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One-to-Many Semantic Communication Systems:

Design, Implementation, Performance Evaluation
Han Hu, Xingwu Zhu, Fuhui Zhou, Wei Wu, Rose Qingyang Hu, and Hongbo Zhu

Abstract—Semantic communication in the 6G era has been
deemed a promising communication paradigm to break through
the bottleneck of traditional communications. However, its appli-
cations for the multi-user scenario, especially the broadcasting
case, remain under-explored. To effectively exploit the benefits
enabled by semantic communication, in this paper, we propose
a one-to-many semantic communication system. Specifically, we
propose a deep neural network (DNN) enabled semantic com-
munication system called MR DeepSC. By leveraging semantic
features for different users, a semantic recognizer based on
the pre-trained model, i.e., DistilBERT, is built to distinguish
different users. Furthermore, the transfer learning is adopted
to speed up the training of new receiver networks. Simulation
results demonstrate that the proposed MR DeepSC can achieve
the best performance in terms of BLEU score than the other
benchmarks under different channel conditions, especially in the
low signal-to-noise ratio (SNR) regime.

Index Terms—Deep learning, semantic communications, multi-
user communications.

I. INTRODUCTION

W
ITH the rapid development of artificial intelligence (AI)

and natural language processing (NLP), intelligent

communication is envisioned as a promising solution to un-

locking the bottleneck of traditional communication systems

[1]. Especially, deep learning-based semantic communica-

tions have shown great potential in realizing the next level

of communication, and have attracted widespread attention

lately. Compared with traditional communication systems,

deep learning-based semantic communication systems only

transmit the basic semantic information at the transmitter, and

reconstruct the semantic information through prior knowledge

at the receiver, which can significantly reduce the required
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communication resources and achieve robust performance in

the bad channel environments, i.e., low signal-to-noise (SNR)

ratio regime [2].

Due to the great potential of deep learning-enabled semantic

communication, many researchers have focused on the system

design for various source contents [3]–[8]. The authors in [3]

proposed a joint source-channel coding scheme to transmit text

sentences with fixed length in simple channel environments.

In order to handle text sentences with different lengths more

flexibly in complex channel environments, the authors in

[4] further developed a Transformer-based semantic com-

munication framework. Moreover, a semantic communication

system combined with a knowledge graph was developed in

[5] to further improve semantic error correction capability

and data compression rate. In addition to text transmission,

an attention-based semantic communication was designed to

process speech signals in [6]. Recently, the works [7] and [8]

investigated the deep learning-enabled semantic communica-

tion for image transmission.

It is worth noting that all of the works mentioned above

mainly focused on single-user semantic communication sys-

tems. In reality, with the emergence of new applications, such

as autonomous transportation, drone fleets, and remote com-

mand systems, the multi-user system for semantic transmission

needs to be explored to support various user requirements.

The latest work [9] designed a task-oriented semantic com-

munication system for multi-user cases, wherein many-to-one

and many-to-many communication for different tasks were

investigated. However, the broadcast case with one transmitter

and multiple receivers is not considered, which is also very

important in wireless communications.

Motivated by the research efforts mentioned above, in this

paper, we aim to develop a deep learning-based semantic

communication system for the one-to-many broadcast sce-

nario. Firstly, a novel semantic communication framework

consisting of one transmitter and multiple receivers based on

Transformer is developed. Secondly, considering that different

users possess different semantic information, the pre-trained

model, i.e., DistilBERT, is built as the semantic recognizer at

each receiver to distinguish users. Furthermore, in order to deal

with multiple different channel environments experienced by

different users, the deep transfer learning is adopted to speed

up the training processes of the new receiver network. Finally,

simulation results demonstrate that the proposed framework

is superior to the traditional communication model and some

other DL-based semantic models in terms of BLEU score and

has a robust performance in various channel environments,

especially in the case of a low SNR ratio.

http://arxiv.org/abs/2209.09425v1
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The rest of this paper is organized as follows. Section II

describes the system model for one-to-many semantic com-

munication. In Section III, the proposed MR DeepSC system

model is detailed. Section IV presents simulation results to

evaluate the performance of MR DeepSC. Finally, Section V

provides the conclusion.

II. ONE-TO-MANY SEMANTIC COMMUNICATION SYSTEM

DESIGN

The proposed system model is shown in Fig. 1, where we

consider a DNN-enabled semantic communication model for

one-to-many communication that consists of a transmitter and

multiple receivers. The transmitter is responsible for transmit-

ting all the users’ source text information while each receiver

only estimates its own information. In this regard, the proposed

system is expected to accomplish the following major tasks:

i) recover the original information as accurately as possible;

ii) distinguish different users’ information at receivers.

A. Transmitter

As illustrated in Fig. 1, the source sentence of user k is

represented as sk = [wk
1 , w

k
2 , ..., w

k

Lk
], where wk

l
represents

the l-th word in the sentence of user k. We consider that the

transmitter packets all source sentences without knowing the

corresponding user of each sentence, so all source sentences

are shuffled and merged into a long sequence as the input

s = [wk
1 , w

k
2 , ..., 〈sep〉, w

1
1, w

1
2 , ...], where 〈sep〉 is the sepa-

rator between each sentence. The transmitter consists of two

components, namely the semantic encoder and the channel

encoder, where the semantic information from the transmitted

sequence s is extracted by the semantic encoder and then is

transmitted over physical channels after channel coding by

the channel encoder. Specifically, the semantic encoder first

calculates the dependencies among words in different positions

of the sentence. Then, it extracts the important semantic

information according to the importance of the dependencies.

The channel encoder plays channel encoding on the extracted

semantic information for transmission on the physical channel.

Note that semantic encoder and channel encoder are imple-

mented by independent neural networks respectively. Thus,

the encoded symbol sequence x ∈ CM×1 is written as

x = TC
(

T S (s;α) ;β
)

, (1)

where M is the length of the symbol sequence, T S (· ;α)
represents the semantic encoder constructed based on deep

neural networks, and α is the parameter set of the deep neural

network. TC (· ;β) represents the channel encoder, which is

constructed by the neural networks with parameter set β.

B. Receivers

Different from the point-to-point communication transmis-

sion for a single user, the communication system designed for

broadcast communications in Fig. 1 involves one transmitter

and multiple receivers. When the transmitted signal transverses

physical channels, the received signal yk ∈ CM×1 at receiver

k is expressed as

yk = hkx+wk, (2)
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Fig. 1. The framework of one-to-many semantic communication system.

where hk represents the coefficients of the linear channel,

wk ∼ CN
(

0, δ2n
)

indicates independent and identically dis-

tributed Gaussian noise.

As shown in Fig. 1, there are also two main parts in

each receiver structure, i.e., channel decoder and semantic de-

coder. The channel decoder is used to recover the transmitted

symbols while the semantic decoder is used to recover the

transmitted sentences. The decoded signal of receiver k can

be formulated as

ŝk = RS

k

(

RC

k (yk;χk) ; δk
)

, (3)

where ŝk represents the target sentence of user k, RC

k
(· ;χk)

is the channel decoder of receiver k with the parameter set χk,

and RS

k
(· ; δk) represents the semantic decoder of receiver k

with the parameter set δk.

Note that in the broadcast case, the transmitted signals

and sentences include information from all users. In order to

improve resource efficiency, the traditional division mecha-

nisms (e.g., TDMA or FDMA) are not utilized in our design.

Considering the sentences sent to different users may carry

different semantic features, such as language, emotions, etc,

we establish a semantic recognizer at each receiver to label

these differences. Combing the background knowledge and the

semantic recognizer, only the received information satisfying

the target user’s feature is finally received at each receiver.

III. ONE-TO-MANY SEMANTIC COMMUNICATION SYSTEM

IMPLEMENTATION

In this section, without loss of generality, we consider

two users and distinguish them according to the different

emotions for simplicity, i.e., user 1 receives positive text

sentence SP whereas user 2 receives negative text sentence

SN . Then, a DNN-enabled semantic communication system

named MR DeepSC is proposed, in which Transformer [10] is

exploited for semantic extraction and recovery and DistilBERT

[11] is adopted as a semantic recognizer.

A. Model Description

As shown in Fig. 2, a small batch of input sentences

S ∈ ℜB×2L is generated by a knowledge set D, where B is

the batch size. Each sentence consists of one positive sentence

SP and one negative sentence SN , both of which are padded

to the same length L by special symbols. The embedding

layer converts the words of the sentence into word vectors

and obtains the word vector sequence E ∈ ℜB×2L×D as the

input of the semantic encoder. Here D is the dimension of

each word vector. The semantic encoder consists of multiple
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Fig. 2. The proposed system architecture for the one-to-many semantic communication system

Transformer encoding layers, each of which is further divided

into two sublayers, i.e, the self-attention sublayer and the feed-

forward sublayer. The self-attention layer is first explored to

transform the current input E into three matrix, i.e., the query

matrix Q ∈ ℜB×2L×V , the key matrix K ∈ ℜB×2L×V ,

and the value matrix V ∈ ℜB×2L×V through three different

linear layers. V is the output dimension of the three linear

layers. Then the attention operation is performed based on

these three matrices to obtain the matrix M ∈ ℜB×2L×V

as the semantic information. The feed-forward sublayer is

composed of two linear layers to improve the fitting degree

of the network. Subsequently, the dense layers of the channel

encoder convert these semantic information M into transmitted

symbols X ∈ ℜB×2L×N suitable for channel transmission.

The physical channel layer takes X as input and Y1 and

Y2 as outputs at receiver 1 and receiver 2, respectively. Y1

and Y2 are respectively given as

Y1 = H1X+W1

Y2 = H2X+W2,
(4)

where H1 and H2 contain B vectors of channel coefficient,

W1 and W2 consist of B vectors of Gaussian noise.

Considering that all the receivers in the considered model

have the same structure, we take receiver 1 as an example for

simplicity. After receiving Y1, the dense layers of the channel

decoder in receiver 1 reverse the received symbol sequence to

recover the semantic matrix M̂1 ∈ ℜB×2L×V . The semantic

decoder consists of multiple Transformer decoding layers, and

each Transformer decoding layer has three sublayers, i.e.,

the self-attention sublayer, encoder-decoder attention sublayer,

and feed-forward sublayer. The self-attention sublayer per-

forms the attention operation on the past output to obtain the

query matrix. The encoder-decoder attention sublayer passes

the semantic matrix M̂1 through different linear layers to

obtain the key matrix and the value matrix, and then performs

the attention operation based on these three matrices and

estimates the original sentence Ŝ1.

Since Ŝ1 contains sentences of different users, we separate

sentences with equal length first and then apply the pre-

trained model DistilBERT to categorize sentence emotions of

these sentences belonging to different users. As a compressed

version of BERT, DistilBERT is smaller, faster, and lighter

than the typical BERT, and has been trained by millions of

sentences, which makes it ready for a variety of tasks [11].

For each sentence, DistilBERT utilizes multiple Transformer

encoding layers to output a vector for representing its global

information, which is then further input into the classification

layer to obtain the emotional features of each sentence. Finally,

the positive sentence required by the user 1 can be extracted

from Ŝ1 according to these emotional features.

B. Training Algorithm

The training process of the whole system is illustrated in

Fig. 3 and the pseudocode is given in Algorithm 1. The whole

training process is divided into two phases. In the first phase, it

aims to train the network between the transmitter and receiver

1. Although receiver 1 and receiver 2 have a similar network

structure and share one transmitter, since different users have

different transmit channels, in the second phase, we adopt the

deep transfer learning to train receiver 2 to reduce the training

cost and improve the training speed.

Specifically, in the first phase, a small batch of input S from

the knowledge set D is encoded into M through a semantic

encoder. Then, M is converted into X by channel encoder

over the physical channel. At receiver 1, Y1 is received

and then decoded at the physical channel layer to obtain the

recovered semantic information M̂. Afterwards, the semantic

decoder layer is utilized to estimate the semantic sentence Ŝ1.

Note that Ŝ1 is not processed by the semantic recognizer and

contains all the semantic sentences from the input. Finally,

the network between the transmitter and receiver 1 is trained

by the stochastic gradient descent with the cross-entropy loss

function LCE(S, Ŝ1;α, β, χ1, δ1) as follows.

LCE(S, Ŝ1;α, β, χ1, δ1) =
−

∑

l=1

(q (wl) log (p (wl)) + (1− q (wl)) log (1− p (wl))),

(5)

where q (wl) and p (wl) represent the actual and predicted

probabilities of the l-th word appearing in S and Ŝ1, respec-

tively.

In the second phase, we first load the pre-trained transmitter

and receiver 1. For a different receiver, we only need to

redesign and train the semantic decoder and channel decoder

after freezing the parameters of the semantic and channel

encoder in the same transmitter. Then we repeat the steps of

the first phase to train receiver 2 until convergence.
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Algorithm 1 MR DeepSC Training Algorithm.

Initialization: The background knowledge set D;

Function: Train Transmitter and Receiver 1:

1: Initial the weights W and bias b;

2: Transmitter:

3: Take a batch S from the set D

4: T S (S;α) → M.

5: TC (M;β) → X.

6: Transmit X over the channel.

7: Receiver 1:

8: Receive Y1.

9: RC
1
(Y1;χ1) → M̂1.

10: RS
1

(

M̂1; δ1

)

→ Ŝ1

11: Compute loss function LCE(S, Ŝ1;α, β, χ1, δ1).

12: Train α, β, χ1, δ1 → Gradient descent with LCE .

13: Return: T S (· ;α), TC (· ;β), RC
1
(· ;χ1), R

S
1
(· ; δ1).

Function: Transfer learning based training for Receiver 2:

14: Load the pre-trained model: T S (· ;α), TC (· ;β),

RC
1
(· ;χ1), R

S
1
(· ; δ1).

15: Freeze T S (· ;α) and TC (· ;β).

16: χ1 → χ2, δ1 → δ2.

17: Repeat line 2-12 to train Receiver 2 until convergence.

18: Return: RC
2
(· ;χ2), R

S
2
(· ; δ2).
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Fig. 3. The training framework of the MR DeepSC.

IV. PERFORMANCE EVALUATION

In this section, we adopt the widely recognized evaluation

metric in natural language processing, namely the bilingual

evaluation understudy (BLEU) [12], for measuring the per-

formance of different approaches, and compare the proposed

MR DeepSC model with the other four benchmarks under

both the AWGN channel and Rayleigh fading channel.

A. Simulation Settings

Three datasets for training and testing are adopted in our

numerical simulation. The first dataset is the standard proceed-

ings of the European Parliament [13], which consists of around

2 million sentences and is pre-processed into sentences of 4
to 15 words. The second comes from the Internet including

8000 positive sentences and 8000 negative sentences. As the

mechanism to distinguish users is based on their obvious

emotional features, we divide the second dataset into two

parts. The first part along with the first dataset is used as

the training dataset while the remaining part is used as the

testing dataset. The third dataset comes from the Internet,

which contains seven categories including sports, education,

finance, games, medicine, politics, and military. Each category

contains 6000 sentences with distinct distinguishing features.

It is divided in the same way as the second dataset and

used for the system with more than two users in Fig. 5.

The typical Transformer that consists of three encoding and

decoding layers with 8 heads is utilized for the semantic

coding and decoding. The channel encoder and decoder are

set as a dense layer of 16 units and 128 units, respectively.

A single antenna is adopted for each transmitter and receiver.

The whole network is optimized by the SGD and the learning

rate is 1×10−4. For performance comparison, we provide the

other four benchmarks which are defined as follows.

1) BERT: A DNN-based communication system in which

the structure of semantic encoder and semantic decoder is the

same as that of the proposed MR DeepSC, but the semantic

recognizer is constructed based on the pre-trained model

BERT [11].

2) TextCNN: A DNN-based semantic communication sys-

tem similar to the proposed method except that the TextCNN-

based semantic recognizer [14] is adopted at the receiver and

is pre-trained with the IMDb dataset [15].

3) LSTM: A DNN-based communication system in which

the semantic encoder and semantic decoder are reconstructed

based on the LSTM in [3], and a DistilBERT-based semantic

recognizer is exploited to distinguish different users.

4) Turbo: A traditional communication system in which

the source coding and channel coding are employed indepen-

dently. The source coding is Huffman coding while the channel

coding is Turbo coding [16]. The turbo encoding rate is 1/3
and the Max-Log-MAP algorithm with 5 iterations is used

for the turbo decoding. Moreover, 64-QAM and CDMA are

exploited for the modulation and multiple access, respectively.

B. Simulation Results

Fig. 4(a) and Fig. 4(b) illustrate the relationship between

BLEU score and SNR value for two receivers of different

benchmarks under different channel environments, where re-

ceiver 1 and receiver 2 are tested under the AWGN channel and

the Rayleigh fading channel, respectively. In the comparison

between the DNN-based models and the traditional commu-

nication model, it is observed that although the traditional

communication model “Turbo” has better performance in the

case of high SNR, the performance and stability of all the

DNN-based models in the low SNR domain are significantly

better than the traditional communication model due to the

only basic semantic information at the transmitter in the

semantic communication systems. Moreover, all DNN-based

semantic communication systems are more robust to different

channel conditions, especially in the low SNR domain. The

performance of our proposed “MR DeepSC” is better than

the “LSTM” and the “TextCNN” but is similar to the “BERT”

method. The reason can be explained as follows: since the
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(a) (b)
Fig. 4. (a) BLEU score of receiver 1 tested under AWGN channels; (b) BLEU score of receiver
2 tested under Rayleigh Fading channels.

Fig. 5. BLEU score comparisons versus the
number of users.

Table I. Comparison of computational complexity

Methods
Complexity of Encoder-Decoder Complexity of Recognizer

Additions Multiplications Additions Multiplications

MR DeepSC 3.4 × 10
5

3.4 × 10
5

6.3 × 10
7

6.3 × 10
7

LSTM 2.3 × 10
5

2.3 × 10
5

6.3 × 10
7

6.3 × 10
7

BERT 3.4 × 10
5

3.4 × 10
5

11.2 × 10
7

11.2 × 10
7

TextCNN 3.4 × 10
5

3.4 × 10
5

2.1 × 10
5

2.1 × 10
5

Turbo 1.2 × 10
5

1.2 × 10
5 None

structure of the LSTM layer is relatively simple than the DNN-

based structure utilized in the other three DNN-based methods,

it always makes the model unable to correctly capture the

dependencies between two distant words [3]. The TextCNN-

based recognizer of the “TextCNN” is trained by a limited

dataset while the DistilBERT is pre-trained with billions of

data, thus the proposed “MR DeepSC” method is able to

achieve a higher BLEU score than the “TextCNN”. Despite

the “BERT ” method performing similarly to the proposed

“MR DeepSC”, it will cost more computing resources to

maintain better performance due to a large number of param-

eters of the BERT recognizer [11].

The computational complexity for different models is com-

pared in Table I. The traditional model “Turbo” has a low

complexity than all DNN-based models due to the complicated

structure of deep neural networks. The complexity of “LSTM”

and “TextCNN” is lower than that of the proposed model

since the structures of the LSTM-based encoder-decoder in

“LSTM” and the TextCNN-based recognizer in “TextCNN”

are relatively simple. Besides, the proposed model shows a

much lower complexity compared with the “BERT” method

for the reason that the DistilBERT adopted in the proposed

model is a compressed version of the BERT, which has much

fewer structural layers. As a result, we can conclude that

our proposed method can achieve a better balance between

complexity and performance.

Fig. 5 illustrates the impact of the number of users on

the performance with different models in Rayleigh fading

channels with an SNR of 12 dB. The performance metric is the

average of all users’ BLEU scores. When the number of users

increases, longer input sentences cause more difficulty for the

encoder, resulting in a slight decrease in the performance of all

models. In addition, it demonstrates that the proposed model

achieves better performance than the other four benchmarks.

V. CONCLUSION

In this paper, we proposed a DNN-enabled semantic com-

munication system called “MR DeepSC” for one-to-many

communications. The semantic coding and channel coding

were jointly designed to learn and extract the features in

order to achieve robust performance under various channel

conditions. The transfer learning was adopted to speed up the

training of the new receiver network. By taking advantage

of different emotional features, a semantic recognizer based

on the pre-trained model was developed to distinguish differ-

ent users. Simulation results demonstrated that the proposed

system can improve the performance gains compared with

other benchmarks under different channel conditions. To the

best of the authors’ knowledge, the work in this paper is the

first attempt to design a one-to-many semantic communication

system. The proposed “MR DeepSC” can pave the way for

the development of future semantic communication systems.

REFERENCES

[1] Z. Qin et al., “Deep learning in physical layer communications,” IEEE

Wireless Commun., vol. 26, no. 2, pp. 93–99, 2019.
[2] Q. Lan et al., “What is semantic communication? A view on conveying

meaning in the era of machine intelligence,” Journal of Communications

and Information Networks., vol. 6, no. 4, pp. 336–371, 2021.
[3] N. Farsad et al., “Deep learning for joint sourcechannel coding of text,”

IEEE Int’l. Conf. Acoustics Speech Signal Process. (ICASSP)., algary,
AB, Canada, pp. 2326–2330, 2018.

[4] H. Xie et al., “Deep learning enabled semantic communication systems,”
IEEE Trans. Signal Process., vol. 69, pp. 2663–2675, 2021.

[5] F. Zhou et al., “Cognitive semantic communication systems driven by
knowledge graph,” IEEE ICC., to be published, 2022.

[6] Z. Weng et al., “Semantic communication systems for speech trans-
mission,” IEEE J. Sel. Areas Commun., vol. 39, no. 8, pp. 2434–2444,
2021.

[7] E. Bourtsoulatze et al., “Deep joint sourcechannel coding for wireless
image transmission,” IEEE Trans. Cogn. Commun. Netw., vol. 5, no. 3,
pp. 567–579, 2019.

[8] D. B. Kurka et al., “DeepJSCC-f: Deep joint source-channel coding of
images with feedback,” IEEE J. Select. Areas Inf. Theory., vol. 1, no. 1,
pp. 178—193, 2020.

[9] H. Xie et al., “Task-oriented multi-user semantic communications,” in
arXiv preprint arXiv:2112.10255, 2021.

[10] A. Vaswani et al., “Attention is all you need,” in Adv. neural inf.proces.

syst., 2017, pp. 5999–6009.
[11] V. Sanh et al., “DistilBERT, a distilled version of BERT: smaller, faster,

cheaper and lighter,” in arXiv preprint arXiv:1910.01108, 2019.
[12] K. Papineni et al., “Bleu: a method for automatic evaluation of machine

translation,” in Proceedings of the 40th annual meeting of the Associa-

tion for Computational Linguistics, pp. 311–318, 2019.
[13] P. Koehn et al., “Europarl: A parallel corpus for statistical machine

translation,” MT summit., vol. 5, Citeseer, pp. 79–86, 2005.
[14] Y. Kim et al., “Convolutional Neural Networks for Sentence Classifica-

tion,” in arXiv preprint arXiv:1408.5882, 2014.
[15] A. Maas et al., “Learning word vectors for sentiment analysis.,” Proceed

in Association for Computational Linguistics (ACL), pp. 142–150, 2011.
[16] C. Heegard et al., “Turbo coding,” in Springer Science & Business

Media, Vol. 476, 2013.


