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Abstract—The fundamental concepts and challenges of orthog-
onal time frequency space (OTFS) modulation have been reviewed
in Part I of this three-part tutorial. In this second part, we provide
an overview of the state-of-the-art transceiver designs for OTFS
systems, with a particular focus on the cyclic prefix (CP) design,
window design, pulse shaping, channel estimation, and signal
detection. Furthermore, we analyze the performance of OTFS
modulation, including the diversity gain and the achievable rate.
Specifically, comparative simulations are presented to evaluate
the error performance of different OTFS detection schemes, and
the advantages of coded OTFS systems over coded orthogonal
frequency-division multiplexing (OFDM) systems are investigated.

Index Terms—OTFS, transceiver designs, performance analysis

I. INTRODUCTION

Orthogonal time frequency space (OTFS) modulation has

received considerable attention in the past few years since its

introduction in [1], thanks to its capability of enabling highly

reliable communication over high-mobility channels [2]. The

most important new feature of OTFS modulation compared

to conventional orthogonal frequency-division multiplexing

(OFDM) modulation is the delay-Doppler (DD) domain infor-

mation multiplexing, which motivates OTFS transceiver design

based on the DD domain channel response. Consequently,

conventional transceiver designs for OFDM systems optimized

based on the time-frequency (TF) domain channel character-

istics cannot be directly applied in OTFS systems as they are

not able to harvest the full benefits of DD domain information

multiplexing.

In Part II of this three-part tutorial, we aim to provide an in-

depth discussion on OTFS transceiver design. Specifically, we

study the key elements of the transceiver, including cyclic pre-

fix (CP) insertion, pulse shaping, channel estimation, and signal

detection. In particular, the commonly used message passing

algorithm (MPA) for OTFS detection is explained based on the

maximum a posteriori (MAP) criterion, and simulation results
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are presented to evaluate the error performance of various

detection schemes. Furthermore, we compare the performances

of OTFS and OFDM in terms of diversity gain and achievable

rate, where we also numerically verify the advantages of coded

OTFS modulation over coded OFDM.

II. TRANSMITTER DESIGN

The transmitter design is of great importance for practi-

cal application of OTFS. As explained in Part I, there are

two common implementations of OTFS, namely, symplectic

finite Fourier transform (SFFT)-based OTFS and discrete Zak

transform (DZT)-based OTFS. In this section, we will provide

further details on the transmitter design for both SFFT-based

and DZT-based OTFS, respectively.

Similar to the Part I, we assume that one OTFS frame

occupies a bandwidth of BOTFS and a time duration of TOTFS,

which accommodates M subcarriers with subcarrier spacing

∆f = BOTFS

M
and N time slots with slot duration T = TOTFS

N
.

A. Cyclic Prefix Design for SFFT-based OTFS

The SFFT-based implementation was proposed in the first

OTFS paper [1]. In particular, the SFFT-based implementation

can be viewed as the concatenation of an inverse SFFT (ISFFT)

module and the Heisenberg transform, where the latter one

can be realized with an inverse fast Fourier transform (IFFT)

module followed by a transmit pulse shaping filter [1].

The details of SFFT-based OTFS have been covered in

Part I. Here, we focus on CP design. Specifically, there are

two commonly used options for inserting the CP into SFFT-

based OTFS, i.e., full-CP OTFS and reduced-CP OTFS. In the

full-CP scheme, a CP is inserted in each time slot to combat

the delay spread of the channel, similar to what is done in

conventional OFDM [3]. On the other hand, in the reduced-

CP scheme, only one CP is appended at the start of the frame

with a duration longer than the maximum delay spread of the

channel. Reduced-CP OTFS has been officially introduced in

the literature in [4].

A key property of full-CP OTFS is that intersymbol in-

terference (ISI)-free transmission can be guaranteed after CP

removal at the receiver side, similar to conventional OFDM [3].

As a result, signal detection can be performed in the TF

domain, where only the impact of the Doppler shifts of

the channel has to be considered. Therefore, full-CP OTFS

transmissions may enable reduced-complexity signal detection.

On the other hand, reduced-CP OTFS may be the more

attractive option. In contrast to full-CP OTFS, the reduced-

CP scheme does not guarantee ISI-free transmission, but it

http://arxiv.org/abs/2209.05012v1
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generally requires a much smaller signaling overhead. In fact,

the purpose of the reduced-CP scheme is to ensure that the

received sequence is MN -periodic (MN is the frame length)

after CP removal, such that DZT can be employed for receiver

processing, yielding an effective DD domain channel matrix

with block diagonal structure [4]. There are some interesting

variations of reduced-CP OTFS. For example, it is reported

in [5], [6] that padding zeros instead of adding a CP results in

a more structured effective DD domain channel matrix, at the

cost of a small power loss.

B. Window Design for SFFT-based OTFS

An appealing advantage of SFFT-based OTFS is that it

facilitates TF domain window design [7], which introduces

additional DoFs for further improvements of the channel

estimation and data detection performance compared to the

commonly used rectangular window. The windowing at the

transmitter can be interpreted as power allocation in the TF

domain, while the windowing at the receiver causes colored

noise [7]. If channel state information (CSI) is available at

both transmitter and receiver, the transmitter window can be

optimized for minimization of the detection mean squared

error (MSE). The obtained solution can be interpreted as a

mercury/water-filling power allocation, where the mercury is

filled first, before water is poured to pre-equalize the doubly

selective TF domain channel [7]. If CSI is not available at

the transmitter, fixed window designs, such as the Dolph-

Chebyshev (DC) window [7], in the TF domain can enhance

channel sparsity and thus improve channel estimation perfor-

mance, enabling a smaller guard space overhead. We refer

interested readers to [7] for a more detailed discussion of

window designs for OTFS modulation.

C. Pulse Shaping for DZT-based OTFS

Different from SFFT-based OTFS, DZT-based OTFS directly

converts the DD domain signal into the time-delay (TD)

domain without converting the signal first into the TF domain.

DZT-based OTFS transmitters generally comprise an IDZT

module and a pulse shaping filter gtx (t). According to (15) in

Part I and [8], the discrete DD domain equivalent transmitted

symbols can be obtained via the DZT of the samples of the

TD domain transmit signal s (t), such that

DZs [l, k] =
√
MNXDD [l, k]DZgtx [l, k] , (1)

where information symbol XDD [l, k] is the (l, k)-th element

of the DD domain information matrix XDD of size M × N ,

with l ∈ {0, ...,M − 1} and k ∈ {0, ..., N − 1}. In (1), DZgtx

denotes the DZT of vector gtx containing the periodically

extended pulse samples, i.e., for the k-th element of gtx, we

have gtx [k]
∆
= gtx

(

[k]
MN

M
T
)

, k ∈ Z, where [·]N denotes the

modulo operation with respect to (w.r.t.) N .

The literature on OTFS pulse shape design is not mature yet,

however, we may still provide some intuition for pulse shape

design in the DD domain. In fact, (1) suggests an interesting

interpretation of pulse shape design in the DD domain, where

the pulse shaping can be viewed as a point-wise multiplication.

[ ]DD ,X l k

DDX

DD domain 

pulse shaping

[ ],gMN l kDZ

DD domain 

channel

( )DD ,h t n

DD domain

matched-filtering

[ ]* ,gMN l kDZ

[ ]DD ,Y l k

DDY

Effective  DD domain channel 

[ ],s l kDZ [ ],r l kDZ

Fig. 1. Block diagram of the equivalent model for DZT-based OTFS.

Notice that the DZT is defined for MN -periodic sequences.

With the reduced-CP scheme mentioned in the previous subsec-

tion, the overall DZT-based OTFS communication system can

be equivalently modelled as in Fig. 1. In Fig. 1, we assume that

the same pulse is employed for both transmit pulse shaping and

receive matched-filtering, and its periodically extended sample

vector is given by g, i.e., gtx = grx = g. Thus, the pulse

shape design for OTFS may be formulated as an optimization

problem that aims to optimize the effective DD domain channel

DZg [l, k]hDD [l, k]DZ∗

g [l, k], l ∈ {0, ...,M − 1} and k ∈
{0, ..., N − 1}, where hDD [l, k] denotes the samples of the

continuous DD domain channel response hDD (τ, ν).
An effective tool used for pulse shape design is the cross

ambiguity function. The ambiguity function characterizes the

correlation between two time domain signals w.r.t. delay vari-

able τ and Doppler variable ν, and is defined as follows [5]

Ax,y (τ, ν)
∆
=

∫

∞

−∞

x (t)y∗ (t− τ ) e−j2πν(t−τ)dt. (2)

In the literature, a pulse is referred to as an ideal pulse, if it

satisfies the bi-orthogonality condition [1], i.e.,

Agtx,grx

(

nT,
m

T

)

= δ [n] δ [m] , (3)

where δ [·] is the Dirac delta function. Note that the ideal pulse

is defined on a TF domain grid, which implies two-dimensional

(2D) orthogonality between TF domain transmitted symbols.

However, a pulse satisfying the bi-orthogonality condition in

the TF domain may not have ideal properties in the DD domain,

where the grid (corresponding to the DD resolution) is defined

differently. For the design of the pulse shape in the DD domain,

we may exploit the relation between a product of DZTs and

the ambiguity function. In particular, as shown in [9], the

product of two DZTs can be expanded into a 2D Fourier

series w.r.t. the sampled cross ambiguity function, which

could be exploited for pulse shape design. More specifically,

DZg [l, k]hDD [l, k]DZ∗

g [l, k] can be optimized by leveraging

the cross ambiguity function with the objective to promote

certain properties, such as improved channel sparsity and larger

Euclidean distance.

III. RECEIVER DESIGN

In this section, we consider the receiver design for OTFS

systems. Due to the space limitation, we focus on DZT-based

OTFS.

A. Channel Estimation

Different from its OFDM counterpart, OTFS channel esti-

mation is usually performed in the DD domain rather than

the TF domain as this allows the exploitation of the appealing
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Fig. 2. Channel estimation performance comparison for SBL [11], OMP [12],
NOMP [13], and the conventional embedded pilot approach [10].

properties of DD domain channel responses, such as sparsity,

compactness, separability, and quasi-static behaviour [2]. A

commonly used channel estimation approach for OTFS may be

the one published in [10], which only requires one embedded

pilot symbol in the DD domain. Specifically, a sufficiently

large guard interval is applied around the pilot to facilitate

the acquisition of the delay and Doppler responses. As the

DD domain relationship between the transmitted signal and

the channel response corresponds to a 2D circular convolution

as discussed in Part I, the embedded pilot is smeared over

several DD grid points around the original location. Therefore,

the channel can be estimated by simply checking the received

signal’s values around the DD grid point where the pilot was

embedded.

Channel estimation based on compressed sensing methods

has also been considered for OTFS systems. Compressed

sensing is suitable for sparse signal recovery, where the

number of measurements is much smaller than the number

of unknown parameters. Therefore, compressed sensing-based

channel estimation is well-suited for OTFS with fractional

delays or/and fractional Doppler shifts [11]. For instance, the

authors in [12] proposed a three-dimensional (3D) structured

orthogonal matching pursuit (OMP) algorithm to estimate

the delay-Doppler-angle domain channel by exploiting the

underlying 3D structured sparsity. A 3D Newtonized OMP

(NOMP) algorithm was proposed in [13], which exploits the

fractional components in the Doppler and angle domains via

Newton’s method. Furthermore, channel estimation based on

sparse Bayesian learning (SBL) techniques has been recently

proposed [11], and was shown to achieve a better error perfor-

mance compared to OMP-based schemes.

We present a performance comparison of the above-

mentioned channel estimation schemes w.r.t. the signal-to-noise

ratio (SNR) in Fig. 2, where M = N = 32, P = 5, lmax = 4,

and kmax = 3, respectively, and the fading coefficients are

generated according to the exponential power delay profile with

exponent 0.1. As can be observed, both on-grid SBL and off-

grid SBL [11] outperform OMP [12], NOMP [13], and the

conventional embedded pilot approach [10] in terms of the

normalized mean squared error (NMSE). Furthermore, off-grid

SBL achieves roughly 1 dB NMSE gain over on-grid SBL

in the high SNR regime because off-grid SBL can model the

effects of fractional Doppler components. Meanwhile, we also

observe that NOMP [13] achieves roughly 2 dB NMSE gain

over OMP [12], since NOMP can refine the delay and Doppler

shift estimation via Newton’s method.

B. Signal Detection

For OTFS, conventional detectors can be used, such as the

minimum mean square error (MMSE) detector. Thanks to the

properties of the effective DD domain channel matrix, MMSE

detection can be implemented with linear time complexity [14].

Apart from MMSE detection, MPA [5], [15], [16] has

also been widely applied for OTFS detection. Let us briefly

introduce MPA from an MAP detection point of view [15].

In the case of integer delay and Doppler shifts, assuming an

ideal pulse, the (l, k)-th element YDD [l, k] of the DD domain

received symbol matrix YDD, for l ∈ {0, ...,M − 1} and

k ∈ {0, ..., N − 1}, is given as follows [5]

YDD [l, k]=
∑P

i=1
hie

−j2πνiτiXDD[[l − li]M , [k − ki]N ]

+ ZDD [l, k] , (4)

where P is the number of resolvable paths, hi, τi, and νi
are the fading coefficient, the delay, and the Doppler shift

associated with the i-th path, respectively, while li and ki are

the corresponding delay and Doppler indices, as defined in Part

I. For ease of presentation, let us define the following sets

H
(i) ∆

= {hj |1 ≤ j ≤ P, j 6= i} ,
Yl,k

∆
=

{

YDD [[l + li]M , [k + ki]N ]
∣

∣1 ≤ i ≤ P
}

, and

X
(i)
l,k

∆
=
{

XDD

[

[l+li−lj]M ,[k+ki−kj]N
]

|1 ≤ j ≤ P, j 6= i
}

,

where the j-th element of H
(i), Yl,k, and X

(i)
l,k, are denoted

by H
(i)[j], Yl,k[j], and X

(i)
l,k[j], respectively. According to (4),

it can be shown that set Yl,k contains P received sym-

bols that are associated with DD domain transmitted symbol

XDD [l, k], while set X
(i)
l,k contains P −1 DD domain transmit-

ted symbols that are related to received symbol Yl,k [i], i.e.,

YDD [[l + li]M , [k + ki]N ]. In fact, the a posteriori probability

Pr {XDD [l, k] |YDD} can be factorized based on a graphical

model, where the nodes and calculations can be characterized

by H
(i), Yl,k, and X

(i)
l,k, respectively, as shown in [15]. Due

to the page limitation, we cannot provide the implementation

details for MPA. However, we note that the main idea of MPA

is to pass messages among the connected nodes iteratively in

a graphical model, such that the target probability, e.g., the

a posteriori probability, is approximately calculated after a

sufficient number of iterations.

Note that the MPA designed based on (4) assumes integer

delays and Doppler shifts. In the fractional Doppler case,

cross domain iterative detection (CDID) proposed in [17] has

been shown to achieve a near-optimal performance with re-

duced complexity1. CDID employs simple estimation/detection

schemes in both the TD and DD domains and iteratively

1We note that detection algorithms for OTFS are generally designed
specifically with different channel conditions in mind. For example, the MPA
algorithm reported in [15] is not suitable for fractional Doppler shifts, as its
detection complexity would become prohibitively high in this case.
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Fig. 3. BER comparison of MMSE detection, MPA [15], MPA [5], and CDID.

updates the extrinsic information via the unitary transforma-

tions between the TD and DD domains. Fig. 3 shows the

bit error ratio (BER) performance of OTFS transmission for

conventional MMSE detection, MPA in [15], MPA in [5], and

CDID, where we adopted M = 32, N = 16, P = 4 and the

fading coefficients are generated based on a uniform power

delay profile with lmax = 10 and kmax = 5. The MPA in [5]

and conventional MMSE detection achieve roughly the same

BER, which also coincides with that of the first iteration of

CDID. Furthermore, as the number of iterations increases,

CDID gradually approaches the performance of the MPA

in [15] with integer Doppler shifts, which is approximately

the MAP detection performance. This observation suggests

that CDID bridges the performance gap between MMSE and

MAP as the number of iterations increase, which indicates that

CDID achieves a favorable performance-complexity tradeoff.

For more details regarding the performance analysis of CDID,

we refer to [17].

IV. PERFORMANCE ANALYSIS OF OTFS MODULATION

In this section, we analyze the performance of OTFS mod-

ulation and draw comparisons with OFDM. To this end, we

consider system representative parameters to facilitate our

discussion. In practice, all parameters have to be selected

carefully according to the underlying channel conditions, of

course.

A. Diversity Gain vs. Coding Gain

The diversity gain characterizes the exponential scaling of

the error performance w.r.t. the SNR in the high SNR regime.

OFDM requires channel coding to extract the diversity gain

offered by multipath channels. In contrast, OTFS has the

potential to exploit the full channel diversity without channel

coding [18]–[20]. Nevertheless, channel coding will further im-

prove the error performance of OTFS. In particular, it is shown

in [20] that the unconditional pair-wise error probability (PEP)

of coded OTFS modulation over Rayleigh fading channels can

be approximately upper-bounded by

Pr (x,x′) <
∼

(

d2E (e)

P

)−P(
Es

4N0

)

−P

, (5)

where Pr (x,x′) denotes the probability that DD domain

transmitted sequence x is mistakenly detected as x′, and the

Euclidean distance between x and x′ is d2E (e). In (5), the

0 2 4 6 8 10 12 14
E

b
/N

0
 (dB)

10-4

10-3

10-2

10-1

FE
R

P = 3, Uncoded OTFS
P = 3, Coded OTFS
P = 8, Uncoded OTFS
P = 8, Coded OTFS
P = 3, Coded OFDM
P = 8, Coded OFDM

2.0 dB1.7 dB

Fig. 4. Comparison of FER performances of coded and uncoded OTFS and
OFDM.

SNR exponent, i.e., the diversity gain, is equal to the number

of resolvable paths of the underlying wireless channel P .

On the other hand, the term d2E (e)
/

P is referred to as the

coding gain, indicating the SNR gain achieved with channel

coding [20]. Two interesting observations can be obtained

from (5). Firstly, the PEP upper-bound does not depend on the

delays and Doppler shifts, which implies that OTFS modulation

causes “channel hardening”. This is because each DD domain

transmitted symbol experiences the fluctuation of the entire

TF domain channel response thanks to the employed ISFFT.

Secondly, there is a tradeoff between diversity gain and coding

gain for OTFS. In particular, (5) indicates that the diversity

gain of OTFS improves with the number of resolvable paths

P , while the coding gain declines. This observation suggests

a rule-of-thumb for code design, i.e., the Euclidean distance

between transmitted sequences should be maximized, which

actually aligns with the code design criterion for the additive

white Gaussian noise (AWGN) channel as a consequence of

the “channel hardening” effect. Fig. 4 depicts the frame error

rate (FER) performances of coded and uncoded OTFS and

OFDM modulation with maximum-likelihood (ML) detection,

where we apply the half-rate (3,1) feedforward convolutional

code and binary phase shift keying (BPSK). From the figure,

we observe that for a larger number of resolvable paths, the

coding gain for OTFS decreases, e.g., from 2.0 dB to 1.7 dB,

while the diversity gain increases, which is consistent with our

discussions based on (5). Furthermore, we also notice that the

diversity gain of coded OTFS with P = 8 is larger than that

of coded OFDM, which suggests that coded OTFS is a more

attractive option for reliable communication over multipath

fading channels than coded OFDM.

B. Achievable Rate Performance

The achievable rate is an important performance metric char-

acterizing how much information can be reliably transmitted

over a channel with given resources. The achievable rates of

OTFS and OFDM have been compared in [3], [21]. We present

the achievable rate performance for both OTFS and OFDM in

Fig. 5, where we assume that perfect CSI is available at the

receiver side and the achievable rate is calculated based on

R =
1

MN
log2 det

(

IMN + SNRHHH
)

. (6)
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In (6), IMN denotes the identity matrix of size MN , SNR
denotes the operating SNR, det(·) denotes the determinant,

(·)H denotes the Hermitian conjugate, and H stands for the

effective channel matrix for reduced-CP OTFS or OFDM with

and without CP (the CP length equals lmax), as given in [4]

and [3], respectively. We set M = 32 and N = 16, and assume

P = 4 independent resolvable paths with maximum delay and

Doppler indices given by lmax = 5 and kmax = 5, respectively.

As can be observed from Fig. 5, reduced-CP OTFS and OFDM

provide almost the same achievable rate, while OFDM with CP

clearly suffers from a rate degradation due to the CP insertion.

The intuition behind this observation is that the transformation

between the TF domain and the DD domain is unitary, and

thus, does not affect matrix determinants, leading to the same

achievable rate. However, the unitary property of the domain

transformation may not hold in the multiuser case, where only

a limited number of resource blocks can be allocated to each

user. In this case, it has been shown that OTFS yields an overall

achievable rate gain compared to OFDM if practical successive

interference cancelation (SIC) detection is employed at the

receiver [21].

An alternative, more practical performance metric is the

pragmatic capacity, defined as the achievable rate of the

channel induced by the signal constellation and the soft-output

of the detector [22]. The authors in [22] showed that OTFS

transmission enjoys a better pragmatic capacity performance

compared to OFDM over static channels with practical channel

estimation and detection schemes, thanks to the smaller signal-

ing overhead. Furthermore, the pragmatic capacity of OFDM

is very sensitive to the Doppler effect [22], such that OTFS

has a clear advantage in high-mobility channels.

V. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this letter, we reviewed OTFS transceiver design princi-

ples, including CP insertion, pulse shaping, channel estimation,

and signal detection. We also discussed the diversity gain and

achievable rate of OTFS systems. It is worth pointing out that

OTFS transceiver design still faces many practical issues. For

example, OTFS receivers may induce a long latency as the

demodulation can only be carried out once the whole block

of TF symbols is received due to the symbol spreading from

the DD domain to the TF domain. Furthermore, without a

carefully designed pulse shape, OTFS may cause high out-

of-band emissions and other practical issues. Therefore, low

latency receiver and pulse designs are important research topics

for facilitating practical OTFS implementation.
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