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Radio Localization and Sensing – Part I:

Fundamentals
Henk Wymeersch, Senior Member, IEEE, Gonzalo Seco-Granados, Senior Member, IEEE

(Invited Paper)

Abstract—This letter is part of a two-letter tutorial on radio
localization and sensing, with focus on mobile radio systems in
5G mmWave and beyond. Part I introduces the fundamentals,
covering an overview of the relevant literature, as well as the
different aspects of localization and sensing problems. Then,
different performance metrics are presented, which are important
in the evaluation of methods. Methods are detailed in the last
part of this letter. Part I thus provides the necessary background
to delve into more forward-looking problems in Part II.

Index Terms—Localization, sensing, orientation estimation,
synchronization.

I. INTRODUCTION

LOCALIZATION (a term from robotics [1]) and posi-

tioning (a term from navigation and radio communi-

cation [2]) will be interchangeably used for estimation of

the state (position, orientation) of a connected device in a

global frame of reference (see Fig. 1-(a)). Sensing is broader

and covers everything from channel parameter estimation and

carrier sensing to presence detection [3]. In this letter, sensing

will refer to state estimation of a passive object in the frame

of reference of the sensor (see Fig. 1-(b,c)), and thus includes

radar [4] and device-free localization [5].

Radio localization stems from military satellite-based nav-

igation systems, most notably the global positioning system

(GPS) [6]. When a receiver estimates pseudo-ranges from

at least 4 synchronized satellites with a favorable geometric

configuration, it can determine its 3D position and clock bias.

Performance is mainly limited by signal blockages and mul-

tipath reflections. Positioning has also been part of evolving

cellular standards [7]. Modern communication systems rely on

a combination of time and angle measurements from several

base stations (BSs) based on dedicated pilot resources to

determine the 3D position of a user equipment (UE) [8].

Radar sensing also has roots in the military, with surveil-

lance radar systems during World War II providing early

warning of incoming bombers [9, Vol. III]. Due to its myr-

iad of applications, radar has seen enormous developments,

e.g., in automotive applications, where a modern radar can

detect and track tens of moving objects and determine their

distance/range, angle, and radial velocity, in the frame of refer-

ence of the radar, with very high accuracy [10]. In contrast to

This work was supported by the European Commission through the H2020
project Hexa-X (Grant Agreement no. 101015956),by the ICREA Academia
Program, and by the Spanish R+D project PID2020-118984GB-I00.

Henk Wymeersch is with the Department of Electrical Engineer-
ing, Chalmers University of Technology, 41258 Gothenburg, Sweden (e-
mail: henkw@chalmers.se). Gonzalo Seco-Granados is with the Depart-
ment of Telecommunications and Systems Engineering, Universitat Au-
tonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain (e-mail: gon-
zalo.seco@uab.cat).

!"#$%&'"%()"*(&+,-&.(*(&+(+/ !0#$1&+&.*"*('$.2+.(+/ !'#$0(.*"*('$.2+.(+/

!"

!"

!"

!"#$#%" !"

%"%%%

Fig. 1. (a) Downlink localization of a connected UE; (b) Monostatic sensing
where a UE acts as a radar sensor, with co-located transmitter and receiver;
(c) bistatic sensing example with BS transmitter and UE receiver.

localization, monostatic radar is a local process, and can thus

rely on a tailored, highly specialized, and hardware friendly

waveforms, without strict standardization constraints. Bistatic

sensing, on the other hand, is similar to communication and

localization (i.e., when the transmitter or receiver have an

unknown position). With radar systems and communication

systems expected to operate in similar frequency bands, there

is a potential convergence, both in terms of hardware and sig-

nals, of sensing and communication systems [11], [12]. Such

integrated sensing and communication (ISAC), in addition to

highly accurate 6D positioning, is expected to be among the

main features of 6G [3].

This letter introduces the fundamentals of model-based

radio localization and sensing, and is organized as follows.

First, the problem definitions, signal and channel models are

detailed. Second, relevant performance metrics and bounds

are described. Finally, an overview of the typical methods

for localization and sensing is detailed. In Part II, a comple-

mentary literature review is provided, focusing on 6G and its

challenges.

II. MODELS AND PROBLEM DEFINITIONS

In this section, we provide the basic formulations for

the localization and sensing problem, within a mobile radio

communication context. We start with a generic channel

model, focusing on a frequency domain representation with

N samples spaced ∆f apart, spanning a total bandwidth

of W = N∆f . This representation appears naturally with

orthogonal frequency-division multiplexing (OFDM) signals,

but it is not limited to them.

A. Generic Observation Model

1) Channel Model: The channel between a transmitter (Tx)

with NTx antennas and a receiver (Rx) with NRx antennas over

frequency n ∈ {0, . . . , N−1} and symbol k ∈ {0, . . . ,K−1}
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can be approximated by [13]

Hn,k =

L
∑

l=1

αlarx(θl)a
⊤

tx (φl)e
−2πn∆f τle2πkTsνl , (1)

where L is the number of physical propagation paths (as, e.g.,

would be given by a ray-tracer), α is a complex channel gain,

arx(θ) ∈ C
NRx is the Rx array response as a function of

the angle-of-arrival (AoA) θ ∈ R
2 in azimuth and elevation,

atx(φ) ∈ C
NTx is the Tx array response as a function of the

angle-of-departure (AoD) φ ∈ R
2 in azimuth and elevation,

τ is the time-of-arrival (ToA), ν is the Doppler shift, and Ts

is the symbol duration. The AoA is defined in the reference

frame of the Rx, the AoD in the reference frame of the Tx, and

thus these angles depend on the respective orientations. Below

6 GHz, due to limited delay and angle resolution, combined

with a weak connection of the paths to the environment

geometry,1 explicit geometric information in the channel is

hard to harness. In contrast, at mmWave and above, paths are

more closely related to the environment geometry and can be

more easily resolved [14]. Hence, we will assume each path

in (1) corresponds to a physical object.

2) Signal Model: The observation at the Rx is then of the

form [13]

yn,k = W H

k Hn,kfn,k + nn,k, (2)

where Wk ∈ C
NRx×MRx is an orthonormal analog Rx com-

biner, with W H

k Wk = IMRx
using MRx ≤ NRx RF chains, fn,k

is the k-th Tx signal across the Tx array, with E{‖fn,k‖2} =
Ptx/W , and nn,k ∼ CN (0, N0IMRx

) is noise after the combin-

ing. Here, Ptx is the average transmit power and N0 denotes

the noise power spectral density. The transmit signals fn,k

are generally known (pilots in localization or bistatic sensing

or known data in monostatic sensing), but may be partially

unknown for semi-blind estimation [15].

B. The Localization Problem

In localization, as shown in Fig. 2, the UE has an unknown

state s, which should be inferred from observations of the

form (2). The state comprises the position x ∈ R
3, the clock

bias B ∈ R, and possibly the orientation o ∈ R
3, which is

often described with over-parameterized representation, such

as a rotation matrix R ∈ R
3×3 subject to R⊤R = I and

det(R) = 1, or a quaternion q ∈ R
4 subject to ‖q‖2 = 1 [16].

The infrastructure nodes (BSs i ∈ {1, . . . , NB}) have known

states, i.e., position x(i) and orientation o(i), and are time

synchronized. Localization can be user-centric2 in downlink

(DL) or network-centric in uplink (UL). In DL, each BS

i transmits signals over orthogonal subcarriers, leading to

observations y
(i)
k,n at the UE Rx over channels H

(i)
n,k, where

i has been added to make the BS index explicit. In UL, the

UE transmits a signal, which reaches the BS Rx i. Note that

under time division duplexing, UL and DL channels are each

other’s transpose.3

1Due to complex propagation effects, such as material propagation, diffrac-
tion, Rayleigh scattering limited shadowing, and multi-bounce scattering.

2In principle, user-centric monostatic localization is possible without any
BS, using a priori environment information. See Part II.

3Note also the transpose in (1) rather than the Hermitian, typically used in
communication.
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Fig. 2. Localization (here shown in DL) involves estimating the LoS channel

parameters, denoted by η
(i)
1 , from each BS i.

Channel Decomposition: While the model (2) is generic and

also widely used in communications, the localization aspect is

revealed when we consider the channel H
(i)
n,k and break it

up into the line-of-sight (LoS) path and the non-line-of-sight

(NLoS) paths: H
(i)
n,k = H

(i)
n,k,LoS +H

(i)
n,k,NLoS. The LoS path

H
(i)
n,k,LoS = α

(i)
1 arx(θ

(i)
1 )a⊤

tx (φ
(i)
1 )e−2πn∆f τ

(i)
1 e2πkTsν

(i)
1 (if

it is visible and resolvable) contains geometric informa-

tion related to the UE state s, via the parameters η
(i)
1 =

[(θ
(i)
1 )⊤, (φ

(i)
1 )⊤, τ

(i)
1 , ν

(i)
1 ]⊤. The impact of non-resolvable

LoS is discussed in [17] and of non-visible LoS in [18]. The

geometric information brought by each component of η
(i)
1 and

by α
(i)
1 is now detailed.

• LoS complex gain α
(i)
1 : Since the phase of α

(i)
1 varies 2π

for every movement over one wavelength, it is challeng-

ing to account for this (more on this in Part II). The power

of α
(i)
1 can be determined by the path loss equation4

∣

∣α
(i)
1

∣

∣

2
=

λ2

(4π)2
Grx(θ

(i)
1 )Gtx(φ

(i)
1 )

‖x− x(i)‖2
, (3)

where λ is the wavelength at the carrier and Gtx(·) and

Grx(·) denote the antenna element response at the Tx and

Rx, respectively. Since these element responses are often

only partially known and are affected by environmental

variations, the dependence of |α
(i)
1 |2 on the distance

‖x− x(i)‖ is usually not utilized in the development of

algorithms, except for fingerprinting [19].

• LoS AoA θ
(i)
1 and AoD φ

(i)
1 : In DL, θ

(i)
1 (x,o) is a

function of the UE position and orientation, while φ
(i)
1 (x)

only depends on the UE position. This means that DL-

AoA can only be used when the UE orientation is either

known or also estimated as part of the state. In UL,

these dependencies are reversed. The specific expressions

depend on how the coordinate systems and angles are

defined. For examples, see [20] or [21, Appendix A].

• LoS delay τ
(i)
1 : It is given by τ

(i)
1 (x) = ‖x−x(i)‖/c+B,

where c is the speed of light. The clock bias B is due to

the lack of synchronization between the BSs and UE and

may drift over time. While setting B to a known value

is occasionally an assumption in academic papers on

localization, it is overly optimistic and leads to misleading

designs and results. Dealing with the clock bias can be

avoided by using round-trip-time (RTT) measurements,

but should otherwise be estimated as part of the UE state.

• LoS Doppler ν
(i)
1 : Due to short transmission times in

4The path loss exponent relates to the LoS path only, not any average
behavior, as in usual communication channel models.
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localization within a coherence interval, |KTsν
(i)
1 | ≪ 1,

so that Doppler is generally not considered. Nevertheless,

Doppler can improve positioning [22], provided it can be

disambiguated from the carrier frequency offset (CFO).

The NLoS channel H
(i)
n,k,NLoS contains all the multipath, both

specular and diffuse, which is traditionally considered as a

disturbance. More on the geometric nature of the NLoS chan-

nel, the ability to modify the NLoS channel via reconfigurable

intelligent surface (RIS) [23], and how to harness multipath is

deferred to Part II.

C. The Sensing Problem

We consider several point objects (for extended objects, see,

e.g., [24]) with state sl, including position xl and velocity vl

for object l. An important difference in sensing compared to

localization is that the number of objects is a priori unknown

in sensing. Moreover, objects may appear and disappear from

the sensor’s field of view and/or may be occluded, leading to

missed detections. In addition, clutter may lead to non-existing

objects being detected, leading to false alarms. Hence, sensing

combines both detection and estimation, while localization

is essentially an estimation problem. The signal and channel

model are again of the form (1)–(2), but the interpretation of

the channel parameters is different, depending on whether the

transmitter and receiver are co-located (monostatic sensing, as

in automotive radar) or not (bistatic or multistatic sensing), as

shown in Fig. 1. Localization can be seen as a special case of

bistatic sensing, where only the LoS path is of interest.
Channel decomposition: In both monostatic and bistatic

sensing, the channel Hn,k is broken up as Hn,k = H
object

n,k +

Hclutter
n,k , where H

object

n,k captures the part of the channel related

to the objects, while Hclutter
n,k describes the part of the channel

related to clutter, e.g., ground reflections, and is modeled

statistically. The different components in the channel bring

the following geometric information per resolvable path.

• Channel gain αl: For monostatic sensing, due to the two-

way propagation, the gain is often much smaller than in

(3), and is given by [9, Vol. I, Ch. 2]

|αl|
2 =

λ2σRCS,lGrx(θl)Gtx(φl)

(4π)3‖xl‖4
, (4)

where ‖xl‖ denotes the distance from the sensor (which

is seen as the center of the coordinate system) to the

object and σRCS,l is the radar cross section (RCS) of

the l-th object, which depends on the object type. The

RCS is expressed in m2 and can range from 1 m2 for a

person to 100 m2 for a car. The very small values of |αl|2

are compensated by longer integration times, enabled by

including the Doppler shift in the observation model. For

bistatic sensing, the model is more involved, see, e.g., [21,

Section 2.3].

• AoA θl and AoD φl: In monostatic sensing, the AoA and

AoD are identical and depend on the object position xl. In

bistatic sensing, the AoA and AoD provide independent

information about the object [21, Appendix A].

• ToA τl: For monostatic sensing τl = 2‖xl‖/c, measured

with respect to the sensor, while for bistatic sensing τl =
(‖xl−xtx‖+ ‖xl−xrx‖)/c+B, where B = 0 when Tx

and Rx are time-synchronized.

• Doppler νl: In monostatic sensing, the Doppler is mea-

sured in the reference frame of the sensor and given by

νl = 2(v⊤

l ul)/λ, where ul is a unit vector pointing from

the object to the sensor and vl is the relative velocity. For

bistatic sensing, the Doppler depends on both the relative

velocity and the unit vectors to the target from Tx and

Rx, as well the CFO.

III. PERFORMANCE METRICS

While there are many metrics that are of importance, such

as latency (the time between the positioning request and the

position being available), availability (the fraction of space or

time that the localization and sensing service is available with

sufficient accuracy), and scalability (density of UEs that can

be simultaneously supported), our focus will be on accuracy

and resolution.

A. Accuracy

The main performance metric in localization and sensing

is accuracy. Let e denote the random estimation error, e.g.,

for localization e = x − x̂, and ‖e‖2 be the ℓ2 error norm.

Based on percentile or mean values of the error norm, the

accuracy is determined, e.g., the root mean squared error

(RMSE) or the 90% percentile. For unbiased estimators with

E{e} = 0 the RMSE can, under certain conditions, be lower

bounded by the Cramér-Rao bound (CRB) [25]. The CRB

is a powerful tool not only for benchmarking algorithms and

predicting performance, but also for deployment and waveform

optimization [14], [20] and for including prior knowledge

[26]. Combining all the observations (2) yields a long vector

y = [y⊤
1,1, . . . ,y

⊤

N,K ]⊤, which depends on parameters of

interest η (e.g., the UE location) of length dη , and nuisance

parameters, say, ξ (e.g., channel gains and clock bias). Then,

the Fisher information matrix (FIM) J(κ) of κ = [η⊤, ξ⊤]⊤

has as elements5

[J(κ)]ι,ι′ = −E

{∂ log p(y|κ)

∂[κ]ι

∂ log p(y|κ)

∂[κ]ι′

}

, (5)

where log p(y|κ) is the log-likelihood and E{·} indicates the

expectation over the noise. The following inequality holds:
√

E {‖η − η̂‖2} ≥
√

trace[J−1(κ)]1:dη,1:dη
, (6)

where the square root is used for easier interpretation of

the numerical values. When η is the position, orientation, or

velocity, the right-hand side of (6) is known as the position

error bound (PEB) (expressed in meters), orientation error

bound (OEB), or velocity error bound (VEB), respectively.

We denote Σ(η) = [J−1(κ)]1:dη,1:dη
as the covariance of

the estimation of η. In certain cases, the FIM lends itself to

analytical manipulation, providing deep insights into the nature

of the performance due to various factors, such as sensor

deployment or bandwidth [14]. When the FIM is not invertible,

the problem is non-identifiable, i.e., there are infinitely many

solutions based on the measurements.

5In most practical cases, the expression is simplified by using the Slepian-

Bangs formula J(κ) = 2/N0
∑

n,k ℜ
{( ∂µn,k

∂κ

)

H ∂µn,k

∂κ

}

, where µn,k is

the noise-free observation in yn,k .
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Fig. 3. An evaluation of the CRB (discussed in Section III-C) and estimation
RMSE (discussed in Section IV-A) of the closest among 5 objects as a function
of the signal bandwidth. Here, ‘1 path’ refers to the case with only one object.

B. Resolution

Resolution is the ability to separate correlated signals. For

example, if two objects, say, l and l′, in (1) have similar AoA,

AoD, ToA, and Doppler, they would appear to the receiver as

a single object with complex gain αl +αl′ . Resolution in one

domain is sufficient for objects to be separable. Resolution is

also applicable to the localization problem (2), to separate the

LoS path from the NLoS channel. We have several domains

of resolution [10].

• Delay resolution: Two objects can be resolved if their

delay difference |τl − τl′ | is greater than 1/W . Hence,

a larger bandwidth leads to better delay resolution. For

example, 400 MHz of bandwidth leads to a distance

resolution of 75 cm.

• Doppler resolution: Two objects can be resolved if their

Doppler difference |νl − νl′ | is greater than 1/(KTs).
Hence, a larger coherent integration time leads to better

Doppler resolution. For example, to obtain a radial veloc-

ity resolution of 1 m/s with a signal at 30 GHz carrier,

the integration time should be at least 10 ms.

• Angular resolution: Two objects can be resolved if the

difference in azimuth (a similar argument holds for ele-

vation) angle |θaz
l − θaz

l′ | is greater than (approximately,

since the exact expression depends on the angle itself)

2/N az, where N az is the number of λ/2-spaced elements

along the axis with respect to which the azimuth angle is

computed. Hence, larger arrays lead to better angle reso-

lution. For example, to obtain 5 degree angular resolution

at boresight, around 23 antennas are required.

C. Case Study

To show that resolution is needed to achieve high accuracy,

it is instructive to consider a simple example. In Fig. 3,

a single-antenna bistatic sensing scenario with 5 objects is

evaluated, with inter-object spacing of 20 meters, each with

same channel magnitude, set to achieve a 10 dB SNR per

object. The figure shows the RMSE of the first object as a

function of bandwidth. First, consider the inter-path spacing

(black) and resolution (orange). When the resolution curve is

below the inter-path spacing (this happens at about 20 MHz),

we expect the objects to become resolved. This is confirmed by

the CRB: the CRB (blue curve) is high for low bandwidths

and around 20 MHz starts to reach the CRB of the single-

object case (red curve). Hence, performance far better than

the waveform resolution is possible, e.g., by increasing the

integrated SNR, provided the signal paths can be resolved.

Without sufficient resolution, accuracy is limited.

IV. LOCALIZATION AND SENSING METHODS

From the observations yn,k, it would be tempting to solve

the localization or sensing problem by direct optimization.

Letting κ contain the UE state (for localization) or object states

(for sensing) as well as any nuisance parameters (channel

gains), then

κ̂ = argmax
κ

log p(y|κ), (7)

where the relevant quantities were already defined in Section

III-A. This is known as direct positioning and has as ben-

efit that all possible information is used, though at a high

computational cost [27]. Most practical methods apply a two-

stage approach, already hinted at in Fig. 2, whereby first the

geometric channel parameters (angles, delays, Dopplers) are

estimated, and then the UE / object state is recovered.

A. Channel Parameter Estimation

As the channel estimation problem is also present in

wireless communication, there exists a variety of estima-

tors, including FFT/Periodograms [28], ESPRIT [29], general-

ized approximate message passing [30], orthogonal matching

pursuit [18], and RIMAX/SAGE [31], which exploit either

underlying sparsity or principles of harmonic retrieval (or

both). A common approach is to first obtain an unstructured

estimate Ĥn,k of the channel (1) from a least-squares (LS)

estimator. Introducing ad(τ) = [1, . . . , e−2π(N−1)∆f τl ]⊤ and

aD(ν) = [1, . . . , e2π(K−1)Tsνl ]⊤, after vectorizing and stack-

ing of Ĥn,k, we can write6

ĥ =

L
∑

l=1

αlad(τl)⊗ aD(νl)⊗ arx(θl)⊗ atx(φl) + n, (8)

which is in an appropriate form for compressive sensing

methods [33]. This was applied in Fig. 3, where orthogonal

matching pursuit was used to detect the number of paths and

estimate their delays. When the resolution is above the inter-

path distance, the number of detected paths is too few, leading

to biased estimates, which explains the RMSE (dashed) below

the CRB (in blue). When the resolution is below the inter-path

distance, the RMSE follows the correspond CRB quite well,

and then attains the RMSE for the single-path case.

Alternatively, we can express the LS estimates in a tensor

form

ĥi1,i2,...,iD =

L
∑

l=1

αl

D
∏

d=1

eidωd,l + ni1,i2,...,iD , (9)

where ωd,l is a so-called spatial frequency. For instance,

if index d refers to the subcarrier dimension, then ωd,l =
−2π∆fτl. Now, (9) is a classic harmonic retrieval problem in

D dimensions (D = 4 in (8) but can be expanded to D = 6
if the Tx and Rx array admit a Kronecker structure). Once

the number of objects L̂, their gain α̂l and their geometric

parameters η̂l = [θ̂⊤

l , φ̂
⊤

l , τ̂l, ν̂l]
⊤ have been estimated, they

6The vectors atx(φ) and aD(ν) are coupled, which can be resolved by
imposing additional assumptions [32].
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can be further refined by optimization of the log-likelihood

function log p(y|κ) around this initial estimate. If the initial

estimate is good enough, this will lead to an efficient estimate,

close to the CRB with inverse FIM, say Σ(η̂l), which can be

used as an uncertainty estimate.

B. Position Estimation

Estimating the state of a UE or an object now relies on

the relationship between the estimated channel parameters,

expressed as η̂ and the corresponding uncertainty Σ(η̂), to the

state of interest. We focus on the localization problem for con-

creteness.7 Starting from η̂
(i)
1 = [(θ̂

(i)
1 )⊤, (φ̂

(i)
1 )⊤, τ̂

(i)
1 , ν̂

(i)
1 ]⊤

and associated uncertainty Σ(η̂
(i)
1 ) of the LoS path from each

BS i (see Fig. 2), the UE state is related to these channel

parameters measurements through η̂
(i)
1 = h(i)(s)+n(i), where

n(i) ∼ N (0,Σ(η̂
(i)
1 )) and h(i)(s) is the known mapping from

UE state to the geometric channel parameters, as described in

Section II-B. This enables us to express the problem8

ŝ = argmin
s

NB
∑

i=1

(

η̂
(i)
1 − h(i)(s)

)⊤
Σ

−1(η̂
(i)
1 )

(

η̂
(i)
1 − h(i)(s)

)

which is non-convex and can be solved by first obtaining a

coarse estimate (e.g., using geometric reasoning, linearization,

or relaxation). It is then refined by local optimization of

the likelihood function. The final estimate ŝ is then used to

compute a covariance Σ(ŝ) from

Σ
−1(ŝ) =

NB
∑

i=1

(∂η
(i)
1

∂s

)⊤

Σ
−1(η̂

(i)
1 )

∂η
(i)
1

∂s

∣

∣

∣

∣

∣

s=ŝ

. (10)

The couple (ŝ,Σ(ŝ)) can then be further processed, e.g., in a

tracking filter or sensor fusion engine.

V. CONCLUSIONS

In this letter, we have provided an overview of the radio

localization and sensing problems, described the basic models,

performance metrics and methods. An important focus was

on modeling of channels and signals, which is needed to

develop practical methods with high accuracy and reasonable

uncertainty information. We also emphasized the need for high

resolution as a prerequisite for high accuracy. This overview

provides the background for the more advanced principles in

Part II.
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