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Abstract—This letter investigates the secure communication in
a reconfigurable intelligent surface (RIS)-aided multiuser mas-
sive multiple-input multiple-output (MIMO) system exploiting
artificial noise (AN). We first derive a closed-form expression
of the ergodic secrecy rate under spatially correlated MIMO
channels. By using this derived result, we further optimize the
power fraction of AN in closed form and the RIS phase shifts
by developing a gradient-based algorithm, which requires only
statistical channel state information (CSI). Our analysis shows
that spatial correlation at the RIS provides an additional dimen-
sion for optimizing the RIS phase shifts. Numerical simulations
validate the analytical results which show the insightful interplay
among the system parameters and the degradation of secrecy
performance due to high spatial correlation at the RIS.

Index Terms—Reconfigurable intelligent surface (RIS), ergodic
secrecy rate, spatial correlation, joint optimization.

I. INTRODUCTION

RECONFIGURABLE intelligent surface (RIS) has been

proposed as a promising technology for improving both

spectral and energy efficiencies for next-generation wireless

networks [1]. It consists of numerous low-cost passive reflect-

ing elements that can induce phase changes to the reflected

electromagnetic waves. As such, by properly adjusting the

phase shifts, RIS can smartly modify the channel conditions

between the base station (BS) and the users, which helps

improve the communication quality of wireless networks [2].

Recently, there has been considerable interest in the use

of RIS to enhance the physical layer security of wireless

communication networks [3]–[6]. In [3], the transmit beam-

forming jointly with artificial noise (AN) and the RIS phase

shifts was optimized under a multiple-input multiple-output

(MIMO) wiretap channel. It was shown that the secrecy rate

performance can be strengthened with the aid of AN in RIS-

assisted systems. As for multiuser scenarios, the authors of [4]

investigated the robust secrecy design by solving a transmit

power minimization problem. Besides, in [5], the weighted

sum secrecy rate was maximized by taking both the direct link

and the cascaded RIS link into account. In [6], a RIS-aided

secure multiple-input single-output (MISO) communication

system was studied, where multiple colluding Eves coexist.

However, the design of RIS phase shifts of most methods

was based on instantaneous channel state information (CSI)

in each interval, which can be unaffordable due to frequent
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phase adjustment at RIS and channel estimation at the BS.

Secondly, all the above works were based on independent

Rayleigh or Rician fading and have not considered the impact

of spatial correlation on the secrecy performance. In fact,

spatial correlation generally exists at the RIS due to physical

constraints in a rectangular array, and it varies by adjusting

the space among adjacent RIS elements [7], [8]. Moreover,

previous works on RIS-aided systems, e.g., [5], [6], are usually

restricted to single-antenna Eves scenarios for the sake of

analytical tractability.

Against the above background, the performance of spatially

correlated RIS-aided multiuser massive MIMO systems is first

studied in the presence of a multi-antenna Eve. The main

contributions of this work are listed below.

• We derive the closed-form expression for the ergodic

secrecy rate, which depends only on statistical channel

information of the users and Eve.

• We devise an alternating algorithm to maximize the

ergodic secrecy rate, where the power fraction of AN

is optimally obtained in closed form and the RIS phase

shifts are designed by a projected gradient ascent method.

• Insightful observations of the impact of spatial correlation

and the number of RIS elements on the secrecy perfor-

mance are presented. It indicates that the spatial correla-

tion enhances the ability of RIS to properly manipulate

the wireless environment.

Notation: The inverse, conjugate transpose, and trace of

matrix A are denoted by A−1, AH , tr(A), respectively.

CN (0, σ2) represents the complex Gaussian distribution with

zero mean and variance σ2. Besides, E{·} and var{·} denote

the expectation and variance of a random variable, respectively.

We use Cm×n to represent the space of all m × n matrices

with complex-valued elements. IK denotes the K-dimensional

identity matrix.

II. SYSTEM MODEL

We consider a RIS-aided multiuser massive MIMO secure

system, where K single-antenna legitimate users are served by

an M -antenna BS leveraging a RIS of N reflecting elements.

One passive Eve equipped with ME antennas is located around

users seeking to wiretap the transmitted information1. Assume

that the RIS is controlled by the BS through a perfect backhaul

link and perfect CSI of the users are available as it plays

the role of an upper bound with imperfect CSI in practice.

To evaluate the secrecy performance, channel distribution

information of Eve is assumed to be available at the BS, which

1Note that this assumption also applies to situations where there are several
Eves collusively eavesdropping on the same secrecy data [9].
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has been widely adopted and validated in literature, e.g., [9],

[10].

We assume narrow-band quasi-static fading channels. Let

H1 ∈ CM×N , hB,k ∈ CM×1, HB,E ∈ CM×ME , hI,k ∈
CN×1, and HI,E ∈ CN×ME , respectively, denote the channel

from the BS to RIS, BS to user k, BS to Eve, RIS to user

k, and RIS to Eve. Notably, we consider spatially correlated

rather than independent Rayleigh fading. Hence, we have

hI,k =
√

βI,kR
1/2
I,k gI,k hB,k =

√

β2,kR
1/2
B,kgB,k, (1)

HI,E =
√

βI,ER
1/2
I,EGI,E HB,E =

√

β3R
1/2
B,EGB,E (2)

where βI,k, βI,E, β3 and β2,k represent the large-scale path

losses of the corresponding channels. Elements of gI,k, gB,k,

GI,E, and GB,E are independently and identically distributed

(i.i.d.) complex Gaussian random variables with zero mean

and unit variance. In addition, RI,k and RB,k (RI,E and RB,E)

are respectively the channel correlation matrices at the RIS and

BS. Moreover, the LoS channel H1 is modeled, similar to [11],

as a full-rank channel matrix with [H1]m,n =
√
β1e

−j2π
dm,n

λ ,

where β1 is the path loss, λ is the carrier wavelength, and

dm,n is the distance between reflecting element m of the

RIS and antenna n of the BS. Such channels are popularly

seen when deterministic scattering presents between the BS

and RIS or placing the RIS close to the BS [11]. Note that

the correlation matrices and the path losses are assumed to

be known, e.g., by the methods in [12]. In addition, denote

the phase shift matrix of the RIS by a diagonal matrix Φ =
diag(ejθ1 , ..., ejθn , ..., ejθN ), where θn ∈ [0, 2π) represents the

phase shift of the nth RIS reflecting element2.

In case that the instantaneous CSI of Eve is completely

unknown, AN is injected to mask the confidential information.

Before transmission, the information signal s with E{ssH} =
IK and the AN signal z ∼ CN (0M−K , IM−K) are multiplied

by data precoder W ∈ C
M×K with tr(WWH) = K and

AN precoder V ∈ CM×(M−K) with tr(VVH) = M − K ,

respectively. The transmit signal is expressed as

x =

√

ξP

K
Ws+

√

(1− ξ)P

M −K
Vz ,

√
pWs+

√
qVz, (3)

where P denotes the total transmit power and ξ ∈ [0, 1] is the

fraction of power allocated to the information (power fraction,

for short). Based on the above definitions, the transmit signal in

(3) satisfies the power constraint E{xHx} = P . For notational

simplicity, we define p ,
ξP
K and q ,

(1−ξ)P
M−K . Then, the

received signals at user k and Eve are respectively given by

yk =
√
phH

k wksk+
√
p
∑

i6=k
hH
k wisi+

√
qhH

k Vz+nk, (4)

yE =
√
pHH

EWs+
√
qHH

E Vz+ nE, (5)

where nk ∼ CN (0, σ2
k) and nE ∼ CN (0, σ2

EIME
) are the

additive white Gaussian noise (AWGN) at user k and Eve,

while hk = H1ΦhI,k + hB,k and HE = H1ΦHI,E + HB,E

represents the equivalent channel from the BS to user k and

to Eve, respectively.

2As usual, we use the amplitude-independent phase shift model for tractable
analysis. The analysis based on practical amplitude models [13] will be left
for our future work.

III. SECRECY PERFORMANCE ANALYSIS

In this section, the ergodic secrecy rate of the RIS-aided

secure system is derived in closed form.

We take advantage of channel hardening, because users do

not have any knowledge of the instantaneous CSI in practice,

but they are aware of their statistics. Therefore, the received

signal is decomposed as

yk =E{√phH
k wk}sk +

(√
phH

k wk − E{√phH
k wk}

)

sk

+
√
p
∑

i6=k
hH
k wisi +

√
qhH

k Vz+ nk. (6)

By treating the interference and channel uncertainty as an

equivalent noise term, a lower bound for the achievable rate

of user k is given by

Rk = log2

(

1 +

∣

∣E{√phH
k wk}

∣

∣

2

Ψ

)

, (7)

where Ψ =
∑

i6=k E{|
√
phH

k wi|2} + E{qhH
k VVHhk} +

var{√phH
k wk} + σ2

k . For analytical tractability and low

complexity, we adopt the MRT precoding [9], and V =
[v1, ...,vi, ...,vM−K ] with ‖vi‖ = 1, i = 1, ...,M − K , is

designed to lie in the null space of the user channels, i.e.,

HHV = 0, where H = [h1, ...,hK ].
Considering a pessimistic case, Eve is so powerful that

it is perfectly aware of its channel and can remove all the

interference from legitimate users, i.e., strongly eavesdropping

in [10], [14]. Then, from (5), an upper bound for the capacity

of Eve is obtained as

C = E
{

log2
(

1 + pwH
k HEX

−1HH
E wk

)}

, (8)

where X , qHH
E VVHHE denotes the noise correlation

matrix at Eve. In addition, since the noise level at Eve is

unknown, it is reasonable to assume negligible thermal noise,

i.e., σ2
E → 0, where the secure communication is guaranteed

in the worst case of a powerful Eve. To this end, the ergodic

secrecy rate is given by

Rsec = [Rk − C]+, (9)

where [x]+ = max{0, x}. However, evaluating the expected

value in (8) analytically is cumbersome. As an alternative, a

lower bound for the ergodic secrecy rate is presented in the

following theorem.

Theorem 1: In the RIS-aided secure system with AN, the

ergodic secrecy rate of user k can be evaluated by

Rsec = [log2(1 + γk)− log2(1 + γE)]
+, (10)

with

γk = Sk/Ik, γE = SE/IE, Sk = ξP
[

tr(Rk)
]2
, (11)

Ik = ξP
∑

i6=k
tr(RkRi) + σ2

k

∑K

j=1
tr(Rj), (12)

SE = ξMME(M −K)tr
(

Rk(RE + β3RB,E)
)

, (13)

IE = (1− ξ)(M −K −ME)tr(RE + β3RB,E)

K
∑

j=1

tr(Rj), (14)

where Rk = β2,kRB,k + βI,kH1ΦRI,kΦ
HHH

1 and RE =
βI,EH1ΦRI,EΦ

HHH
1 .

Proof: See Appendix A. �

Remark 1: It is observed from Theorem 1 that the ergodic

secrecy rate depends only on the statistical CSI of the users and

Eve, phase shifts Φ, and power fraction ξ, motivating further

optimization concerning Φ and ξ at the BS.



3

Corollary 1: For uncorrelated Rayleigh fading, i.e., RI,k =
RI,E = IN and RB,k = RB,E = IM , we obtain γk and

γE as (15) and (16) at the bottom of the next page. From

(15), we observe that the inter-user interference always exists

even with an infinite number of BS antennas M . This is

because the cascaded channels through the RIS for the multiple

users are not asymptotically orthogonal due to the common

component H1. In addition, the RIS’s ability to modify the

wireless medium is significantly impeded since the secrecy

rate becomes independent of the RIS phase shifts Φ but only

dependent on the size of RIS.

Corollary 2: When N ≫ M , we have H1H
H
1 → β1NIM .

By substituting ‖H1H
H
1 ‖22 = β2

1N
2M into (15) and (16), the

secrecy rate is given by (17) at the bottom of this page. We

evince that the achievable rate of user k increases logarithmi-

cally with the number of BS antennas and the capacity of Eve

hardly changes with M . This implies that a promising secrecy

performance gain is achieved for large N .

Corollary 3: Without the existence of RIS, i.e., βI,k = 0
and βI,E = 0, the ergodic secrecy rate in (10) reduces to

Rsec =

[

log2

(

1 +
ξβ2

2,kPM2/
∑K

j=1 β2,j

ξPδ
∑

i6=k β2,itr(RB,kRB,i) + σ2
k

)

− log2

(

1 +
ξME(M −K)tr

(

RB,kRB,E

)

(1− ξ)M(M −K −ME)
∑K

j=1 β2,j

)]+

, (18)

where δ = β2,k/
∑K

j=1 β2,j . Specifically, when the spatial

correlation at the BS disappears, the derived Rsec in (18)

retrieves the result in [14, Theorem 1] as a special case.

IV. PROPOSED DESIGN FOR SECRECY RATE

MAXIMIZATION

In this section, we study the joint optimization of the

power fraction ξ and phase shifts Φ to maximize the ergodic

secrecy rate in (10). Mathematically, the optimization problem

is formulated as

(P1) max
ξ,Φ

Rsec(ξ,Φ) (19)

s.t. ξ ∈ [0, 1]; |φi| = 1, i = 1, ..., N,

where φi = exp(jθi). It is challenging to jointly optimize

Rsec(ξ,Φ) as it is a non-convex function of ξ and Φ. To

address this, the alternating optimization (AO) technique is

applied to optimize ξ and Φ by executing refinement processes

with efficient closed-form calculations at the BS.

First, we consider the optimization of ξ by fixing Φ. The

following lemma provides a closed-form solution to the fixed-

point equation for solving (P1).
Lemma 1: For given Φ, the optimal solution of ξ is

ξ∗ =
−b+

√
b2 − 4ac

2a
, (20)

where a = B1(A1A2 + A1A3 + A2
2) − A1A3, b = 2A3A1,

and c = B1A
2
3−A1A3 are constants with respect to statistical

channel spatial correlation matrices.

Proof: By taking the first derivative of Rsec in (10), it yields

R′
sec =

∂Rsec

∂ξ
=

A1A3

ln 2(A3 + A2ξ)[A3 + (A1 + A2)ξ]

− B1

ln 2(ξ − 1)[1 + (B1 − 1)ξ]
, (21)

where B1 ,
MME(M−K)ζ2tr

(

Rk(RE+β3RB,E)
)

K(M−K−ME)tr(RE+β3RB,E)
∑

K
j=1

tr(Rj)
,

A1 , P tr(Rk)
2, A2 , P

∑

i6=k tr(RkRi), and

A3 , σ2
k

∑K
j=1 tr(Rj). Since ξ ∈ [0, 1], after some

algebraic manipulations, it is easily checked that R′′
sec < 0,

which implies that R′
sec is a strictly decreasing function on ξ.

Moreover, we have R′
sec > 0 for small ξ, while R′

sec < 0 for

large ξ. Hence, there exists an optimal choice of ξ achieving

the unique maximum of secrecy rate. Therefore, considering

the concavity of Rsec with respect to ξ, the optimal power

fraction in (20) is obtained by solving R′
sec = 0. �

Then, we optimize the RIS phase matrix Φ for fixed ξ,

which is less tractable due to the unit-modulus constraints. Due

to the complicated form of Rsec in (10), we apply the projected

gradient ascent method to obtain a locally optimal solution,

eventually converging to a stationary point [11]. Specifically

at the lth step, denote by vl = [φl
1, ..., φ

l
n, ..., φ

l
N ]T the induced

phases and by qk the adopted ascent direction, where [ql]n =
∂Rsec

∂φ∗

n
with respect to φn = ejθn is obtained in the following

Lemma 2. The subsequent (l + 1)th iteration step is updated

according to

ṽl+1 = vl + µkq
l and vl+1 = exp

(

j arg
(

ṽl+1
))

, (22)

where µk is the step size computed at each step.
Lemma 2: The gradient of the ergodic secrecy rate, Rsec,

with respect to φn is computed as

∂Rsec

∂φ∗
n

=
1

ln 2

( ∂γk
∂φ∗

n

1 + γk
−

∂γE
∂φ∗

n

1 + γE

)

, (23)

where ∂γk

∂φ∗

n
and ∂γE

∂φ∗

n
are given in (28) and (29), respectively.

Proof: See Appendix B. �

Now by incorporating Lemma 1 and the gradient ascent

method, concrete steps of the proposed algorithm are sum-

marized in Algorithm 1.

Proposition 1: The proposed algorithm always converges to

a stationary point of (P1).
Proof: This is directly checked by the following

Rsec

(

ξ(t),Φ(t)

)

(a)

≥ Rsec

(

ξ(t−1),Φ(t)

)

(b)

≥ Rsec

(

ξ(t−1),Φ(t−1)

)

,
(24)

where (a) holds since the optimization of ξ is convex for

given Φ, and (b) holds because the gradient search is along a

monotonically increasing direction of Rsec [15]. �

The algorithm comes with low computational complexity

because it consists of simple matrix operations. In particular,

the complexity of Algorithm 1, depending on the computations

involved in updating the power faction in (20) and the gradient

in (23), is O(MN2 +NM2), which is lower compared with

that of [6] under practical settings.

γk =
ξP
(

β2
I,kβ

2
1M

2N2 + βI,kβ2,kβ1M
2N + β2

2,kM
2
)

ξP
∑

i6=k

[

β2,kβ2,iM + (β2,kβI,i + βI,kβ2,i) β1MN + βI,kβI,i‖H1HH
1 ‖22

]

+ σ2
k

∑K
j=1

[

βI,jβ1MN + β2,jM
] (15)

γE =
ξME(M −K)

(

βI,kβI,E‖H1H
H
1 ‖22 + (βI,kβ3 + β2,kβI,E) β1MN + β2,kβ3M

)

(1− ξ)(M −K −ME) (β3 + βI,Eβ1N)
∑K

j=1

[

βI,jβ1MN + β2,jM
] (16)

Rsec =

[

log2

(

1 +
MβI,kβ

2
1

∑

i6=k βI,i

)

− log2

(

1 +
ξME(M −K)βI,k

(1− ξ)(M −K −ME)β2
1

∑K
j=1 βI,j

)]+

(17)
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Algorithm 1 Proposed algorithm for solving P1

1: Initialize: v0 = exp(jπ/2)1N , Φ0 = diag(v0), R0
sec =

f(ξ,Φ0) given by (9), ξ ∈ [0, 1], t = 0, and ǫ > 0.
2: Repeat t← t+ 1
3: Find ξ(t) with fixed Φ(t−1) as per (20);
4: for l = 0, 1, 2, ..., do
5: Find [ql]n = ∂Rsec

∂φ∗

n
, n = 1, ..., N , as per (23) and µ by

backtrack line search [15];
6: ṽl+1 = vl + µql; vl+1 = exp(j arg(ṽl+1));
7: Φl+1 = diag(vl+1); Rl+1

sec = f(ξ(t),Φ
l+1);

8: Until |Rsec(ξ(t),Φ
l+1)−Rsec(ξ(t),Φ

l)| < ǫ;
9: Φ(t) = Φl+1;

10: Until |Rsec(ξ(t),Φ(t))−Rsec(ξ(t−1),Φ(t−1))| < ǫ.

V. NUMERICAL RESULTS

In this section, numerical simulations are provided to vali-

date the effectiveness of the proposed methods. The distance-

dependent large-scale path loss coefficient is β = C0(
d
D0

)−ζ ,

where C0 = −20 dB is the path loss at the reference distance

D0 = 1 m, d represents the individual link distance, and ζ
denotes the path loss exponent. The pass-loss exponents for

the RIS-aided links are set as 2 and 2.2 while the pass-loss

exponent for the direct links is set as 3. The distance between

the BS and RIS is set to be 20 m, and all the users and Eve

are assumed to be located in a circular regime, whose center

is 50 m away from the RIS and 60 m away from the BS, and

the radius is 3 m. The spatial correlation matrices at the BS

are generated according to [14] as [R(ρ)]i,j = ρ|i−j|, while

the spatial correlation matrices at the RIS are given as in [7].

The RIS element spacing is given by dH = dV = λ/4. Also,

the signal-to-noise ratio (SNR) is defined as 10 log 10(P/σ2
k).

Unless otherwise specified, we also set σ2
k = σ2

E = −60 dBm,

SNR = 5 dB, ρ = 0.4, N = 256, M = 128, and K = 8.

Fig. 1 illustrates that the derived analytical results and

numerical results match well for varying number of Eve’s

antennas. We observe that a higher number of Eve’s antennas

degrades the secrecy rates as expected. For comparison, we

also depict the results with ZF precoding. It is shown that

MRT outperforms ZF at low SNRs while for high SNR values

ZF attains a higher secrecy rate since ZF offers interference-

free communication to users in the high SNR regime. In the

case of imperfect CSI, the estimated channel is modeled as

zk =
√
1− τ2ẑk + τek by representing hk = R

1

2

k zk , where

ẑk is an imperfect observation of zk, ek is the Gaussian noise,

and 0 < τ < 1 characterizes the CSI imperfection. We observe

that the secrecy performance loss is marginal with estimation

error τ = 0.1 in the tested cases.

Fig. 2 depicts the secrecy rate versus the power fraction for

ME = 4, where the optimal value for ξ in (20) is marked by

black stars. It is shown that ξ∗ is decreasing in the number of

BS antennas M , i.e., more power should be allocated to AN.

This is because the correlation between hk and HE becomes

strong with growing M due to the increasing dimension of

H1, resulting in potentially more information leakage to Eve.

On the other hand, ξ∗ is increasing in the RIS size N , since

the effective degree of freedom of the channels from RIS to

users increases with N . In this case, it can be useful to allocate

less power to AN for improving the secrecy performance.

Fig. 3 presents the secrecy performance of the proposed

scheme versus N for ME = 2 by using equal power fraction

[16] and random phase shifts [7] as benchmarks, i.e., ξ = 0.5
and θn ∼ U [0, 2π]. For small N , the optimal power fraction

with random phase shifts achieves higher secrecy rates than the

equal power fraction with random and optimal phase shifts.

This is because a small RIS provides limited signal energy

boosting for the system where the system tends to be a power-

limited scenario and this power fraction optimization plays a

dominating role. In addition, we notice that spatial correlation

at the RIS should be taken into account to benefit from the

phase shifts design in the case of statistical CSI. Also, it is

shown that the secrecy rates decrease when the inter-element

spacing reduces from λ/4 to λ/8. This is due to an increase in

the spatial correlation, which reduces the spatial diversity. We

observe a small performance gap by comparing the proposed

algorithm with an approximate of the global optimum, which is

achieved by running the algorithm twenty times with different

initializations and then choosing the best.

Fig. 4 shows the ergodic secrecy rate versus the number of

iterations for various numbers of RIS elements with ME = 2.

We observe that the algorithm converges fast in all the tested

cases, where the algorithm converges within 10 iterations.

VI. CONCLUSION

We considered the secure communication in RIS-aided

multiuser massive MIMO systems. A closed-form expression

of the ergodic secrecy rate was derived. Then, based on the

expression, we optimized RIS phase shifts and AN power

fraction. We showed that a large number of RIS elements and

low spatial correlation at the RIS are preferred to achieve high

secrecy rates. Future works include extending to Rician and

even millimeter-wave channels.

APPENDIX A

For the sake of exposition, we denote the cascade channel

of user k by hk =
√

βI,kH1ΦR
1/2
I,k gI,k +

√

β2,kR
1/2
B,kgB,k.

Since gI,k and gB,k are independent random vectors, we have

that hk follows the complex Gaussian distribution, i.e., hk ∼
CN (0,Rk), where Rk = β2,kRB,k + βI,kH1ΦRI,kΦ

HHH
1 .

1) Compute Rk: Consider MRT satisfying tr(WWH) = K ,

which leads to W =
√

K∑
K
j=1

tr(Rj)
H. First, we directly obtain

∣

∣E{hH
k wk}

∣

∣

2
= K∑

K
j=1

tr(Rj)
[tr (Rk)]

2
and E

{

∣

∣hH
k wi

∣

∣

2
}

=
K∑

K
j=1

tr(Rj)
tr (RkRi). Then, the variance is calculated as

1

M2
var
{

h
H
k wk

}

=
K

∑K
j=1 tr(Rj)

E

{

∣

∣

∣

∣

1

M
h
H
k hk −

1

M
tr(Rk)

∣

∣

∣

∣

2
}

M→∞−−−−→ 0, (25)

where (25) is obtained according to [17, Lemma 4]. For the

term of E
{

hH
k VVHhk

}

, it is obviously zero due to the null-

space AN method.
2) Compute C: To begin with, we rewrite X in (8) as

X = qX1 + qX2, where X1 , HH
B,EVVHHB,E and

X2 , (H1ΦHI,E)
HVVH(H1ΦHI,E) are uncorrelated due

to the definition in (2). Eigendecompose RB,E = UΛUH to

decorrelate the channel matrix HB,E as Z = HB,EΛ
−1/2UH ,

where Λ = diag(λ1, ..., λN ) contains the eigenvalues of R and
the columns of U are the corresponding eigenvectors. Since
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U is unitary, the statistics of ZU are identical to those of Z.
Hence, the distribution of X1 is the same as

∑N

i=1

∑N

j=1
λ
1/2
i λ

1/2
j ziviv

H
j z

H
j , (26)

where zi is the ith row of Z and vi is the ith column of V.
Considering that zi and vi are independent, it is known from

[18] that
∑N

n=1 λnznvnv
H
n zHn follows a Wishart distribution,

i.e.,
∑N

n=1 λnWME
(M −K, 1

M IME
). The distribution of X2

is obtained analogously by rewriting H1ΦHI,E = R
1/2
E GI,E

with RE = βI,EH1ΦRI,EΦ
HHH

1 . Then, by applying the
Jensen’s inequality, the capacity of Eve is bounded as

C ≤ log2
(

1 + pE
{

w
H
k HEX

−1
H

H
E wk

})

(a)
= log2

(

1 +
ξM(M −K)E

{

wH
k HEH

H
E wk

}

K(1− ξ)(M −K −ME)tr(RE + β3RB,E)

)

(b)
= log2

(

1 +
ξζ2MME(M −K)tr

(

Rk(RE + β3RB,E)
)

K(1− ξ)(M −K −ME)tr(RE + β3RB,E)

)

,

(27)

where (a) uses the property that A−1 a.s.−−→ 1/(n − m)Im
for a Wishart matrix A ∼ Wm(n, Im) with n > m [18,

Sec 2.1.6] and
∑N

n=1 λn = tr(RE), and (b) results form

E
{

wH
k HEH

H
E wk

}

= ζ2MEtr
(

Rk(RE + β3RB,E)
)

where

ζ2 = K
/(

∑K
j=1 tr(Rj)

)

.

APPENDIX B

Using the standard quotient rule of derivatives, we have

∂γk
∂φ∗

n

=
1

I2k

(

Ik
∂Sk

∂φ∗
n

− Sk
∂Ik
∂φ∗

n

)

, (28)

∂γE
∂φ∗

n

=
1

I2E

(

IE
∂SE

∂φ∗
n

− SE
∂IE
∂φ∗

n

)

. (29)

For simplicity, we use the notation (·)′ to represent the partial
derivative with respect to φ∗

n. Specifically, the term S′
k is

given by S′
k = 2ξP tr(Rk)tr(R

′
k), which requires a further

derivation of tr(R′
k). Since all terms in Rk depend on φ∗

n, we
have

tr
(

R
′
k

)

= tr

(

β2,k
∂RB,k

∂φ∗
n

+ βI,k

∂
(

H1ΦRI,kΦ
HHH

1

)

∂φ∗
n

)

(a)
=βI,k

∑

i,j

[

H1ΦRI,k

]

j,n
[HH

1 ]Ti,n = βI,k

[

H
H
1 H1ΦRI,k

]

n,n
,

(30)

where (a) is obtained by using Lemma 1 in [8]. To

this end, the partial derivatives of Sk, Ik, SE, and

IE with respect to φ∗
n in (28) and (29) are expressed

as follows: S′
k = 2ξPβI,ktr(Rk)

[

HH
1 H1ΦRI,k

]

n,n
,

I ′k = ξP
∑

i6=k

[

HH
1

(

βI,kRkH1ΦRI,k +

βI,iRiH1ΦRI,i

)]

n,n
+ σ2

k

∑k
j=1

[

HH
1 H1ΦRI,j

]

n,n
,

S′
E = ξMME(M −K)

[

HH
1

(

βI,k

(

RE+β3RB,E

)

H1ΦRI,k+
βI,ERkH1ΦRI,E

)]

n,n
, and I ′E = (1 − ξ)(M − K −

ME)

[

βI,E

∑k
j=1 tr(Rj)

[

HH
1 H1ΦRI,E

]

n,n
+ tr(RE +

β3RB,E)
∑k

j=1

[

HH
1 H1ΦRI,j

]

n,n

]

.
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