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Neural Decoding with Optimization of Node
Activations

Eliya Nachmani, Yair Be’ery

Abstract—The problem of maximum likelihood decoding with
a neural decoder for error-correcting code is considered. It is
shown that the neural decoder can be improved with two novel
loss terms on the node’s activations. The first loss term imposes a
sparse constraint on the node’s activations. Whereas, the second
loss term tried to mimic the node’s activations from a teacher
decoder which has better performance. The proposed method has
the same run time complexity and model size as the neural Belief
Propagation decoder, while improving the decoding performance
by up to 1.1dB on BCH codes.

Index Terms—Information Theory, Deep learning, Error Cor-
recting Codes, Neural decoder.

I. INTRODUCTION

Deep learning has become in last years an effective tool for
communication tasks, for example, MIMO detection [1]], [2],
modulation and demodulation [3[|-[S], equalization [6], learning
encoders and decoders [7] designing new codes [8|] which
outperform codes for feedback channels [9]], [10], feedback
decoders [11]] and decoding [7]], [12].

Decoding error-correcting codes with novel deep learning
techniques is an emerging research field. The Neural Belief
Propagation (NBP) [[12] was the first deep neural decoder that
provide an improvement over the vanilla Belief Propagation
decoder. Over the last few years, a large research effort
to further improve the deep neural decoders was made to
obtain better bit-error-rate decoding. Most of the previous
work has tried to find better neural architecture to improve
the decoder’s performance. For example, Vasic et al. [13]]
proposed a neural decoder that has activation functions that
emulate message update functions. Their proposed method
achieves higher throughput at the cost of additional decoding
complexity. Nachmani et al. [14] proposed an hypernetwork
decoder that uses graph neural networks as a neural decoder
that improves the NBP decoder with additional decoding
complexity. Choukroun et al. [[15] suggested a Transformer
neural decoder which improves the hypernetwork decoder at
the cost of additional complexity. Chen et al. [16] showed
that a neural decoder with a shift-invariant structure on the
weights further improves the NBP results. Their method uses
a bigger parity check matrix which increases the decoding
complexity of the decoder. Another line of work tried to change
the loss function to improve the performance. Lugosch et al.
[17] introduced a novel syndrome loss function that penalizes
the neural decoder for producing outputs that do not correspond
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to valid codewords. The proposed method yields decoders with
improved bit-error-rate with no additional decoding complexity.
A pruned version of the neural decoder has been proposed
in [18]] which removes irrelevant check nodes. Another main
research direction in the information theory community was
to find sparse parity check matrices [[19], which resulted in
better decoding performance. For example, in [20] very sparse
matrices achieve performance that is close to the Shannon limit.
The sparse parity check matrices result in a sparse Tanner graph
which indicates that sparse constraint may improve the neural
decoding architectures.

As we can observe, previous work have tried to improve the
results by changing the neural architecture, the loss function
at the output layer or finding better sparse parity check matrix.
Therefore, one can ask whether a direct node optimization
can further improve the results, since it gives direct gradient
updates to the neural decoder that produce better learning.
In this paper we propose to use two novel loss terms that
optimize the decoders nodes: (i) sparse node loss and (ii)
knowledge distillation loss. Sparse activation regularization
[21] is a well known technique that imposes sparse constrained
on the activation with new loss function term. Since we know
that sparse parity check matrices lead to better decoding
performance, we propose teaching the neural network decoder
with sparse nodes. Therefore, the proposed neural sparse
decoder behaves as a neural decoder with sparse parity check
matrix. As expected, our simulation shows that the learned
neural sparse decoders gives large improvement over the
baseline. Knowledge distillation is a basic technique in deep
learning where one uses a teacher network to guide the training
of a smaller student neural network [22]. We propose to use the
knowledge distillation method by an expert teacher network to
constraint the nodes of the proposed neural decoder. The student
tries to decode the transmitted codeword with a novel loss
term that mimics the teacher node activations. Our simulations
shows that we can further gain improvement when using the
knowledge distillation loss.

Since our method adds new loss terms to the training,
the method preserves the same complexity run-time as the
original neural decoder. Furthermore, our method does not have
additional weights and has the same model size as the baseline
neural decoder. Our paper makes the following contributions:

« We present novel sparse node activation loss.

o We present a knowledge distillation loss term.

o We demonstrate that each of the new loss terms (and both
combined) improves the results of the baseline methods by
a large margin without adding computational complexity.



II. BACKGROUND

In this section, we will briefly explain the Belief Propagation
(BP) decoder for a communication scheme for Binary Phase
Shift Keying (BPSK) and binary code. We will use similar
notations as in Lugosch et al. [23]] and recap the offset min-sum

BP decoder [24] as well as the neural min-sum decoder [23]].

Denote the block code length by n, the transmitted and received
information vector as X € R™ and Y € R” respectively. The
transmitted vector X has —1,+1 values since we consider
BPSK modulation. The received vector Y at the receiver is

given by Y = X + Z, where Z € R” is the channel noise.

For additive white Gaussian noise (AWGN) channel, the input
vector to the BP decoder is the log-likelihood-ratio (LLR). The
v’th element [, of the LLR vector is given by:

Pr(Y, = 9| Xy = —1) 2y,
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where y,, is the channel output, o2 is the known channel noise
variance, and X, is the v’th element of the transmitted vector
X. The BP decoder exchanged messages between variable and
check nodes layers iteratively. The variable and check layers
obtain from the Tanner graph of the parity check matrix. The
variable and check layer contain variable and check nodes
respectively. An edge e connects ¢ check nodes to v variable

node if the (¢, v) entry in the parity check matrix contains 1.

The message from the variable node v to check node c is given
by:

Z ,uc’m(t - 1) @)
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where ¢ is the number of iterations, N (v) is the neighbors’
check nodes of the variable node v. For ¢ = 0, the initial
message is zero, i.e. p, .(0) = 0. The message from check
node c to the variable node v is given by:
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where M (c) is the neighbors’ variable nodes of the check node
c and 3 are the correlation offset. Note that the message in
Eq[3]is an approximation of the optimal message, with reduced
complexity. Lugosch et al. [23]] proposed to replace Eq[3] of
the offset min-sum BP decoder with:
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where (. ,(t) are learnable parameters for each edge from
check node c to variable node v. After ¢ iterations, the soft
output vector s,(t) is given by:

Su (t) - lv + Z He! v (t) (5)

c’eN(v)

The output bits at the final iteration 7' can be extracted with

a hard slicer:
1, if s, (¢ 0
po(t) = 4 b i eelt) > (6)
0, otherwise.

The neural min-sum decoder uses a stochastic gradient
descent in order to find f.,(t) parameters that improve the
performance of the offset min-sum BP decoder. The loss
function is cross-entropy:

ﬁce = _% ZBUIOg(U(SU)) + (1 - Bv)log(l - U(Sv)) (7)

where o is the sigmoid activation function, and B, = (1 —
X,)/2 is the bit corresponding to transmitted symbol X,,.

III. METHOD

We suggest adding sparse node activation loss and knowledge
distillation loss to the training procedure of the neural min-sum
decoder [23]]. The sparse node activation loss is obtained by
adding an L, norm on the check and variable nodes. Further-
more, the knowledge distillation loss imposes an additional
constraint on the check nodes. We suggest using the knowledge
distillation method by incorporating a teacher decoder into
the training procedure. We recommend using the following
component: (i) A teacher decoder and (ii) A student neural
decoder. At test time, decoding is performed using the student
neural decoder.

A. The Architecture

Our proposed method uses a min-sum decoder as a teacher
(i.e. without any training), and a neural min-sum decoder as
a student decoder. The specific implementation of the student
neural network is based on the neural min-sum decoder [23]].
It should be noted that one can also use different Neural Belief
propagation decoders like the neural Sum-Product [[12] as the
neural decoder. A diagram of the proposed method is shown
in Fig. [I] Denote by Ticacher and Tapyden: the number of
iterations in the teacher and student decoders respectively. Since
the teacher decoder should have better bit-error-rate results
than the student neural decoder, we set Ticacher > 1Lstudent-

B. The Knowledge Distillation Loss Term

We propose to constrain the nodes of the neural decoder
using the knowledge distillation method. The knowledge
distillation method uses an expert teacher network (vanilla min-
sum decoder, i.e. without learnable parameters) and a novel
loss term that imitates the teacher’s node activations. Since the
teacher network has more layers, imitating the teacher’s node
activations, will result in lower decoding error. Therefore, we
propose a new loss function to guide the training of the neural
decoders. Denote by pf¢5<"er(t) and pg'udm(t) the teacher
and student check node messages at iteration ¢, respectively.
The knowledge distillation training tried to transfer knowledge
from the teacher network into the student network. In other
words, the student network messages p5'“““"*(t) at iteration ¢
tried to mimic the teacher network messages ufa¢mer (¢ +t,)
at iteration ¢ + t,. Where ¢, is a look ahead parémeter, and it
controls the expert level of the teacher network. At training, the
knowledge distillation method will generate a vector of LLR
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Our method. The Tanner graph for a linear block code with n = 5. The teacher decoder has Tieqcher = 4 iterations whereas the student neural

decoder has Tty dent = 2 iterations. The look ahead parameter was set to t, = 2.

values with the same encoded bits vector for the teacher and
the student networks, and apply the following loss function:
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where p is the norm order and o is the sigmoid activation
function. We apply the sigmoid function ¢ in order to bound
the messages 15/ (t) to range [0, 1]. The overall distillation
loss function Ekd is given by the summing over Tsiydent
iterations:

atudent

Lia = Z La(t)
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C. The Sparse Node Activation Loss Term

Sparse parity check matrix leads to higher decoding perfor-
mance [20]. Therefore, we suggest a neural network decoder
with sparse node activations. The suggested neural sparse
decoder functions as a neural decoder with a sparse parity
check matrix. Sparse node activations can be achieved with a
sparse loss term. The proposed sparse loss term is obtained by
using a L, norm on variable and check nodes over the student
network:
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where we use the same p value as in the knowledge distillation
loss terms. We observe that the p parameter is important for
successful training since larger p increases the gradient. We
ran experiments to check the best p value for training; further
explanation will be given in the results section. Furthermore,
we apply the sigmoid o function over the variables and check
nodes in order to squeeze the range to [0, 1]. Summing the
sparse loss term at each iteration ¢, we obtain the overall sparse
loss term:
s‘fudenf

Zﬁ

Y

D. The Combined Loss Term

The overall loss is a linear combination of the cross entropy
loss Eq[7] the knowledge distillation loss Eq[9] and the sparse
node activation loss EqITT] £ = L. + aLyq + 7L where we
set « =1 and v = 0.01.

E. Complexity Analysis

The inference complexity is similar to the neural min-sum
decoder. Both have the same number of layer and the same
number of non-zero weights in the Tanner graph.

IV. RESULTS

The proposed architecture trained on
Bose—Chaudhuri-Hocquenghem (BCH) codes [25]. The
parity check matrices and the generator matrices are taken
from [26] except for the cycle reduced parity check matrices
that are based on [27]. For the training and test set, we
randomly generated codewords that transmitted over an
additive white Gaussian noise (AWGN) channel. Each batch
contained 360 examples. Furthermore, the batch contained
codewords with SNR values of 1dB, ..., 8dB with 45 examples
per SNR value. Moreover, the loss function is the mean value
of the combined loss £ for each example in the batch. The
teacher network had Ticqcher = 30 layers while the student
network trained with Ty, 4en: = O iterations, the look-ahead
parameter is t, = 25. The norm order p was set to 12.
The learning rate was set to 0.01. We ran the Monte-Carlo
simulation and obtained the Bit-Error-Rate (BER) for SNR
values from 1dB to 10dB.

In Fig[2Ja) we provide the BER figures for BCH (63,45) code
with a right-regular parity check matrix. As can be seen, our
proposed decoder improves the Min-Sum Belief Propagation
decoder by up to 1.5dB for large SNR values (6 — 10dB), and
1dB for medium and small SNR values (1 — 5dB). Moreover,
our proposed decoder improves the Neural Belief Propagation
(NBP) [23]] decoder by 1.1dB for larger SNR values (8 —
10dB), and up to 0.75d B improvement for medium SNR values
(6 — 7dB). For smaller SNR values (1 — 5dB) our proposed
method achieves the same decoding results as the Neural Belief
Propagation (NBP) decoder. It should be noted that our method
has the same run-time complexity and model size as the Neural
Belief Propagation (NBP) decoder. Fig[2(b) provides the BER
figures for BCH (63,45) code with a cycle reduced parity check
matrix. As can be seen, our proposed method improves the
Min-Sum Belief Propagation decoder by up to 0.75dB for
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Fig. 2. BER for various values of SNR for BCH codes. (a) BCH (63,45) with a right-regular parity check matrix, (b) BCH (63,45) trained with a cycle
reduced parity check matrix, (c) BCH (63,45) with a right-regular parity check matrix trained with different p values. (d) BCH (63,45) with a right-regular

parity check matrix, BER curve during training sparse node activation loss.
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Fig. 3. BER for various values of SNR for BCH (63,36) & BCH (127,99) codes
trained with a cycle reduced parity check matrix. The number of iterations set
to T' =5 in all decoders.

large SNR values. Moreover, the proposed method improved
the Neural Belief Propagation (NBP) [23]] decoder by 0.6dB
for larger SNR values. We also compared our method to the
Deep Active Learning Decoder 28], and found that it improves
by the large gap 1.8dB the Deep Active Learning Decoder.
Moreover, the Deep Active Learning Decoder is based on the
Sum-Product decoder which has better results than the Min-
Sum decoder which is the underline decoder for our method.
For the low SNR regime, the Deep Active Learning Decoder
achieves better BER with an improvement of up to 0.3dB.
However, it comes with a cost of error-floor at the high SNR
regime. It is left for future research to combine the active
learning decoder with our method for better BER in the low
SNR regime. In Fig[3] we provide the BER for BCH (63,36)

code with a cycle reduced parity check matrix. We can observe
a large improvement of up to 1.1d B for large SNR values when
compared to the Min-Sum Belief Propagation decoder. When
compared to the Neural Belief Propagation (NBP) [23]] decoder,
our proposed method improves the results by 0.7dB for larger
SNR values. For small SNR values, our proposed method has a
small degradation (0.2dB) in the performance when compared
to the Neural Belief Propagation (NBP) decoder. The source of
the degradation is the knowledge distillation loss term which
gets worse results in the low SNR regime (see the ablation
section for more details). Possible sources for the degradation
can be explained by the fact that the knowledge distillation loss
term does not use the ground truth bits at training, while the
Neural Belief Propagation (NBP) decoder uses this additional
information. Fig[3] presents the BER for larger BCH code
(127,99) with a cycle reduced parity check matrix. As can be
observed from the figure, our method improves the Min-Sum
Belief Propagation decoder by 1.4dB for high SNR values.
Furthermore, it improves the performance of the Neural Belief
Propagation (NBP) by up to 1.0dB in the high SNR regime.

Ablation Analysis In Fig[2[a) we evaluate the contribution
of different components of our method with an ablation analysis
for the BCH(63,45) code. We compared our method with (i) a
neural decoder that trains only with the knowledge distillation
loss (cyan curve), (ii) a neural decoder that trains with the
sparse node activation loss (red curve), and (iii) the teacher min-
sum decoder with T" = 30 iterations (green curve). As we can
observe, our method (magenta curve) achieves the best results
which demonstrates the advantage of our complete method.



Furthermore, we can observe that without the sparse node
activation loss (i) and without the knowledge distillation loss
(ii) we have a degradation of 0.5dB and 0.3dB respectively.
This shows that the sparse node activation loss gives more
improvement than that knowledge distillation loss. The teacher
min-sum decoder (iii) can be regarded as lower bound to
(i). We can observe that training only with the knowledge
distillation loss (i) leads to degradation in the low SNR regime
(3 — 6dB). The degradation is alleviated when training with
the cross-entropy loss.

Training With Different Z,, Norms Figc) provides the
BER curve for different L,, norms. We use the BCH (63,45)
code with a right-regular parity check matrix, and test it for
p = 2,4,6,8,10,12,14,16. As we can observe the curve
congregates for p value that is greater than 12. Therefore,
we choose to use p = 12 in our simulations. Furthermore, we
observe that p = 12 leads to sparse activations without zeroing
the whole activations.

Training The Sparse Node Activation Loss  Fig[2(d)
provides the BER curve during training with the sparse node
activation only (i.e. without the cross-entropy loss and the
knowledge distillation loss). We use the BCH (63,45) code
with a right-regular parity check matrix, and we plot the BER
curve after each epoch. As we can observe, after two epochs
the training improves the BER curve drastically at a high
SNR regime. However, for a low SNR regime, it gives high
degradation in the BER performance. We can also observe that
after three epochs, the training explodes and the BER curve
has a worse performance compared to the previous epochs.
Moreover, after four epochs, the BER curve has an inferior
performance compare to all previous epochs. The phenomena
of training exploding is reasonable since the neural decoder
is trained to output zero activation at the variable and check
nodes which gives the wrong estimation to the transmitted
codeword. However, we can observe that during training the
sparse node activation loss leads to high improvement of BER
in a high SNR regime.

V. CONCLUSION

We propose new learning loss terms for neural belief
propagation decoding. The new learning loss terms use sparse
constraints on the variable and check nodes, furthermore, it uses

a teacher network to guide the training of the neural network.

The proposed method shows improvement of up to 1.1dB in the
high SNR regime. Moreover, the method has the same run-time
complexity and the same model size as the baseline methods.
The sparse constraint on neural decoders is an interesting
research direction and it is left for future work to discover
whether other sparse constraints (for example - weights) can
improve the performance of the neural decoder. The usage of
Teacher-Student learning for Neural Belief Propagation can
also be beneficial for other applications, such as online learning
(when the ground truth is unknown). For example, it would be
interesting to see the improvement when the student network
is trained with changing real-world data. Furthermore, it also
left for future research to apply the proposed method to the
neural Polar factor graph decoder [29].
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