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Pulses with Minimum Residual Intersymbol

Interference for Faster than Nyquist Signaling
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Abstract—Faster than Nyquist signaling increases the spectral
efficiency of pulse amplitude modulation by accepting inter-
symbol interference, where an equalizer is needed at the receiver.
Since the complexity of an optimal equalizer increases expo-
nentially with the number of the interfering symbols, practical
truncated equalizers assume shorter memory. The power of the
resulting residual interference depends on the transmit filter
and limits the performance of truncated equalizers. In this
paper, we use numerical optimizations and the prolate spheroidal
wave functions to find optimal time-limited pulses that achieve
minimum residual interference. Compared to root raised cosine
pulses, the new pulses decrease the residual interference by
an order of magnitude, for example, a decrease by 32 dB is
achieved for an equalizer that considers four interfering symbols
at 57% faster transmissions. As a proof of concept, for the 57%
faster transmissions of binary symbols, we showed that using
the new pulse with a 4-state equalizer has better bit error rate
performance compared to using a root raised cosine pulse with
a 128-state equalizer.

Index Terms—Faster than Nyquist, residual intersymbol inter-
ference, prolate spheroidal wave functions.

I. INTRODUCTION

Faster than Nyquist (FTN) was introduced by Mazo in

1975 [1], where he found that increasing the signaling rate

of sinc pulses by 25% does not affect the minimum distance

between binary coded codewords, which allows to increase

the data rates without affecting the probability of error when

using an optimum receiver. Almost 30 years later, the study

of minimum distance in FTN was extended to root raised

cosine (RRC) filters in [2]. Constrained theoretical information

rates of FTN were investigated in [3] and [4], where it was

shown that FTN is beneficial from an information theoretic

perspective.

As FTN signaling causes intersymbol interference (ISI),

achieving the full gains that are suggested by the analysis of

the minimum distance and the theoretical rates may require

high-complexity (or impractical) receivers. Optimal receivers

with reduced complexity were proposed in [5] and [6] for

channels with ISI. Forney proposed to use a whitening filter

followed by a Viterbi algorithm in [5]. In [6], Ungerboeck

proposed a modified Viterbi algorithm that operates directly

on the received symbols without using a whitening filter.

As the complexity of the optimum equalizer increases expo-

nentially with the number of interfering symbols, the equalizer
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needs to be truncated in order to be used in practical systems

[7]. In [2], practical ways of coding and equalization were

proposed to achieve some gains of FTN, where a truncated

modified Viterbi algorithm (TMVA) was proposed to detect

the transmitted symbols. Truncated equalizers offer a trade-

off between complexity and probability of error, where the

effect of the residual ISI (RISI) can be decreased at the cost

of increased complexity. The main issue of RISI is the error

floor at high signal to noise ratio, since the signal to RISI

ratio remains constant [8]. Some approaches to mitigate the

effect of RISI were proposed in the literature such as the

decision feedback cancellation [8]. However, such methods

increase the complexity of the system. The RISI depends on

the used pulse shaping filter, for example, [8, Table 1] shows

the ISI coefficients that are obtained from the RRC pulses.

In this paper, we take a different approach and we propose

to mitigate RISI by using pulse shaping filters that minimize

the RISI power. Our proposal does not increase the complexity

of FTN systems as it requires only replacing the RRC pulse by

the pulses that are tailored for FTN regimes. We find optimal

time-limited pulses that minimize the RISI power while having

a duration and an out-of-band energy (OOBE) that are equal

to the ones of the truncated RRC. We propose a numerical

method that makes use of the prolate spheroidal wave func-

tions (PSWFs). The PSWFs form a complete orthonormal set

for time-limited functions and they were used in [9] and [4]

to design optimal time-limited pulses. The main contribution

of this paper is to introduce new pulses that have the ability to

improve the performance and the complexity of the receiver

in FTN systems.

The paper is organized as follows: in Sec. II we present

the considered system model. In Sec. III we formulate our

optimization problem and we propose a numerical solution

to search for the optimal pulses. In Sec. IV we present the

results of the numerical optimizations and simulations. And

we finally conclude in Sec. V.

II. SYSTEM MODEL

We consider the baseband pulse amplitude modulation sys-

tem illustrated in Fig. 1. The transmitted symbols {Ak}k∈Z
are

independent and identically distributed and are chosen from a

constellation of size M that has a zero mean and a unit average

energy. After pulse shaping, the transmitted signal is

x(t) =
∑

l∈Z

Al p(t− lT )

where T is the modulation interval. The noise n(t) is additive

white Gaussian with mean zero and power spectral density

(PSD) N0/2.

http://arxiv.org/abs/2203.07156v1
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Fig. 1. System model under consideration. The transmit filter has a duration Ts (see (1)) and a bandwidth W (see (3)), and the receiver is based on the
TMVA from [2].

The transmit filter p(t) is assumed to be time-limited to Ts

seconds, i.e.,

p(t) = 0 for t /∈ [−Ts/2, Ts/2], (1)

and to have a unit-norm (or unit energy)

∫ Ts/2

−Ts/2

p2(t)dt = 1. (2)

Being time-limited, p(t) cannot be strictly band-limited. We

define the bandwidth of p(t) by the value of W that satisfies

∫ W

−W

|P (f)|2 df = 1− ǫ, (3)

where ǫ is the OOBE, and P (f) =
∫ Ts/2

−Ts/2
p(t)e−j2πftdt is

the Fourier transform of p(t).
At the receiver, the output of the matched filter p(−t) is

y(t) =
∑

l∈Z

Al h(t− lT ) + n(t) ∗ p(−t)

where ∗ is the convolution operation and

h(t) = p(t) ∗ p(−t) =

∫ Ts/2

−Ts/2

p(τ)p(τ − t)dτ. (4)

Since p(t) is unit norm, then h(0) = 1. Sampling the signal

y(t) at t = kT yields

Ãk = Ak +
∑

l 6=0

Ak−l h(lT )

︸ ︷︷ ︸

ISI

+n(t) ∗ p(−t)|t=kT
︸ ︷︷ ︸

colored noise

, (5)

where the noise term is a zero-mean Gaussian process with

variance N0/2, and PSD

N0

2T

∑

m∈Z

∣
∣
∣
∣
P

(
f −m

T

)∣
∣
∣
∣

2

. (6)

In this paper, we consider pulses and modulation intervals

that are capable of increasing the data rates by accepting ISI

(see (5)). Note that if the pulse p(t) does not satisfy the

Nyquist criterion, then the PSD in (6) is not flat, and hence

the noise at the input of the equalizer is colored. The role of

the equalizer in Fig. 1 is to detect the transmitted sequence of

symbols in the presence of ISI and the colored noise.

Here we consider the equalizer to be the TMVA proposed in

[2]. In this case, the equalizer considers 2L interfering symbols

and treats the RISI as noise. The complexity of the equalizer

is proportional to ML and its performance depends on the

variance of the RISI [2]. The RISI is given by

RISI =
∑

|l|>L

Ak−l h(lT ),

which has zero mean and variance

σ2
RISI =

∑

|l|>L

h2(lT ). (7)

In view of (4) and (7), the complexity and performance of the

equalizer depend on the used pulse p(t). For a given L (i.e.,

for a fixed complexity), the performance is maximized when

using a pulse that minimizes σ2
RISI.

III. PROBLEM FORMULATION AND PROPOSED SOLUTION

We consider the problem of finding the optimal pulse p(t)
that minimizes σ2

RISI in (7). We formulate the optimization

problem as follows

p∗(t) = argmin
p(t)

∑

|l|>L

(p(t) ∗ p(−t)|t=lT )
2
, (8)

where p(t) should satisfy (1), (2), and (3), and where minimiz-

ing the objective function of (8) minimizes (7). The constraints

are used to restrict the search to unit norm time-limited pulses

that have an OOBE equal to ǫ. In the following, we propose

a numerical method to find the optimal solution of (8).

Since p(t) has unit energy and is Ts-seconds time-limited, it

can be written as a linear combination of normalized truncated

PSWFs1

p(t) =
∞∑

i=0

αi
Dϕc,i(t)
√
λc,i

, (9)

where c = 2TsW is the time-bandwidth product of the

PSWFs and λc,i is the eigenvalue of the ith PSWF. Note that

the PSWFs and their eigenvalues do not have closed form

expressions. In this work we generate them numerically using

the software in [10].

In view of (9), solving (8) is equivalent to optimizing the

coefficients {αi}∞i=0. Optimizing numerically over the infinite

set {αi}∞i=0 is not feasible, so we approximate the optimal

solution using a finite subset of the truncated PSWFs and we

optimize over the set {αi}N−1
i=0 . We define the approximation

error to be the energy of
∞∑

i=N

αi
Dϕc,i(t)√

λc,i

, and by Property A.2

in Appendix A, the approximation error can be made smaller

1Appendix A includes the definition and some properties of the PSWFs.
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Fig. 2. Performance of obtained p∗(t) and truncated RRC with β = 0.1, for

Ts = 15

2W
and ǫ = 4.4× 10−4.

than ǫ using finite values of N . The resulting optimization

problem at hand is

{α∗
i }N−1

i=0 = argmin
{αi}

N−1

i=0

∑

|l|>L

(
N−1∑

i=0

αi
Dϕc,i(t)
√
λc,i

∗

N−1∑

i=0

αi
Dϕc,i(−t)
√
λc,i

∣
∣
∣
∣
∣
t=lT

)2

subject to

N−1∑

i=0

α2
i = 1

N−1∑

i=0

α2
iλc,i = 1− ǫ

, (10)

where (1) is satisfied by writing p(t) as a combination of

truncated PSWFs, and the equivalent constraints of (2) and

(3) are obtained using (11) and (12) respectively.

IV. NUMERICAL RESULTS

We chose the RRC pulses as a baseline for our system

model. RRC pulses are characterized by their roll-off factor β,

where the modulation interval T = 1+β
2W avoids the ISI in (5).

As RRC pulses have infinite time duration, they are truncated

to some finite time window Ts, which results in non-zero ISI

and some OOBE. We selected β = 0.1 and we considered a

truncation window Ts = 15
2W , where the obtained OOBE is

ǫ ≈ 4.4× 10−4. In Fig. 2 we show the obtained σ2
RISI (which

is defined in (7)), where T = 1.1
2W is the Nyquist signaling

rate, and we refer to T < 1.1
2W as the FTN signaling rates. For

example, using T = 0.7
2W provides

(
1.1
0.7 − 1

)
× 100 ≈ 57%

faster transmissions which increases the data rates by 57%.

Note that L = 0 implies that no equalizer is used at the

receiver, and as L increases, the power of the RISI decreases

since the equalizer considers 2L interfering symbols.

To have a fair comparison with the truncated RRC pulses,

we use the parameters Ts = 15
2W and ǫ = 4.4 × 10−4

in our optimization problem (10), where the time-bandwidth

product of the PSWFs is c = 2TsW = 15. We use the

MATLAB optimization function fmincon to search for the

optimal solution of (10). We performed the optimization using

different values of N (the number of used truncated PSWFs).

We found that the solutions converge for N = 22 where

using N = 30 did not improve the achieved σ2
RISI, which

is consistent with the analysis in Sec. III where we showed

that the optimal solution can be approximated using a finite

value of N . In Fig. 2 we present the obtained σ2
RISI of the

optimal pulses for ǫ = 4.4 × 10−4, T ∈
[
0.5
2W , 1+β

2W

]

with a

step of 0.01
2W , and L ∈ {0, 1, 2, 4}. For L = 0, the truncated

RRC pulse is very close to the optimal one. For L > 0, the

obtained pulses show a large decrease in the RISI variance.

This allows for example to use the optimal pulses with L = 1
instead of the truncated RRC with L = 4 for T ≥ 0.61/(2W )
and σ2

RISI ≤ −14 dB. We also considered comparing with

the RRC pulse with β = 0.2, where the obtained OOBE is

≈ 9.5× 10−5 for Ts = 15
2W . We do not include the obtained

results here since they have the same pattern as the ones in

Fig. 2.

In Fig. 3a we show the obtained optimal pulse and the RRC

pulse at ‘�’ in Fig. 2, i.e. for L = 2 and T = 0.7/(2W ). We

also show their frequency spectrum in Fig. 2b. In Fig. 4 we

show the corresponding |h(t)|2 of the pulses of Fig. 3, where

h(t) is defined in (4). In table I we show the coefficients of

the PSWFs for the optimal pulse p∗(t) of Fig. 3, where the

presented {α∗
i }N−1

i=0 are the solution of (10) for the design

parameters ǫ = 4.4 × 10−4, T = 0.7/(2W ), and L = 2. We

found that the optimal pulse changes (i.e. {α∗
i }N−1

i=0 change)

when changing the value of one of the design parameters (ǫ,
T , and L). We also noticed that the obtained optimal pulses

are symmetric, which means that we can write them as a linear

combination of only symmetric truncated PSWFs, i.e., the ones

with even index i (see Appendix A). Therefore we can reduce

the complexity of numerical optimization by optimizing (10)

over the αi with even index i, while fixing αi = 0 for odd

indices.

To conclude, we performed numerical simulations to eval-

uate the bit error rate (BER) of our system. We considered a

binary input constellation (i.e., Ak ∈ {−1, 1}), the modulation

interval 0.7/(2W ), and the pulses of Fig. 3. For the optimal

pulse we used a TMVA equalizer with 2L = 4 states, and

we used 4-state, 16-state, and 128-state TMVA equalizers for

the truncated RRC pulse (i.e., using L = 2, L = 4, and

L = 7). Fig. 5 shows that the obtained optimal pulse with

4-state TMVA outperforms the truncated RRC with 128-state

TMVA in terms of BER, where Eb is the average energy per bit

(Eb = 1 in our case) and N0 determines the PSD of the noise.

Hence, the optimal pulse can simultaneously improve the BER

performance and reduce the complexity of the receiver. Note

that the truncated RRC suffers from an error floor where the

RISI limits the BER for very low noise power (or equivalently

high Eb/N0).

V. CONCLUSIONS

The main conclusion of this paper is that optimizing the

pulse shaping filters is essential for the practical implemen-

tations of FTN systems, where we showed that the optimal
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Fig. 4. (a) |h(t)|2 corresponding to p∗(t) in Fig. 3, and (b) |h(t)|2 corresponding to RRC of Fig. 3. The equalizer considers 2L = 4 interfering symbols.

TABLE I
THE COEFFICIENTS {α∗

i }
21

i=0
FOR THE OPTIMAL PULSE p∗(t) OF FIG. 3.

α∗

0
α∗

2
α∗

4
α∗

6
α∗

8
α∗

10
α∗

12
α∗

14
α∗

16
α∗

18
α∗

20
α∗

i for odd i

0.8053 −0.442 0.2923 −0.1996 0.136 −0.0905 0.0562 −0.03 0.0107 0.00014 0.0011 0

6 10 14 18 22 26 30 34 38

10−5

10−4

10−3

10−2

10−1

Error floor caused by RISI

Eb/N0 (dB)

B
E

R

RRC, 4-state TMVA

RRC, 16-state TMVA

RRC, 128-state TMVA

p∗(t), 4-state TMVA

Fig. 5. BER simulations of the pulses of Fig. 3(a).

pulses can simultaneously improve the performance and de-

crease the complexity of truncated equalizers. We also found

that there is no universal optimal filter, where we obtained

different optimal pulses for the different design parameters: the

modulation interval, the out-of-band energy, and the number

of interfering terms considered by the equalizer.

APPENDIX

A. The Prolate Spheroidal Wave Functions

For any positive time-bandwidth product c = 2TsW ,

the PSWFs {ϕc,i(t)}∞i=0 are the normalized solutions of the

integral equation [11]2

λc,i ϕc,i(t) =

∫ Ts/2

−Ts/2

sin 2πW (t− s)

π(t− s)
ϕc,i(s) ds,

where λc,i is the eigenvalue of ϕc,i(t). The PSWFs are real

band-limited continuous functions that are symmetric when i
is even and antisymmetric when i is odd.

2Note that our definition of the time-bandwidth product is different than
the one in [11]. For example, ϕ1,i(t) here is the same as ϕπ

2
,i(t) in [11].
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We denote by Dϕc,i(t) the truncated PSWF in the time

window [−Ts/2, Ts/2]. The energy of Dϕc,i(t) is equal to

λc,i [11]. Hence the normalized truncated PSWFs are

{

Dϕc,i(t)
√
λc,i

}∞

i=0

,

and they form a complete orthonormal set for Ts-seconds time-

limited functions that have finite energies.

Consider a unit norm Ts-seconds time-limited signal p(t),
then p(t) can be uniquely written as a linear combination of

the normalized truncated PSWFs as given in (9), i.e. p(t) =
∑∞

i=0 αi
Dϕc,i(t)√

λc,i

. By Parseval, the energy of p(t) depends only

on the coefficients {αi}∞i=0 and it is equal to

∫ Ts/2

−Ts/2

|p(t)|2dt =
∞∑

i=0

α2
i . (11)

The eigenvalue λc,i is equal to the energy of
Dϕc,i(t)√

λc,i

in the

bandwidth [−W, W ], and in the following property we derive

the energy of p(t) in the bandwidth [−W, W ].

Property A.1. The energy of p(t) in the frequency band

[−W, W ] is equal to

∫ W

−W

|P (f)|2df =

∞∑

i=0

α2
iλc,i (12)

where P (f) is the Fourier transform of p(t).

Proof. The Fourier transform of a truncated PSWF is equal

to a scaled version of the PSWF [12, eq. (4)]. Therefore the

Fourier transforms of the truncated PSWFs are orthogonal over

[−W, W ], and hence the left-hand side of (12) is equal to the

sum of the energies of αi
Dϕc,i(t)√

λc,i

in the band [−W, W ].

The eigenvalue λc,i decreases as i increases and 1 > λc,i >
λc,i+1 > 0 for all i ≥ 0. For relatively low index i (i.e.,

i << c), the eigenvalues are very close to 1. And as i increases

beyond c, λc,i decreases exponentially towards zero. As an

example, Fig. 6 shows the eigenvalues for c = 15 where a

logarithmic scale is used on the y-axis. The exponential decay

of λc,i allows to approximate the sum in (12) using a finite

number of terms, and as shown in the following property,

it also allows to approximate p(t) using a finite number of

truncated PSWFs if the OOBE of p(t) is very small.

Property A.2. If
∫W

−W |P (f)|2df = 1 − ǫ, then there exists

a finite integer N where an upper bound on the energy of
∑∞

i=N αi
Dϕc,i(t)√

λc,i

is well approximated by ǫ.

Proof. Using (11) and (12), the OOBE is given by

∞∑

i=0

α2
i (1− λc,i) = ǫ.

For any integer N > c, (1 − λc,i) > (1 − λc,N−1) > 0
∀i ≥ N . For sufficiently large N , (1 − λc,N−1) ≈ 1 since

0 5 10 15 20 25 30 35

10−20

10−10

100

i

λ
1
5
,i

Fig. 6. Eigenvalues of the PSWFs for c = 15 and i = 0, 1, . . . , 35

λc,N−1 decays exponentially with N (see the example in Fig.

6). Then

ǫ =

N−1∑

i=0

α2
i (1− λc,i) +

∞∑

i=N

α2
i (1− λc,i)

ǫ >
∞∑

i=N

α2
i (1− λc,N−1)

ǫ ≈ ǫ/(1− λc,N−1) >

∞∑

i=N

α2
i ,

where
∞∑

i=N

α2
i is the energy of

∑∞
i=N αi

Dϕc,i(t)√
λc,i

.
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