reduction of the error floor from

10−4 to 10−6. The list size L affects the error floor of the

J-SCL decoding. When the list size is reduced to 8 and 4, the

error floor will be higher than 10−5. The lower error floor of
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with the overall rate R = 1.

the J-SCL decoder is due to the better performance of source

decoding using SCL decoder than BP decoder. Moreover, this

figure gives the impact on the performance of the TL-BP

decoder caused by replacing the SPC in D-Polar codes with the

non-systematic polar code (NSPC). The TL-BP decoder for D-

Polar codes using NSPC has 0.42 performance loss compared

with the TL-BP decoder for original D-Polar codes [16] at

BER = 10−3, while the error floor is close. The performance

gain of J-SCL (L = 32) decoding versus TL-BP (NSPC)

decoding can reach 0.78 dB at BER = 10−3.

In Fig. 4, we compare the BER performance of J-SCL

decoding and TL-BP decoding at different p and Rs. In this

simulation, the list size L is set to 32. The J-SCL decoder and

TL-BP decoder use the same transmitter. From this figure, we

can see that the J-SCL outperforms the TL-BP decoder with

various p and Rs. The performance gap between the J-SCL

decoding and TL-BP decoding widens as the Eb/N0 increases.

For the J-SCL decoder with p = 0.07, the performance gain of

Rs = 0.5 versus Rs = 0.6 reaches 0.84 dB. Given a constant

overall rate R, this additional gain is due to the lower channel

coding rate Rc. However, the compression rate of Rs = 0.5
causes the error floor to rise to 10−3. The compression rate

Rs trades off the coding gain and the error floor. Moreover,

this figure shows that a lower entropy will result in a better

BER performance. For the J-SCL decoder with Rs = 0.5, the

performance gain of p = 0.04 versus p = 0.07 reaches 0.32

dB, and the error floor falls from 10−3 to 10−5. Moreover,

Fig. 5 provides a comparison of the J-SCL (L=32) decoder

and the TL-BP decoder with the overall rate R = 1. The

length of source vector is increased to 1024, and Rs (Rc) is

set to 1/2. For p = 0.07, the J-SCL decoder achieves 1.47 dB

gain compared with the TL-BP decoder at BER = 10−3. For

p = 0.04, the J-SC decoder outperforms the TL-BP decoder

by about 0.64 dB at BER = 10−4. Compared with the error

floor of the TL-BP decoder at 10−5, the BER curve of the

J-SCL decoder remains without an error floor at 10−7.

B. Complexity Analysis

Recall Section II, we can see that the calculation of L
(ic)
Nc

[ℓ]

involves a channel SC decoding, and the calculation of L
(is)
Ns

[ℓ]
involves a source SC decoding. Therefore, the complexity of

J-SCL decoding is O(LNc logNc + LNs logNs). As shown

in [16], the TL-BP decoder contains a channel BP decoder

and a source BP decoder. Let I denote the maximum number

of iterations of TL-BP. Then, the complexity of the TL-BP

decoder can be represented by O(INc logNc + INs logNs).
Although the TL-BP decoder can use the early stopping

criterion to obtain a very low average number of iterations

in the high Eb/N0 region, the iteration number is still I in

the worst-case. The J-SCL decoder outperforms in terms of

complexity as long as I is greater than L.

IV. CONCLUSION

In this letter, we propose a J-SCL decoder for the D-Polar

codes JSCC scheme. To facilitate the design of the J-SCL

decoder, we replaced the SPC in the D-Polar codes with an

NSPC. Then, we give a method to combine the trellis of the

channel polar code and that of the source polar code into

a compound trellis, where a JSC node represents both the

information bit and the high-entropy bit. Based on the com-

pound trellis, the J-SCL decoder is proposed by performing

path splitting on the JSC nodes and the low-entropy nodes.

Simulation results show that the proposed JSCD outperforms

the TL-BP decoder.
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