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IRS-Enabled Backscattering in a Downlink
Non-Orthogonal Multiple Access System
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Abstract—Intelligent reflecting surface (IRS)-enabled
backscatter communications can be enabled by an access
point (AP) that splits its transmit signal into modulated and
unmodulated parts. This letter integrates non-orthogonal
multiple access (NOMA) with this method to create a two-
user primary system and a secondary system of IRS data.
Considering the decoding order, we maximize the rate of the
strongest primary user by jointly optimizing the IRS phase
shifts, power splitting (PS) factor at the AP, and NOMA power
coefficients while guaranteeing the quality of service (QoS) for
both weak user and IRS data in the primary and secondary
systems, respectively. The resulting optimization problem is
non-convex. Thus, we split it into three parts and develop an
alternating optimization (AO) algorithm. The advantage is that
we derive closed-form solutions for the PS factor and NOMA
power coefficients in the first two parts. In the third part, we
optimize the phase shifts by exploiting semi-definite relaxation
(SDR) and penalty techniques to handle the unit-modulus
constraints. This algorithm achieves substantial gains (e.g.,
40–68%) compared to relevant baseline schemes.

Index Terms—Backscatter communication systems, intelligent
reflecting surface, non-orthogonal multiple access.

I. INTRODUCTION

We consider the problem of simultaneously transmitting
data through an intelligent reflecting surface (IRS) and the data
from an access point (AP) to two users (Figure 1). The IRS not
only backscatters its own data (secondary data) that can come
from embedded sensors and similar devices but also passively
reflects the AP signals (primary data) [1], [2]. This capability
is helpful in smart homes, smart cities, and Internet of Things
(IoT) networks, where heterogeneous sensors [3], network
technologies, and communication protocols improve energy
efficiency, spectral efficiency, and other metrics. Although
ambient backscatter communication (AmBC) may achieve the
same task, strong direct-link interference greatly impacts the
backscatter signal detection [4].

How does the IRS modulate its data onto the AP signal
and ensure that the IRS-data signal does not interfere with the
decoding processes at U1 and U2? To address these issues,
we borrow a concept developed in [1], [5]. Specifically, [1]
shows that if the AP simultaneously transmits an unmodulated
carrier and modulated carrier, then the IRS can backscatter its
own data and reflect the AP signals too. Thus, the AP splits
its transmit power between these two carriers according to
the power splitting (PS) ratio α (where 0 ≤ α ≤ 1). The
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modulated carrier transports the AP data for U1 and U2, and
the unmodulated carrier is modulated by the IRS to send its
own data, which is broadcast to both users. Since the rate of
IRS data is much lower than that of primary system, simple
filtering can help U1 and U2 to decode the IRS data first
and subtract it to avoid interference in decoding data. The
process also supports data transmissions without requiring
perfect symbol synchronization [5], which is important for
low-complexity and low-cost IoT devices.

When U1 is decoding its data, the data of U2 and that of
the IRS act as interference. Thus, we leverage non-orthogonal
multiple access (NOMA) to differentiate between U1 and U2.
Specifically, NOMA can do that by exploiting the channel
gain disparities (see [6] and references therein) and successive
interference cancellation (SIC) decoding methods. IRS and
NOMA together can boost the capacity, coverage, spectral
efficiency, and other quality of service (QoS) metrics [7].

Previously, [5] was the first paper that proposed splitting
the AP signal into unmodulated and modulated carrier signals.
Using this modified AP signal, [1] developed the concept of
the IRS-enabled backscattering. However, these works [1], [5]
differ from our study in several ways. The focus of [5] is
to develop a cognitive backscatter system and an associated
cooperative receiver. Thus, the user can decode both the AP
data and backscattered data successfully. Neither an IRS nor
NOMA is considered in this paper. It is limited to a single
backscatter device. The focus of [1] is to enlist an IRS to send
additional secondary data. The conceptual novelty of our paper
compared to [1], [5] is the integration of downlink NOMA
with IRS-enabled backscattering.

Our work also differs from existing works [8], [9], where the
IRS assists in backscattering the AP signals. Further, our work
differs from [10] where two NOMA users can receive a version
of the BS signal reflected from a backscatter device. Also, in
[6], authors use the IRS to assist the downlink NOMA users. In
this letter, we fully optimize the system depicted in Figure 1.
To this end, we jointly optimize the PS factor, NOMA power
coefficients, and IRS phase shifts to maximize the rate of the
stronger user. The problem is formulated by considering the
decoding order of the users and guaranteeing QoS for both
primary and secondary systems. However, the problem is non-
convex, and widely available convex optimization techniques
do not help.

We thus utilize the alternating optimization (AO) method.
It is simply an iterative procedure for maximizing a function
jointly over all variables by alternatively maximizing over
individual subsets of them. Therefore, we split the variables
into three subsets, namely the PS factor, NOMA power coeffi-
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cients, and IRS phase shifts. We derive closed-form solutions
for the PS factor and NOMA power coefficients for the first
and second subproblems, respectively. For the phase shifts,
we use semi-definite relaxation (SDR) and penalty techniques
to optimize them subject to their unit-modulus constraints.
We combine these three tasks into an overall algorithm
(Algorithm 1). We compare it to several baseline schemes,
including one with orthogonal multiple access (OMA). The
performance gains are 40-68%.

Notation: Vectors and matrices are indicated by boldface
lowercase and capital letters. For a square matrix A, AH , AT ,
Tr(A), ||A||∗, and Rank(A) denote its Hermitian conjugate
transpose, transpose, trace, trace norm, and Rank, respectively.
A � 0 denotes a positive semidefinite matrix. diag(·) is the di-
agonalization operation. The Euclidean norm and the absolute
value are ‖x‖ and |x|. ∇xf(x) is the gradient vector over
x. The expectation operator is E[·]. A circularly symmetric
complex Gaussian (CSCG) random vector with mean µ and
covariance matrix C is denoted by ∼ CM(µ, C). Besides,
CM×N indicates M ×N dimensional complex matrices.

II. SYSTEM MODEL

Figure 1 depicts the considered IRS-aided NOMA AmBC
consists of a single-antenna AP operating based on the NOMA
scheme, an M -passive reflecting elements IRS indexed by
m ∈ M = {1, . . . ,M}, and two single-antenna users in the
set of K = {1, 2}. We assume that there is no direct link
between the AP and users due to high attenuation and signal
blockages, a typical scenario [9], [11], [12]. This assumption
holds for urban environments and above-6 GHz frequency
bands such as millimeter wave, where signal blockages are
frequent. In Figure 1, the IRS is also backscattering its sensed
data. As mentioned before, the AP transmits modulated and
unmodulated carriers simultaneously and divides its power
between these two parts. Therefore, the AP baseband transmit
signal at time instant n can be represented as

x(n) =
√

(1− α)PT +
√
αPT

2∑
k=1

aksk(n), (1)

where α is the PS factor for the AP, PT denotes the AP transmit
power, sk is the k-th user data that satisfies E

[
|sk(n)|2

]
=

1, k ∈ K, and ak is the NOMA power allocation coefficient of
the k-th user. To ensure fairness, the user with lower channel
gain gets assigned a higher ak.

The spectrum of the AP RF signal consists of a wideband
message signal and an unmodulated carrier signal [1]. Upon
receiving the RF signal, the IRS can modulate the unmodulated
part, e.g.,

√
(1− α)PT e

jwct, to send its own data using binary
phase-shift keying (BPSK) modulation [1].

Denote channels from the AP-to-IRS and IRS-to-user k as
h ∈ C1×M and fk ∈ CM×1, ∀k ∈ K, respectively. All the
channels undergo quasi-static flat Rician fading and remain
unchanged for several symbols [13]. We also assume the chan-
nel state information (CSI) availability. These are standard as-
sumptions in the literature. This system setup has the added ad-
vantage of easy synchronization because the time delay can be
compensated through the passive reflecting elements at the IRS

Figure 1: IRS-aided NOMA AmBS system model.

[1], [2]. Let Θ = diag
(
β1e

jθ1 , . . . , βme
jθm , . . . , βMe

jθM
)

represents the reflection coefficient matrix at the IRS, where
βm ∈ [0, 1] and θm ∈ [0, 2π), ∀m ∈ M, are the reflection
amplitude and phase shift of the m-th passive reflecting
element at the IRS, respectively. To maximize the reflected
signal power at the IRS and also to mitigate the hardware
cost, we assume that βm = 1,∀m ∈ M. Consequently, the
received signal at each user can be written as

yk(n) = hΘfkx(n) + zk(n), ∀k ∈ K, (2)

where zk ∼ CM(0, σ2), ∀k ∈ K, is the received noise with
variance σ2, and it is assumed to be the same for all users.

III. TRANSMISSION SCHEME

This works as follows. First, the AP transmits x(n) with the
symbol period Ts. Second, the IRS manipulates the unmodu-
lated part of x(n) to transmit its data, b(n), by applying BPSK
modulation with bit period Tb � Ts. For b(n) = 1 or 0, the
IRS adds the following phase shifts: 0 or π. As a result, each
user see the original signal when b(n) = 1, and a negative of it
when b(n) = 0. Since the primary system rate is much higher
than the IRS data rate (Tb = LTs, where L � 1), each user
can decode the IRS data with a simple band-pass filter as each
IRS data bit remains constant over LTs duration. Accordingly,
each user first decodes the IRS data, cancels the effect of the
IRS data, and decodes its own data. The IRS data symbol is L
times longer than the nominal user data symbol. Because each
user must decode the IRS data symbol first before decoding
its own data, this process will introduce a delay of L bits.

Thus, the received signal-to-noise ratio (SNR) of the sec-
ondary signal at each user is given by

Γck =
L(1− α)PT|hΘfk|2

σ2
, ∀k ∈ K. (3)

Consider Φ(k) ∈ {0, 1} as the decoding order of user k,
where Φ(k) = 1 and Φ(k̄) = 0, ∀k, k̄ ∈ K indicate that
the signal of user k̄ is first decoded by treating user k’s
signal as interference. Then, by removing user k̄’s signal
via SIC, user k decodes its signal without the co-channel
interference. Explicitly, it means that |hΘfk|2 ≥ |hΘfk̄|2.
On the other hand, for Φ(k) = 0 and Φ(k̄) = 1, we have
|hΘfk̄|2 ≥ |hΘfk|2. Accordingly, the required signal-to-
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interference-plus-noise ratio (SINR) of user k can then be
represented as

Γk =
αPTak|hΘfk|2

Φ(k̄)αPTak̄|hΘfk|2 + σ2
, ∀k, k̄ ∈ K. (4)

Subsequently, the rate achieved at user k ∈ K based on the
Shannon capacity can be expressed as Rk = log(1 + Γk).

IV. PROBLEM FORMULATION

We maximize the rate of the strong user while providing
the QoS required for the weak user to decode its data. To this
end, we jointly design Θ, α, and ak, k ∈ K, while considering
the decoding order. Let Φ(k) be an indicator function of the
stronger user (i.e., one with a larger channel gain). That is, if
Φ(k) = 1 and Φ(k̄) = 0, then user k is the stronger user. We
formulate the optimization problem as follows:

(P1) : max
Θ,ak,α

Rk = log2(1 + Γk), (5a)

s.t. |hΘfk|2 ≥ |hΘfk̄|2, for Φ(k) = 1,Φ(k̄) = 0,
(5b)

Γk̄ ≥ γth for Φ(k) = 1, (5c)
Γck ≥ γth, ∀k ∈ K, (5d)

|ejθm | = 1, ∀m ∈M, (5e)
0 ≤ α ≤ 1, (5f)
a1 + a2 = 1, (5g)

where (5b) indicates the decoding order at the NOMA users,
and (5c) as well as (5d) are the QoS constraints that indicate
the minimum SINR requirement of the weak user of the pri-
mary system and secondary system, respectively. (5e) denotes
the unit-modulus constraints of the phase shifts at the IRS.
Finally, (5f) and (5g) are the natural limits for α and ak.

We hasten to add that other optimization criteria include the
weighted sum rate, max-min rate, and others [7], [11]. These
may be developed in future works.

V. PROPOSED SOLUTION

To solve (P1) efficiently, we employ the AO method. AO
is a widely used approach to attack non-convex problems [7],
[12]–[14]. The AO algorithm optimizes one block of variables
at a time while keeping other blocks fixed. Following this ap-
proach, we break the problem into three simpler sub-problems.
We derive closed-form expressions for α and ak, ∀k ∈ K
in the first and second subproblems, respectively. For Θ,
we use SDR and penalty techniques by invoking successive
convex approximation (SCA) to optimize them. Although the
Gaussian randomization can provide rank one candidates, they
may be infeasible for the original problem and may impose
performance losses. That is why we choose a penalty factor
to ensure the rank-one constraint.

Since the objective function in (P1) is a monotonically
increasing log(·) function and Γk for Φ(k) = 1 inside the
log(·) is a linear function of α, we conclude that the objective
is an increasing function over α. Thus, α achieves its optimum

value in a corner of its feasible regime. Based on (5d), the
optimal value of α can be obtained as

αopt = min

(
1− σ2γth

LPT|hΘf1|2
, 1− σ2γth

LPT|hΘf2|2

)
. (6)

However, to have a feasible regime for α, the following
conditions also need to be satisfied:

σ2γth

a2PT|hΘf2|2−a1PTγth|hΘf2|2
≤αopt, (7)

σ2γth

a1PT|hΘf1|2−a2PTγth|hΘf1|2
≤αopt, (8)

if |hΘf1|2 ≥ |hΘf2|2 and |hΘf2|2 ≥ |hΘf1|2, respectively.
Consequently, as a closed-form solution is derived for α,
one can remove it from the optimization variables in (P1).
However, the remaining optimization problem is still non-
convex due to the multiplication of optimization variables,
i.e., ak and Θ in the objective function and constraints. To
overcome this, we use the AO approach and optimize the
NOMA power coefficients as below:

(P1.1) : max
ak

log2

(
1 +

αakPT|hΘfk|2

σ2

)
, (9a)

s.t. (5c), (5g). (9b)

Upon replacing (5g) by (5c), we reach to ak ≤ (1 +

γth)−1
[
1− γthσ

2

αPT |hΘfk̄|

]
. For the objective to be maximized,

ak must equal its upper bound:

ak = (1 + γth)−1

[
1− γthσ

2

αPT |hΘfk̄|

]
, ∀k ∈ K. (10)

This indicates the allocation of power to the strong user. As a
result, for the weak user, it is 1 − ak. Next, the optimization
problem over Θ can be rewritten as follows:

(P1.2) : max
v

log2

(
1 +

αakPT|vHfk|2

σ2

)
, (11a)

s.t. |vHfk|2 ≥ |vHfk̄|2, for Φ(k) = 1,Φ(k̄) = 0,
(11b)

αak̄PT|vHfk̄|2

Φ(k)αakPT|vHfk̄|2 + σ2
≥ γth, for Φ(k) = 1,

(11c)
L(1− α)PT|vHfk|2

σ2
≥ γth, ∀k ∈ K, (11d)

|v| = 1, ∀m ∈M, (11e)

where v =
[
ejθ1 , . . . , ejθm , . . . , ejθM

]
and H = diag (h).

Nevertheless, (P1.2) is non-convex as it contains a quadratic
form over v. To address it, via the SDR technique, we relax the
non-convex problem by defining a new variable as V = vHv
that satisfies Rank(V) = 1 and V � 0. Hence, the decoding
order constraint at the users (5b) can be expressed as

Tr(Hfkf
H
k HHV)≥Tr(Hfk̄f

H
k̄ HHV), for Φ(k)=1,Φ(k̄)=0,

(12)

Finally, by dropping the non-convex rank-one constraint,
(P1.2) can be reformulated as

(P1.3) : max
V

log2

(
1 +

αakPTTr(Hfkf
H
k HHV)

σ2

)
, (13a)
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Algorithm 1 Alternating Optimization (AO) Algorithm

Input: Initialize the number of iterations i, acceptable toler-
ance, ε� 1, random phases, Θ(i), random NOMA power
coefficients, a(i)

k , and R(i)
k = 0.

1: repeat
2: For given Θ = Θ(i) and a(i)

k , calculate α(i)
opt from (6).

3: Solve (10) to obtain a(i+1)
k .

4: Solve (P1.4) to obtain V(i+1) using Algorithm 1 in
[13].

5: Decompose V(i+1) = v(i+1)(v(i+1))H and update
Θ(i+1) = diag(v(i+1)).

6: Set i = i+ 1;
7: until |R(i)

k −R
(i−1)
k | < ε.

s.t.
αak̄PTTr(Hfk̄f

H
k̄

HHV)

Φ(k)αakPTTr(Hfk̄f
H
k̄

HHV) + σ2
≥ γth,

(13b)
L(1− α)PTTr(Hfkf

H
k HHV)

σ2
≥ γth, ∀k,

(13c)
(12), diag(V) = 1M , V � 0. (13d)

However, (P1.3) usually results in a solution with a rank
higher than one. To obtain a suboptimal solution, we define a
penalty term for the rank-one constraint [14]. For the positive
semidefinite matrix Y ∈ HN×N , the rank-one constraint can
be expressed as the difference of two convex functions, i.e.,

Rank(Y) = 1⇐⇒ ||Y||∗ − ||Y||2 = 0, (14)

where ||Y||∗ =
∑
j δj , ||Y||2 = max

j
{δj}, and δj is the j-th

singular value of Y. Consequently, we apply the penalty-based
approach by integrating such a constraint into the objective
function of (P1.3), denoted by F (V). Thus, we have the
following optimization problem:

(P1.4) : max
V

F (V)− 1

2µ
(||V||∗ − ||V||2), (15a)

s.t. (12), (13b), (13c), (15b)
diag(V) = 1M , V � 0, (15c)

where µ is a penalty factor for (14). Specifically, for a
sufficiently small value of µ, solving (P1.4) yields a rank-
one solution [14]. However, (P1.4) is still not a convex
optimization problem yet due to the difference of concave
functions (D.C.) form of the objective function. To address
this, we define a lower bound for ∆ = ||V||2 from its first-
order Taylor series expansion, which is given by

∆(V) ≥ ∆(Vt) + Tr
(
∇HV∆(Vt)(V −Vt)

)
, ∆̃(V). (16)

The transformed problem (P1.4) is a standard semi-definite
programming (SDP) that can be solved efficiently by using
CVX [15].

VI. SIMULATION RESULTS

This section presents numerical results to evaluate the
performance of Algorithm 1. The IRS comprises a two-
dimensional uniform rectangular array of phase shifts. All
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users are randomly located in the [2 : 20, 1: 2] meters (m). The
AP location and the IRS location are considered as (0, 0) m
and (2, 2) m, respectively. The Rician factor is set to 3 dB,
L = 10, γth = 10 dB [1], σ2 = −110 dBm, and µ = 5×10−5

[14]. The average channel attenuation at a unit reference
distance with f = 915 MHz is

(
3× 108/4πf

)2
d−ξ, where

d is the distance between nodes and ξ = 2.1 is the pathloss
exponent [8]. For comparison, three benchmark system designs
are studied, namely, i) Benchmark 1: Algorithm 1 with
random phase shifts, Θrnd; ii) Benchmark 2: Algorithm 1
with OMA; iii) Benchmark 3: Algorithm 1 with OMA and
random phase shifts. These benchmarks allow us to discern
the effect of not optimizing the phase shifts and not using
NOMA. The OMA scheme is implemented as time division
multiple access (TDMA) with equal transmission time to serve
users. To maximize the SNR for each user, the optimal phase
control policy can be achieved by aligning the phase of the
IRS to match with the phase of the cascaded channels, i.e., h
and fk.

Figure 2 shows the impact of SNR = PT

σ2 (dB) on the sum
rate of the primary system for two different numbers of phase
shifts, M . The figure shows that Algorithm 1 outperforms
other schemes. The impact of the optimal phase shifts is
essential for performance. However, Benchmark 1 has also bet-
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Figure 4: Primary sum rate versus x (M = 30 and PT = 10 dBm).

ter performance compared to the OMA transmission scheme,
indicating the effectiveness of NOMA even without optimized
IRS phase shifts. Specifically, when M = 30, Algorithm
1 improves the sum rate by 40% and 68% compared to
Benchmark 2 and Benchmark 3, respectively. Furthermore, as
the number of phase shifts increases, all the schemes achieve
a higher sum rate. Indeed, the greater the number of phase
shifts, the higher the number of multipath components, which
improves the sum rate.

Figure 3 illustrates the impact of imperfect CSI and imper-
fect SIC on Algorithm 1. The channel estimation model is
given as ĥ = h + e, where h is the actual channel and e
is the estimation error that is Gaussian distributed and zero
mean, i.e., e ∼ N (0, σ2

e). Error variance satisfies σ2
e , η|h|2,

where η controls the level of CSI error. The right figure
shows the primary system sum rate versus the η. As the CSI
error increases, the sum rate of all schemes decreases. For
instance, the performance loss is %7.8 with η = 0.5 compared
to the ideal CSI case (i.e. η = 0). Now, let us consider
the impact of imperfect SIC. The strong user rate is then
log2

(
1 + akαPT |hΘfk|2

βak̄αPT |hΘfk|2+σ2

)
, where β ∈ [0, 1] denotes the

SIC imperfection factor. For this simulation, we set β = 0.1.
On the other hand, to control this destructive factor, we replace
the residual SIC term with a constant γSIC in which it should
satisfy the new constraint βak̄αPT |hΘfk|2 ≤ γSIC . As a
result, the left figure shows the achieved sum rate versus M
for different residual SIC thresholds. The rate is sacrificed as
γSIC decreased because the phase shift needs to maximize
the objective and satisfy the QoS while restricting the residual
SIC.

Figure 4 shows the primary system sum rate versus x, where
AP is located at (−x, 0). While keeping the location of the IRS
and users fixed, we increase x. The resulting higher path loss
decreases the primary sum rate. We observe that optimizing
Θ in Algorithm 1 yields a better sum rate compared to the
random and the OMA cases. The gap between Algorithm
1 with optimized and random Θ is clear in both NOMA
and OMA transmission. It highlights the spectrum efficiency
advantage of NOMA with optimized phase shifts.

VII. CONCLUSION

This letter proposed and studied a two-user network that is
served by an AP and IRS. The IRS serves dual functions as a
conventional relay and backscatters its own data. The AP splits
its transmit power between modulated and unmodulated signal
parts to enable this process. The IRS uses the latter to convey
its data to the users. This setup creates NOMA-based primary
and exogenous secondary systems. We optimized the PS factor,
IRS phase shifts, and NOMA power coefficients to maximize
the rate of the strongest user in the primary while considering
the decoding order at the users and satisfying QoS parameters
for both weak user and IRS data of the primary and secondary
systems, respectively. Our proposed algorithm achieves signifi-
cant performance gains. Future extensions of this work include
the multi-user case (> 2) and the multi-antenna AP case.
Moreover, the energy efficiency can be optimized, yielding
insights into the design of greener communication networks.
The proposed algorithm can be extended to consider the direct
links between the AP and the users.
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