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Abstract—Reconfigurable intelligent surfaces (RISs) have be-
come a promising candidate for the development of future mobile
systems. In the context of massive machine-type communications
(mMTC), a RIS can be used to support the transmission from
a group of sensors to a collector node. Due to the short data
packets, we focus on the design of the RIS for maximizing
the weighted sum and minimum rates in the finite blocklength
regime. Under the assumption of non-orthogonal multiple access,
successive interference cancelation is considered as a decoding
scheme to mitigate interference. Accordingly, we formulate the
optimizations as non-convex problems and propose two sub-
optimal solutions based on gradient ascent (GA) and sequential
optimization (SO) with semi-definite relaxation (SDR). In the GA,
we distinguish between Euclidean and Riemannian gradients. For
the SO, we derive a concave lower bound for the throughput and
maximize it sequentially applying SDR. Numerical results show
that the SO can outperform the GA and that strategies relying
on the optimization of the classical Shannon capacity might be
inadequate for mMTC networks.

Index Terms—Massive machine-type communications, recon-
figurable intelligent surfaces, finite blocklength regime, gradient
ascent, sequential optimization, semi-definite relaxation.

I. INTRODUCTION

MASSIVE MACHINE-TYPE COMMUNICATIONS
(mMTC) play an essential role in the next generation

of cellular networks [1]. They represent a type of setup where
large sets of devices send their information to a base station
or collector node (CN) in an unsupervised manner. Weather
forecasting, surveillance systems, and health monitoring are
only some examples of possible mMTC applications.

Given that mMTC transmissions consist of packets with
short lengths, reliable communication can be sometimes diffi-
cult (especially in scenarios with poor channel propagation,
e.g., millimeter-wave bands). That is why in this work, to
boost the system performance, we consider the use of a
reconfigurable intelligent surface (RIS) [2]. The RIS will be
designed to maximize the throughputs of the mMTC terminals
in the finite blocklength regime (FBLR) [3].

A RIS can be described as a large passive surface that allows
the adaptation to the wireless environment. In essence, these
types of structures act as reflectors that can point the signals
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toward the target destination and enhance the received signal
strength. This gain in received power, together with its low
cost and easy deployment, make RISs one of the potential
technologies for future mobile networks [4].

Due to the vast connectivity and lack of resources in (delay-
insensitive) mMTC, we adopt a non-orthogonal multiple ac-
cess (NOMA) transmission and a decoding scheme based on
successive interference cancelation (SIC) [5]. The role of the
RIS will be to adapt the channel to the SIC procedure, which
can help to reduce the influence of the interference along with
the mitigation of channel quality drawbacks [6].

The design of the RIS for the data rate maximization results
in non-convex problems. To circumvent that, the optimizations
are addressed using: (i) gradient ascent (GA) and (ii) sequen-
tial optimization (SO) with semi-definite relaxation (SDR).
Both techniques will allow us to find sub-optimal and feasible
solutions, whose performance is evaluated numerically and
whose computational complexity is also analyzed.

Regarding other works in the literature, some advances have
been reported. The authors of [7] proposed a block coordinate
descent method to maximize the sum rate in device-to-device
communications. In [8], the authors investigated the use of
SIC for RIS-aided networks and maximized the total through-
put with the help of convex relaxations and approximations.
Similarly, the ergodic rate in the presence of correlated Rician
fading was maximized in [9] using alternating optimization
(AO). Nevertheless, to the best of the authors’ knowledge, no
studies have been conducted in the direction of RIS design for
rate maximization in mMTC systems under the FBLR.

The remainder of this paper is structured as follows. Sec-
tion II describes the system model and the optimization prob-
lems. Section III presents the proposed solutions. Section IV
provides the simulation results. Section V concludes the work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Throughout this paper, we will consider a setup with a set of
𝑀 single-antenna sensors connected to a single-antenna CN.
Each device maps its measurements into transmit symbols 𝑥𝑖 ∼
CN(0, 𝑃𝑖) and sends them to the CN on a NOMA basis.

In order to support the transmission from the sensors to the
CN, we incorporate the usage of a RIS with 𝐿 reflecting ele-
ments. By means of phase shifters, the RIS will be responsible
for spatially focusing the different signals as needed [10]. An
illustrative example of a scenario with 𝑀 = 4 and 𝐿 = 9 is
depicted in Fig. 1, where the direct path is blocked and the
RIS is used to create an additional path to reach the CN.

The received signal at the CN can be expressed as

𝑦 ≜
𝑀∑︁
𝑖=1

(
𝑞𝑖 + gT

R𝚿g𝑖
)
𝑥𝑖 + 𝑤, (1)
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Fig. 1: Scenario with 𝑀 = 4 sensors and 𝐿 = 9 RIS elements. Solid
and dotted lines indicate strong and weak paths, respectively.

where 𝑞𝑖 ∈ C is the channel from sensor 𝑖 to the CN, gR ∈ C𝐿
is the channel between RIS and CN1, g𝑖 ∈ C𝐿 is the channel
from sensor 𝑖 to the RIS, 𝚿 ≜ diag

(
𝜆1𝑒

𝑗 𝜙1 , . . . , 𝜆𝐿𝑒
𝑗 𝜙𝐿

)
is the

RIS reflection matrix with 𝜆𝑙 ∈ [0, 1] denoting the amplitude
coefficients and 𝜙𝑙 ∈ [0, 2𝜋) representing the phase-shifts [11],
and 𝑤 ∼ CN(0, 𝜎2

𝑤) is the thermal noise.
As mentioned, in latency-tolerant mMTC services, SIC can

be safely employed to alleviate the interference effects. In a
nutshell, decoding is applied sequentially following a certain
order, and, at each step, the previous signals are canceled, i.e.,
their contributions are subtracted from the received signal 𝑦.
For simplicity, we assume the direct channel 𝑞𝑖 is negligible
in comparison with the sensors-RIS-CN link [2], [4]. Hence,
considering perfect cancelation and a fixed2 decoding order
1, . . . , 𝑀 , the signal-to-interference-plus-noise ratio (SINR)
when detecting the signal from sensor 𝑖 yields

𝜌𝑖 ≜
𝑃𝑖

��ψTh𝑖

��2
𝜎2
𝑤 +

𝑀∑︁
𝑗=𝑖+1

𝑃 𝑗

��ψTh 𝑗

��2 , (2)

where h𝑖 ≜ diag(gR)g𝑖 is the (known3) cascaded channel and
ψ = [𝜓1, . . . , 𝜓𝐿]T is the vector containing the main diagonal
elements of the RIS matrix 𝜓𝑙 ≜ 𝜆𝑙𝑒

𝑗 𝜙𝑙 such that |𝜓𝑙 | ≤ 1.
For the proper performance of the SIC procedure, it is

imperative to have unbalanced received powers for separating
the signals of the devices, i.e., power-domain NOMA [5]. In
conventional wireless networks, this difference can be attained
by modifying the sensors’ transmit powers 𝑃𝑖 , or by designing
spatial filters at the CN (when equipped with multi-antenna
technology). However, in mMTC scenarios, power allocation
mechanisms are not feasible due to the large number of devices
involved. Besides, the simplicity of the sensors often limits the
number of power levels and their adjustment. That is why we
will consider fixed 𝑃𝑖 and no transmit power control here.

Given the presence of the RIS, the received powers can still
be adjusted. Consequently, the role of the RIS is two-fold: (1)
improve the signals’ quality and strength, but also (2) adapt
the channels to the SIC procedure (ensure unbalanced powers).
Both factors will contribute to increasing the data rate.

1For the purpose of exposition, this work focuses on a single-antenna CN
to present the philosophy behind the RIS optimization without complicating
unnecessarily the notation. Note, however, that the techniques proposed in
this paper could be extended to other detection schemes based on SIC and a
multiple-antenna CN, such as in [5], where a set of beamformers are applied
at the receiver, thanks to which the vector channels can be scalarized.

2Note that the SIC ordering could also be optimized [5], [12], yet it involves
a combinatorial problem whose solution is challenging and unclear in the
FBLR. That is why its selection is left for future studies.

3In practice, imperfect channel knowledge should be considered [10]. Thus,
as shown in Section IV, our results will serve as a performance upper bound.

In line with that, under the assumption of short data packets,
the throughput of sensor 𝑖 (in bits/Hz) is given by [3]

𝑅(𝜌𝑖 , 𝑛𝑖 , 𝜖𝑖) ≜ 𝐶 (𝜌𝑖) −
√︄
𝑉 (𝜌𝑖)
𝑛𝑖

𝑄−1 (𝜖𝑖) + O
(

log(𝑛𝑖)
𝑛𝑖

)
, (3)

where 𝐶 (𝑥) ≜ log(1 + 𝑥) is the channel capacity4, 𝑉 (𝑥) ≜
2𝑥(1+𝑥)−1 log2 𝑒 is the so-called channel dispersion [13], 𝑄(·)
is the Gaussian Q-function, 𝜖𝑖 is the error probability, and 𝑛𝑖
is the number of transmit symbols. In fact, for a sufficiently
large 𝑛𝑖 , the last addend in (3) can be safely omitted.

Let 𝑎(𝑛𝑖 , 𝜖𝑖) ≜ (log 𝑒/√𝑛𝑖)𝑄−1 (𝜖𝑖) and Δ(𝜌𝑖) ≜
√︁
𝑉 (𝜌𝑖)

such that 𝑅(𝜌𝑖 , 𝑛𝑖 , 𝜖𝑖) ≈ 𝐶 (𝜌𝑖) − 𝑎(𝑛𝑖 , 𝜖𝑖)Δ(𝜌𝑖). We consider
that 𝑛𝑖 and 𝜖𝑖 are fixed and detailed by the system requirements
(specified in Section IV) and, thus, the data rate only depends
on the SINR or, equivalently, on ψ, i.e., 𝑅𝑖 (ψ) ≡ 𝑅(𝜌𝑖 , 𝑛𝑖 , 𝜖𝑖),
𝐶𝑖 (ψ) ≡ 𝐶 (𝜌𝑖), 𝑎𝑖 ≡ 𝑎(𝑛𝑖 , 𝜖𝑖), and Δ𝑖 (ψ) ≡ Δ(𝜌𝑖).

Based on that, two interesting optimization problems can
be formulated, namely maximization of the weighted sum rate
(WSR) and maximization of the minimum rate:

ψ★ = argmax
ψ

𝑀∑︁
𝑖=1

𝜔𝑖𝑅𝑖 (ψ) s.t. |𝜓𝑙 | ≤ 1∀𝑙, (4)

ψ★ = argmax
ψ

min
𝑖

𝑅𝑖 (ψ) s.t. |𝜓𝑙 | ≤ 1∀𝑙, (5)

where 𝜔𝑖 are the different priority weights [14]. Unfortunately,
the objective functions are not convex in ψ. That is why in the
following, we propose methods to find a practical solution5.

III. PROPOSED SOLUTIONS

To tackle the previous optimizations, in this section, we
will explore two different strategies: (i) GA and (ii) SO with
SDR. Both approaches are based on an iterative (successive)
procedure, where at each step (denoted by 𝑘) the solution ψ (𝑘 )

is updated (refined) until convergence is achieved. In (i), we
distinguish between the Euclidean and Riemannian gradients.

A. Gradient Ascent
Given that the throughput is continuous and differentiable,

the first approach to finding a sub-optimal RIS configuration
is the well-known GA algorithm [15]. Considering the WSR
maximization6, the solution can be found as follows [16]:

ψ (𝑘+1) = P
(
ψ (𝑘 ) + 𝛼𝑘

𝑀∑︁
𝑖=1

𝜔𝑖grad 𝑅𝑖

(
ψ (𝑘 )

))
, (6)

with P(·) the operator projecting the solution into the subspace
defined by the constraint set7 and 𝛼𝑘 > 0 the Armijo step size
[14]. To ease of notation, grad 𝑅𝑖

(
ψ (𝑘 )

)
can refer either to the

Euclidean or to the Riemannian gradient of the data rate. In
short, the Riemannian case is an extension of the Euclidean
as, despite the projection, it considers the geometric properties
of the constraint set in the search [16]. As shown below, both
expressions can be derived using complex vector calculus [17].

4ln( ·) and log( ·) denote the natural and base-2 logarithms, respectively.
5The widely used hard-equality constraint |𝜓𝑙 | = 1 is a particular case and

results in equal or worse performance (due to the smaller feasible set).
6The minimum rate solution can be derived using similar techniques.
7The constraint set can be satisfied by, for example, normalizing the vector

ψ by its largest absolute value, i.e., ψ ← ψ/𝑎 with 𝑎 ≜ max𝑙 |𝜓𝑙 |.
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1) Euclidean Gradient:

grad 𝑅𝑖

(
ψ (𝑘 )

)
= ∇𝑅𝑖

(
ψ (𝑘 )

)
= ∇𝐶𝑖

(
ψ (𝑘 )

)
− 𝑎𝑖∇Δ𝑖

(
ψ (𝑘 )

)
,

(7)
where ∇𝑅𝑖

(
ψ (𝑘 )

)
denotes the Euclidean gradient of 𝑅𝑖

(
ψ (𝑘 )

)
,

∇𝐶𝑖

(
ψ (𝑘 )

)
=

2
ln 2

(
𝑃𝑖h𝑖h

H
𝑖

(
ψ (𝑘 )

)∗ −Ω𝑖
(
ψ (𝑘 )

)
𝜎2
𝑤 +

∑
𝑗≥𝑖 𝑃 𝑗 |

(
ψ (𝑘 )

)T
h 𝑗 |2

)
, (8)

represents the Euclidean gradient of 𝐶𝑖
(
ψ (𝑘 )

)
with

Ω𝑖

(
ψ (𝑘 )

)
≜

𝑃𝑖 |
(
ψ (𝑘 )

)T
h𝑖 |2

∑
𝑗>𝑖 𝑃 𝑗h 𝑗h

H
𝑗

(
ψ (𝑘 )

)∗
𝜎2
𝑤 +

∑
𝑗>𝑖 𝑃 𝑗 |

(
ψ (𝑘 )

)T
h 𝑗 |2

, (9)

and

∇Δ𝑖

(
ψ (𝑘 )

)
=

√√√
2
𝜎2
𝑤 +

∑
𝑗≥𝑖 𝑃 𝑗 |

(
ψ (𝑘 )

)T
h 𝑗 |2

𝑃𝑖 |
(
ψ (𝑘 )

)T
h𝑖 |2

Λ𝑖

(
𝚽(𝑘 )

)
,

(10)
is the Euclidean gradient of Δ𝑖

(
ψ (𝑘 )

)
with

Λ𝑖

(
ψ (𝑘 )

)
≜

𝑃𝑖h𝑖h
H
𝑖

(
ψ (𝑘 )

)∗
𝜎2
𝑤 +

∑
𝑗≥𝑖 𝑃 𝑗 |

(
ψ (𝑘 )

)T
h 𝑗 |2

−
𝑃𝑖 |

(
ψ (𝑘 )

)T
h𝑖 |2

∑
𝑗≥𝑖 𝑃 𝑗h 𝑗h

H
𝑗

(
ψ (𝑘 )

)∗
(𝜎2

𝑤 +
∑

𝑗≥𝑖 𝑃 𝑗 |
(
ψ (𝑘 )

)T
h 𝑗 |2)2

.

(11)

2) Riemannian Gradient:

grad 𝑅𝑖

(
ψ (𝑘 )

)
= ∇𝑅𝑖

(
ψ (𝑘 )

)
− Re

{
∇𝑅𝑖

(
ψ (𝑘 )

)
⊙

(
ψ (𝑘 )

)∗}
⊙ ψ (𝑘 ) ,

(12)

where ⊙ is the Hadamard (or element-wise) product.

B. Sequential Optimization with Semi-Definite Relaxation

Before applying SDR, we start this subsection by finding a
tight concave lower bound for the data rate 𝑅𝑖

(
ψ (𝑘 )

)
. Later

on, this new objective function will be sequentially optimized
(maximized) until a stationary solution is found [2].

To do so, we will consider the following inequalities [18]:

ln
(
1 + 𝑥

𝑦

)
≥ ln

(
1 + 𝑥

𝑦̄

)
+ 𝑥

𝑦̄

(
2
√︂

𝑥

𝑥
− 𝑥 + 𝑦
𝑥 + 𝑦̄ − 1

)
, (13)

√
𝑥 ≤ 1

2

(√
𝑥 + 𝑥√

𝑥

)
, 𝑥 ≤ 1

2

(
𝑥 + 𝑥2

𝑥

)
, (14)

for 𝑥 > 0, 𝑦 > 0, 𝑦̄ > 0, and 𝑥 > 0.
We will first find a concave lower bound for 𝐶𝑖

(
ψ (𝑘 )

)
and

then a convex upper bound for Δ𝑖
(
ψ (𝑘 )

)
. In that sense, the

capacity bound at step 𝑘 follows from (13):

𝐶𝑖

(
ψ (𝑘 )

)
≥ 1

log 2

(
ln

(
1 + 𝜌 (𝑘−1)

𝑖

)
+ 𝜌 (𝑘−1)

𝑖 Γ𝑖
(
ψ (𝑘 )

))
, (15)

where

Γ𝑖
(
ψ (𝑘 )

)
≜ 2

√√√ (
ψ (𝑘 )

)T
H𝑖

(
ψ (𝑘 )

)∗(
ψ (𝑘−1) )T

H𝑖
(
ψ (𝑘−1) )∗

− 𝜎2
𝑤 +

(
ψ (𝑘 )

)T
H̄𝑖

(
ψ (𝑘 )

)∗
𝜎2
𝑤 +

(
ψ (𝑘−1) )T

H̄𝑖
(
ψ (𝑘−1) )∗ − 1,

(16)

with H𝑖 ≜ 𝑃𝑖h𝑖h
H
𝑖 , H̃𝑖 ≜

∑
𝑗>𝑖H 𝑗 , and H̄𝑖 ≜ H𝑖 +H̃𝑖 . Note

that 𝜌 (𝑘−1)
𝑖 in (15) is the SINR from the previous iteration:

𝜌
(𝑘−1)
𝑖 =

(
ψ (𝑘−1) )T

H𝑖
(
ψ (𝑘−1) )∗

𝜎2
𝑤 +

(
ψ (𝑘−1) )T

H̃𝑖
(
ψ (𝑘−1) )∗ . (17)

Unfortunately, since H𝑖 are positive (semi-) definite matri-

ces, the set of functions
√︃(
ψ (𝑘 )

)T
H𝑖

(
ψ (𝑘 )

)∗ are not concave

in ψ (𝑘 ) . Hence, although
(
ψ (𝑘 )

)T
H̄𝑖

(
ψ (𝑘 )

)∗ is indeed con-
vex, the previous bound results non-concave.

A possible alternative is to define 𝚽(𝑘 ) ≜
(
ψ (𝑘 )

)∗ (
ψ (𝑘 )

)T

and reformulate the optimization in terms of 𝚽(𝑘 ) [19]. As a
result, the set of (convex) constraints |𝜓𝑙 | ≤ 1∀𝑙 translate into

C ≜
{
𝚽(𝑘 ) ⪰ 0, rank

(
𝚽(𝑘 )

)
= 1,

[
𝚽(𝑘 )

]
𝑙,𝑙
≤ 1∀𝑙

}
. (18)

Accordingly, the bound in (15) becomes

𝐶𝑖

(
𝚽(𝑘 )

)
= log

©­­«1 +
tr

(
𝚽(𝑘 )H𝑖

)
𝜎2
𝑤 + tr

(
𝚽(𝑘 )H̃𝑖

) ª®®¬
≥ 𝐶𝑖

(
𝚽(𝑘−1)

)
+ 1

log 2

tr
(
𝚽(𝑘−1)H𝑖

)
Γ𝑖

(
𝚽(𝑘 )

)
𝜎2
𝑤 + tr

(
𝚽(𝑘−1)H̃𝑖

)
≜ 𝐶̃𝑖

(
𝚽(𝑘 )

)
, (19)

which can be shown to be concave with respect to (w.r.t.)
𝚽(𝑘 ) . Indeed, the term Γ𝑖

(
𝚽(𝑘 )

)
is given below:

Γ𝑖
(
𝚽(𝑘 )

)
≜ 2

√√√√√√ tr
(
𝚽(𝑘 )H𝑖

)
tr

(
𝚽(𝑘−1)H𝑖

) − 𝜎2
𝑤 + tr

(
𝚽(𝑘 )H̄𝑖

)
𝜎2
𝑤 + tr

(
𝚽(𝑘−1)H̄𝑖

) − 1,

(20)
which is the sum of a concave function (square root of a linear
function) and a linear function; therefore, it is concave.

Regarding the term Δ𝑖

(
𝚽(𝑘 )

)
, we can obtain a convex upper

bound by means of the inequalities in (14):

Δ𝑖

(
𝚽(𝑘 )

)
=

√√√√√√ 2tr
(
𝚽(𝑘 )H𝑖

)
𝜎2
𝑤 + tr

(
𝚽(𝑘 )H̄𝑖

)
≤

Δ𝑖

(
𝚽(𝑘−1)

)
2

+ 1

Δ𝑖

(
𝚽(𝑘−1)

) tr
(
𝚽(𝑘 )H𝑖

)
𝜎2
𝑤 + tr

(
𝚽(𝑘 )H̄𝑖

)
≤

Δ𝑖

(
𝚽(𝑘−1)

)
2

+
tr

(
𝚽(𝑘−1)H𝑖

)
2Δ𝑖

(
𝚽(𝑘−1)

) 1

𝜎2
𝑤 + tr

(
𝚽(𝑘 )H̄𝑖

)
+ 1

2Δ𝑖

(
𝚽(𝑘−1)

)
tr

(
𝚽(𝑘−1)H𝑖

) tr2
(
𝚽(𝑘 )H𝑖

)
𝜎2
𝑤 + tr

(
𝚽(𝑘 )H̄𝑖

)
≜ Δ̃𝑖

(
𝚽(𝑘 )

)
, (21)

where the last addend is quadratic over linear, thus convex.
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Finally, the new optimization problems read as

𝚽(𝑘 ) = argmax
ψ

𝑀∑︁
𝑖=1

𝜔𝑖 𝑅̃𝑖

(
𝚽(𝑘 )

)
s.t. C, (22)

𝚽(𝑘 ) = argmax
ψ

min
𝑖

𝑅̃𝑖

(
𝚽(𝑘 )

)
s.t. C, (23)

where 𝑅̃𝑖

(
𝚽(𝑘 )

)
is the concave lower bound of the rate in (3):

𝑅̃𝑖

(
𝚽(𝑘 )

)
= 𝐶̃𝑖

(
𝚽(𝑘 )

)
− 𝑎𝑖Δ̃𝑖

(
𝚽(𝑘 )

)
. (24)

By applying SDR and dropping the (non-convex) rank-one
constraint, the above problems can be solved using standard
numerical methods, e.g., CVX [20]. Finally, once convergence
is reached, the rank-one solution can be retrieved with the help
of Gaussian randomization (although a stationary point cannot
be then guaranteed) [19]. This is discussed in the simulations.

C. Complexity Analysis

The computational cost (per iteration) of the GA-based ap-
proaches is mainly given by the computation of the Euclidean
gradient, i.e., O(𝑀2𝐿2) [14]. Contrarily, due to the convex
formulation, the complexity of the SO technique is polynomial
w.r.t. 𝐿2 (the number of variables) [15]. The analysis of the
iterations needed by each approach is reserved for Section IV.

IV. NUMERICAL SIMULATIONS

To assess the performance of the proposed approaches, here
we will present the resulting data rates w.r.t. the number of
reflecting elements 𝐿. For a broader comparison, the situation
where the RIS elements 𝜓𝑙 are found sequentially using one-
dimensional exhaustive searches (AO) is also included [19].

Throughout this section, we will consider the micro-urban
scenario described in [21] with 𝑃𝑖 = 0 dBm ∀𝑖, 𝜎2

𝑤 = 𝑁𝑜𝐵,
𝑁𝑜 = −174 dBm/Hz, and 𝐵 = 1.08 MHz [22]. We assume a
setup with 𝑀 = 10 sensors uniformly distributed around the
RIS within a disk of radius 10 m. All channels are modeled
using a power-law path loss and a Rician fading with factors
10 and 1 for gR and g𝑖 , respectively. The steering vectors are
generated for a uniform planar array configuration [23]. We
also consider 𝑛𝑖 = 100 symbols ∀𝑖 and 𝜖𝑖 = 10−3 ∀𝑖.

The WSR is depicted in Fig. 2 for different weight criteria:
equality (𝜔𝑖 = 1 ∀𝑖) and fairness (𝜔𝑖 = 1/𝜌𝑖). All weights are
normalized so that

∑
𝑖 𝜔𝑖 = 𝑀 . The SO method provides the

highest performance in the fair setup, but similar results are
obtained with the AO, Riemannian GA (RGA), and SO when
choosing equal priorities. This is because the solution in the
case of equal weights can be found easily (e.g., capitalizing on
the devices with the best conditions). Contrarily, the Euclidean
GA (EGA) always yields the poorest values.

The minimum rate is illustrated in Fig. 3 for the AO and
SO solutions only (the gradient-based searches are omitted to
avoid redundancy). As before, the SO strategy outperforms the
AO technique, especially for large 𝐿. Additionally, to study the
impact of imperfect channel knowledge, we include the case
where the actual value h𝑖 is contaminated by an estimation
error η𝑖 ∼ CN(0𝐿 , 𝜎

2
𝜂I𝐿), where 𝜎2

𝜂 = 𝛽
𝐿 tr(C𝑖), 𝛽 ∈ [0, 1],

and C𝑖 ∈ C𝐿×𝐿 is the covariance matrix of h𝑖 . As expected,
the performance degrades significantly with 𝜎2

𝜂 (or 𝛽).
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Fig. 2: WSR obtained with the solution from (22) versus 𝐿.
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Fig. 3: Minimum rate obtained with the solution from (23) versus 𝐿.
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Fig. 4: Minimum rates obtained with the solution from (23) and from
the maximization of the minimum Shannon capacity versus 𝐿.

In Fig. 4, we illustrate the previous minimum rate 𝑅𝑖 and
that obtained when maximizing the minimum Shannon capac-
ity 𝐶𝑖 through SO (the WSR is omitted to avoid redundancy).
For the latter, the RIS is designed by considering 𝑛𝑖 → ∞ in
(23). Since the capacity is independent of the blocklength and
does not include the dispersion term (cf. (3)), there will be a
mismatch between the metrics 𝑅𝑖 and 𝐶𝑖 . As we can see, this
results in a large performance gap that can be even wider with
shorter packets (i.e., 𝑛𝑖 < 100). Hence, the optimization of the
Shannon bound can be misleading for mMTC transmissions
and the FBLR analysis becomes imperative.

To further benchmark the performance of the SO, we also
include the throughput with (w/-) and without (w/o) the rank-
one constraint. Since both curves can be quite tight, one can
state that in this case, the SO with SDR is (nearly) optimal.

Note that the previous reasoning also holds for the case of
gathering RIS elements. Considering groups of size 𝐺 ≥ 1, 𝐿
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Fig. 5: WSR obtained with the solution from (23) versus 𝐿.
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Fig. 6: Convergence tolerance versus the number of iterations.

would refer to the number of groups and the actual number of
unit cells would be 𝐿𝐺 ≥ 𝐿 [24]. However, the analysis inclu-
ding grouping techniques is beyond the scope of this work.

To get richer insights, the WSR obtained with the mini-
mum rate solution is depicted in Fig. 5. This illustrates the
trade-off between both criteria, i.e., maximizing the minimum
throughput deteriorates the WSR and vice versa. In addition
to that, compared to Fig. 2, now the results with equal weights
follow a similar behavior to those with distinct priorities: the
SO greatly outperforms the AO. The reason behind this fact
is that, apart from finding all variables jointly (not separately
as in AO), our proposal stands out in fair optimizations.

Finally, regarding the complexity of the proposed methods,
in Fig. 6 and Table I we present the convergence tolerance (i.e.,
the relative difference between current and final rates) versus
the number of iterations 𝑘 and the corresponding execution
time for the fair WSR optimization with 𝐿 = 100 reflecting
elements, respectively. From all approaches, the EGA is the
one with the smallest number of iterations whereas the AO
requires the highest execution time for convergence.

V. CONCLUSIONS

In this paper, we have addressed the problem of designing a
RIS for the maximization of the FBLR data rate in an mMTC
network. In a setup where sensors transmit their information
to a CN, we have presented two feasible strategies to find a
sub-optimal configuration of the RIS. The first is based on the
popular GA, for which Euclidean and Riemannian gradients
are considered. The other approach relies on the derivation of
a concave lower bound for the data rate and the use of SO with
SDR. Simulations highlight the performance of the SO and the
importance of the FBLR analysis in mMTC transmissions.

TABLE I: Execution time (in seconds).

AO EGA RGA SO
618.84 0.083 0.18 327.61
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