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Abstract—Millimeter wave (mmWave) massive multiple-input
multiple-output (massive MIMO) is one of the most promising
technologies for the fifth generation and beyond wireless com-
munication system. However, a large number of antennas incur
high power consumption and hardware costs, and high-frequency
communications place a heavy burden on the analog-to-digital
converters (ADCs) at the base station (BS). Furthermore, it
is too costly to equipping each antenna with a high-precision
ADC in a large antenna array system. It is promising to adopt
low-resolution ADCs to address this problem. In this paper,
we investigate the cascaded channel estimation for a mmWave
massive MIMO system aided by a reconfigurable intelligent
surface (RIS) with the BS equipped with few-bit ADCs. Due
to the low-rank property of the cascaded channel, the estimation
of the cascaded channel can be formulated as a low-rank matrix
completion problem. We introduce a Bayesian optimal estimation
framework for estimating the user-RIS-BS cascaded channel
to tackle with the information loss caused by quantization. To
implement the estimator and achieve the matrix completion, we
use efficient bilinear generalized approximate message passing
(BiG-AMP) algorithm. Extensive simulation results verify that
our proposed method can accurately estimate the cascaded
channel for the RIS-aided mmWave massive MIMO system with
low-resolution ADCs.

Index Terms—Low-resolution analog-to-digital converter,
channel estimation, massive MIMO, reconfigurable intelligent
surface, approximate message passing.

I. INTRODUCTION

The sixth-generation wireless network is required to have
10-1000 times the capacity of the fifth-generation network, and
to be able to serve trillions of devices rather than the current
billions of devices [1]. Millimeter wave (mmWave) massive
multiple-input multiple-output (massive MIMO) is a promis-
ing technology that exploits the huge available mmWave
bandwidth (30-300 GHz) and utilizes the space resources
provided by multiple antennas [2]. The scale of the antenna
array aperture can be significantly decreased due to the short
wavelength of mmWave frequencies, making it suitable for
small cellular short range communications [3]. Meanwhile,
massive MIMO can provide a large antenna array gain, which
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can help overcome the severe attenuation of mmWave signals
and significantly improve the spectrum efficiency.

However, the power consumption and hardware cost con-
siderably rise as a result of the huge bandwidth and large
antenna array in mmWave massive MIMO systems. Huge
bandwidth requires ultra-high sampling rate analog-to-digital
converters (ADCs). Meanwhile, as the sampling rate grows
to 100 Msamples per second, the power consumption of ADC
increases proportionately [4]. Besides, an excessive number of
antennas increases the hardware costs. For large antenna array,
the cost of equipping every antenna with a high-precision
ADC is unacceptable. Equipping low-resolution ADCs in large
antenna array is an efficiency solution, which can significantly
lower power consumption and hardware costs. Hence, it is
economical and practical to employ low-resolution ADCs for
large antenna array and mmWave systems [5], [6].

Furthermore, the mmWave signals suffer from severe path
loss and are vulnerable to obstructions. To address this prob-
lem, it is promising to deploy reconfigurable intelligent surface
(RIS) in mmWave systems [7], where the RIS offers an
alternative communication link when the channel between the
BS and the user is blocked [8]. To obtain the performance
gain promised by the RIS, the channel state information (CSI)
of the cascaded channel should be known accurately. In this
paper, we study the cascaded channel estimation for an RIS-
aided mmWave massive MIMO system with few-bit ADCs
(≤ 4 bit). The quantization process causes severe information
loss and the traditional channel estimation methods in [7], [9]
based on infinite precision ADCs are no longer applicable for
the scenario with low-resolution ADCs. In [10], the low-rank
structure of the cascaded channel was explored for channel
estimation without considering the quantization effect. In [11],
the least squares (LS) method was employed to estimate the
MIMO channel. However, this method leads to high estimation
error since the quantization distortion was simply modeled as
additive white Gaussian noise (AWGN). Besides, the authors
of [12] adopted the LASSO algorithm to solve the compressive
sensing problem with the few-bit quantizer. However, this
method requires long training sequence and the performance
is still not good.

In this letter, we adopt the efficient approximate message
passing (AMP) algorithms for cascaded channel estimation for
mmWave massive MIMO systems aided by an RIS with low-
precision ADCs. We formulate the channel estimation problem
as a quantized noisy low-rank matrix completion problem. To
tackle the information loss caused by the quantization process,
we introduce the Bayesian optimal estimator in [5] for the
estimation of quantizer output. Due to the low-rank property
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of the cascaded channel matrix, we use modified bilinear gen-
eralized approximate message passing (BiG-AMP) algorithm
in [13] for channel estimation. As performance indicator, we
employ the normalized mean square error (NMSE). Simulation
results demonstrate that the proposed algorithm outperforms
the other traditional estimation algorithms.

Notations: The symbols A∗, AT, AH and ‖A‖F represent
the conjugate, transpose, Hermitian (conjugate transpose) and
Frobenius norm of matrix A, respectively. The symbols E(·),
Var(·), δ(·) and C represent the expectation operator, the
variance operator, the Dirac delta function, and the complex
field, respectively. The symbol aij refers to the (i, j)th entry
of matrix A. The n × n identity matrix is represented by
In. The circularly-symmetric complex Gaussian distribution
is denoted as CN (µ,C), where µ is the mean vector and C
is the covariance matrix, respectively.

II. SYSTEM MODEL

We consider a narrow-band mmWave massive MIMO uplink
system, as shown in Fig. 1. An RIS that is composed of M
reflecting elements is deployed. The BS is equipped with N
transmit antennas to serve a single-antenna user. In this letter,
the channels are considered to be quasi-static and block-fading,
where the channels in each coherence block stay constant.
Denote h ∈ CM×1 as the channel from the user to the RIS.
The channel between the RIS and the BS is represented by
G ∈ CN×M . The phase shifts of the RIS at time slot t are
represented by et, which satisfies |[et]m|2 = 1 for 1 ≤ m ≤
M .

BS

RIS-BS Channel

User-RIS Channel

Direct Link

RIS

User

Fig. 1: An RIS-aided uplink mmWave massive MIMO system.

At time slot t, the signal received at the BS is expressed as

y[t] = GDiag(et)hxt + wt

= GDiag(h)etxt + wt, (1)

where xt ∈ C is the transmitted signal, and wt ∈ CN×1 is the
additive noise vector at time slot t following the distribution
of CN

(
0, σ2

wIN
)

with σ2
w being the noise power.

By collecting the received signals of τ time slots, the
received signal matrix Y = [y[1], · · · ,y[τ ]] at the BS is
expressed as

Y = GDiag(h)E + W ∈ CN×τ , (2)

where E = [e1x1, · · · , eτxτ ] ∈ CM×τ . Each antenna at the
receiver side has two ADCs to individually quantize the real

and imaginary components of the received signal. After the
quantization process, the received signal is written as

Ỹ = Q (Y) = Q (UE + W) , (3)

where Q(·) denotes the quantization function and U =
GDiag(h) ∈ CN×M represents the cascaded channel. The
real and imaginary parts of each element of matrix Y are
quantized independently.

A. Few-bit Quantization Model

In this letter, the uniform mid-rise quantization is adopted
at the BS, and each complex-valued quantizer has two real-
valued B-bit quantizers. Denote ∆ as the stepsize of the
quantizer. It is assumed that each real-valued quantizer has
2B − 1 thresholds, denoted as [r1, r2, · · · , r2B−1], where
rb = (−2B−1 + b)∆, 1 ≤ b ≤ 2B − 1. The quantizer output
is set to rb − ∆

2 when the quantizer input lies between rb−1

and rb. Without loss of generality, the quantized output of a
complex-valued scalar ξ is given by

ỹ =Q(ξ)

=sign (Re(ξ))

(
min

(⌈
|Re(ξ)|

∆Re

⌉
, 2B−1

)
− 1

2

)
∆Re

+ j sign (Im(ξ))

(
min

(⌈
|Im(ξ)|

∆Im

⌉
, 2B−1

)
− 1

2

)
∆Im,

(4)

where ∆Re =
(
E[|Re(ξ)|2]

) 1
2 ∆ and ∆Im =

(
E[|Im(ξ)|2]

) 1
2 ∆.

The values of the stepsize ∆ are given in [6]. Specifically,
when one-bit quantization is adopted, (4) takes the following
form

ỹ = sign (Re(ξ))

√
2

π

(
E
[
|Re(ξ)|2

]) 1
2

+ sign (Im(ξ))

√
2

π

(
E
[
|Im(ξ)|2

]) 1
2 . (5)

In practice, before the ADCs, a variable gain amplifier (VGA)
with an automated gain control (AGC) is utilized, and the
measurement of the average power E[|Re(ξ)|2] and E[|Im(ξ)|2]
is employed. It is assumed that ξ has the property of circular
symmetry, and thus, E[|Re(ξ)|2] = E[|Im(ξ)|2] = 1

2E[|ξ|2] and
∆Re = ∆Im.

B. Cascaded Channel Model

In this letter, an uniform linear array (ULA) is deployed at
both the BS and the RIS. The mmWave channels G and h are
expressed as

G =

L∑
l=1

αlaN (ϕl)a
H
M (φl), (6)

h =

J∑
j=1

βjaM (ψj), (7)

where L and J , respectively, represent the number of prop-
agation pathways between the BS and the RIS and the RIS
and the user; aN (ϕl) ∈ CN×1 and aM (ψj) ∈ CM×1 are the
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array steering vectors of the ULA at the BS and the RIS,
respectively. The coefficients αl,∀l and βj ,∀j vary at each
channel coherence block. From (6) and (7), the RIS-aided
cascaded channel is modeled as

U =

L∑
l=1

J∑
j=1

αlβjaN (ϕl)a
H
M (φl − ψj). (8)

This model illustrates the low-rank property of the cascaded
channel matrix for an RIS-aided mmWave communication sys-
tem. Thus, the cascaded channel estimation can be formulated
as a low-rank matrix completion problem.

III. CHANNEL ESTIMATION ALGORITHM

Based on the observation Ỹ from the few-bit quantizer and
the predetermined training matrix E, we aim to estimate the
cascaded channel U in (2). Since the quantization process will
lose information, we introduce the framework of Bayesian
inference to estimate the cascaded channel based on the
observation of the quantizer output and use the sum-product
algorithm to implement the Bayesian optimal estimators. Due
to the low-rank property of the cascaded channel matrix, the
cascaded channel estimation can be formulated as a low-rank
matrix completion problem. Thus, the modified BiG-AMP
algorithm [13] is adopted to estimate the cascaded channel
U.

A. Matrix Factorization

The posterior probability can be calculated as follows ac-
cording to the Bayes’ rule:

p(U,E|Ỹ) =
p(Ỹ|U,E)p(U)p(E)

p(Ỹ)
, (9)

where

p(U) =

N∏
n=1

M∏
m=1

p(un,m|gn,m, hm)p(gn,m)p(hm)

=

N∏
n=1

M∏
m=1

δ(un,m − gn,mhm)p(gn,m)p(hm) (10)

and

p(E) =

M∏
m=1

τ∏
t=1

δ(em,t − ēm,t). (11)

In (11), ēm,t is the mth row and tth column element from a
known training matrix E. To apply the BiG-AMP algorithm,
the independent Gaussian priors [14] for the RIS-BS channel
G and for the user-RIS channel h are assumed, i.e.,

p(G) =

N∏
n=1

M∏
m=1

p(gn,m) =

N∏
n=1

M∏
m=1

CN (gn,m; 0, σ2
g) (12)

p(h) =

M∏
m=1

p(hm) =

M∏
m=1

CN (hm; 0, σ2
h), (13)

where σ2
g and σ2

h are the average variances of the RIS-
BS channel matrix G and the user-RIS channel vector h,

respectively. Define Z = UE, the likelihood p(Ỹ|Z) is written
as

p(Ỹ|Z) ,
N∏
n=1

M∏
m=1

p(ỹn,m|zn,m)

=

N∏
n=1

M∏
m=1

(
1√
πσ2

w

∫ rb

rb−1

e
− (yn,m−Re(Zn,m))2

σ2w dy

)

×

(
1√
πσ2

w

∫ rb′

rb′−1

e
− (yn,m−Im(Zn,m))2

σ2w dy

)
,

(14)

when the real output Re(Ỹ) ∈ (rb−1, rb] and imaginary output
Im(Ỹ) ∈ (rb′−1, rb′ ]. The posterior probability for z can be
calculated as

p(z|ỹ) =
p(ỹ|z)p(z)
p(ỹ)

, (15)

where p(ỹ) =
∫
p(ỹ|z)p(z)dz is the marginal probability

density function (pdf). Suppose z is a complex Gaussian
variable with pdf p(z) = CN (z; p̂, υp), then, by calculating
the integral

∫
p(z|ỹ)zdz, the following posterior mean and

variance estimator for z can be obtained

ẑ = p̂+
sign(ỹ)υp√
2(σ2

w + υp)

 1√
2π
e−

η21
2 − 1√

2π
e−

η22
2

Φ(η1)− Φ(η2)

 (16)

and

υz =
υp

2
− (υp)

2

2 (σ2
w + υp)

×

 1√
2π

(η1e
− η

2
1
2 − η2e

− η
2
2
2 )

Φ(η1)− Φ(η2)
+

 1√
2π

(e−
η21
2 − e−

η22
2 )

Φ(η1)− Φ(η2)


2 ,

(17)

where Φ(x) is the cumulative Gaussian distribution function,

η1 =
sign(ỹ)p̂−min{|rb−1|, |rb|}√

σ2
w+υp

2

, (18)

and
η2 =

sign(ỹ)p̂−max{|rb−1|, |rb|}√
σ2
w+υp

2

. (19)

Combining (16) and (17) with (18) and (19), we obtain
the Bayesian optimal estimator for the real component of Z,
Due to the circular symmetric property, the estimator of the
imaginary component is similar. For the proof of (16) and (17),
please refer to [5] for further details.

B. BiG-AMP Algorithm

The cascaded channel estimation from the output of the
quantizer is a quantized and noise-corrupted low-rank matrix
reconstruction problem. The proposed BiG-AMP based chan-
nel estimation algorithm is presented in Algorithm 1. In steps
3 and 4, p̂nt and νpnt are the estimate of the matrix Z and
the corresponding variances, respectively. Steps 3 and 4 differ
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slightly from the original algorithm in [13], as for a given
known training sequence E, the corresponding variances νemt
are zero. When νemt = 0, auxiliary variables that compute the
“plug-in” estimate P = p̄nt of the matrix product Z = UE
and corresponding variances ν̄pnt (see [13]) were plugged into
p̂nt and νpnt, respectively. Using the quantities P̂ and νpnt, the
posterior mean Ẑ and variance νznt are computed in step 5 and
6. The scaled residual Ŝ and inverse-residual variances νsnt
are calculated in steps 7 and 8 using the posterior moments.
Using the residual terms, steps 9 and 10 compute Q̂ and νqmt,
respectively, where q̂nm can be viewed as an observation of
the cascaded channel matrix U corrupted by νqnm-variance-
AWGN noise. Finally, steps 11 and 12 estimate the posterior
means of Û and variance νunm by using the quantities q̂nm
and νqnm.

Algorithm 1 BiG-AMP Based Channel Estimation Algorithm

Input: Ỹ, E, p(Ỹ|Z), p(U)
Output: Û
1: Initialize: i ← 1;∀n, t : ŝnt(0) = 0, νznt(0) = 1, ẑnt(0) =

0;∀n,m : νunm(1) = 1, ûnm(1) = 0.
2: for i = 1, · · · , Imax do
3: ∀n, t : νpnt(i) =

∑M
m=1 ν

u
nm(i) |ēmt|2

4: ∀n, t : p̂nt(i) =
∑M
m=1 ûnm(i)ēmt − ŝnt(i− 1)νpnt(i)

5: ∀n, t : νznt(i) = Var {znt | pnt = p̂nt(i); ν
p
nt(i)}

6: ∀n, t : ẑnt(i) = E {znt | pnt = p̂nt(i); ν
p
nt(i)}

7: ∀n, t : νsnt(i) = (1− νznt(i)/ν
p
nt(i)) /ν

p
nt(i)

8: ∀n, t : ŝnt(i) = (ẑnt(i)− p̂nt(i)) /νpnt(i)
9: ∀n,m : νqnm(i) =

(∑τ
t=1 |ēmt(i)|

2
νsnt(i)

)−1

10: ∀n,m : q̂nm(i) = ûnm(i) + νqnm(i)
∑τ
t=1 ē

∗
mt(i)ŝnt(i)

11: ∀n,m : νunm(i+ 1) = Var {unm | qnm = q̂nm(i); νqnm(i)}

12: ∀n,m : ûnm(i+ 1) = E {unm | qnm = q̂nm(i); νqnm(i)}
13: end for

C. Benchmark Algorithms

In this section, we describe two benchmark algorithms for
signal reconstruction. The first is the LS estimation adopted
in [11]. The LS estimator is given by

ÛLS = ỸE
H
(
EE

H
)−1

, (20)

where the known matrix E has full row-rank.
Another approach is linear minimum mean square

(LMMSE) estimation adopted in [6]. Using the Bussgang’s
theorem [15], the quantizer output Ỹ is decomposed into the
signal component and the quantization noise Wq , which is
independent from the signal component as

Y = Q
(
UE + W

)
= (1− ηb)

(
UE + W

)
+ Wq, (21)

where ηb , E[|Q(ξ)− ξ|2]/E[|ξ|2] is the quantization normal-
ized MSE (NMSE) given in [16]. Define Ŵ = (1− ηb)W +
Wq as the effective noise matrix. Using the approximate

LMMSE (ALMMSE) method in [15], we obtain the following
ALMMSE estimator

ÛALMMSE

= ỸE
H
(

(1− ηb)EE
H

+

(
(1− ηb)

σ2
ω

σ2
u

IM + ηbNIM

))−1

,

(22)

where σ2
u =

σ2
gσ

2
h

σ2
g+σ2

h
. The expression (22) is similar to the

LS estimator in (20) except that the former has a regularized
inverse.

D. Complexity Analysis

The complexity introduced by basic matrix multiplications
in steps 3, 9 and 10 are O(NMτ), the computations needed
in step 4 to step 8 of the proposed BiG-AMP algorithm are
O(Nτ), and that of the reminding steps of the algorithms
is O(NM + Mτ) [13]. Therefore, the overall computational
complexity of the proposed BiG-AMP algorithm is at most
ImaxO(NMτ).

IV. SIMULATION RESULTS

In this section, we present simulation results to demonstrate
the effectiveness of the proposed algorithm for the cascaded
channel estimation of the RIS-aided MIMO systems with few-
bit ADCs. The antenna spacing of ULA is half-wavelength for
the BS and the RIS. The training matrix E is generated from
shifted-Zadoff-Chu sequences [6]. The path gain coefficients
{αl} and {βj} are generated from CN (0, 1). The angular
parameters ϕl, φl and ψj independently follow the uniform
distribution of (0, 1]. The signal-to-noise ratio (SNR) is defined
as SNR , E[‖Z‖2F ]

E[‖W‖2F ]
=

E[‖UE‖2F ]

E[‖W‖2F ]
. The number of propagation

paths is set as L = J = 10. The number of antennas employed
at the BS is 64 and the number of reflecting elements at the
RIS is 32. Note that the number of reflecting elements is less
than the number of BS antennas and a small L is used due to
the fact that the BiG-AMP algorithm requires that the matrix
U is a tall (N > M) and low-rank matrix. The normalized

NMSE is defined as NMSE (U) , E
[
‖Û−U‖2

F

‖U‖2F

]
.

In Fig. 2, we illustrate the NMSE versus the SNR. The ADC
resolutions are set to 1, 2, 3, 8 and infinite bits, respectively.
The figure shows that the BiG-AMP algorithm performs
significantly better than the LS and ALMMSE algorithms with
1,2 and 3-bits of resolution. As a result, the proposed BiG-
AMP algorithm’s effectiveness for channel estimation with
few-bit ADCs is demonstrated. Besides, it can be observed
that the performance of 8-bit quantization is almost as good
as that of infinite-bit quantization. Hence, 8-bits quantization
can achieve the performance close to the case of infinite-bit
quantization. In addition, the NMSE decreases with SNR ex-
cept for the one-bit quantization. The primary cause is that the
one-bit quantization involves highly nonlinear processing. At
low SNR, the noise may be helpful to improve the distinction
for this system. This phenomenon for the one-bit quantization
system is known as stochastic resonance [17].
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Fig. 2: NMSE of U versus the SNR, the training length
τ =500.

Fig. 3: NMSE of U versus the ADC resolution, the training
length τ =500.

Fig. 3 depicts the NMSE versus the ADC resolutions with
SNR = -10, 0, 10 and 20 dB, respectively. From Fig. 3, it
can be observed that the BiG-AMP algorithm performs much
better than the LS and ALMMSE algorithms when the ADC
resolution is 1, 2 and 3 bits. As the ADC resolution increases,
the performance of the three algorithms is similar.

The NMSE versus the training length τ is shown in Fig. 4.
Due to the more available measurements when τ is large, the
NMSE decreases with training length for all algorithms.

V. CONCLUSION

In this letter, we studied the channel estimation for an
RIS-aided mmWave MIMO system with low-precision ADCs.
Since the cascaded channel matrix has low-rank property, we
formulated the low-rank matrix completion problem for chan-
nel estimation. Since the low-resolution quantization causes
much information loss, we introduced the Bayesian optimal
estimator and proposed to adopt the modified BiG-AMP al-
gorithm to solve the bilinear matrix completion problems that
estimate the cascaded channel with known prior information
about its distribution. Simulation results demonstrated that

Fig. 4: NMSE of U versus the training length, the SNR= 0
dB.

the proposed BiG-AMP algorithm outperforms the traditional
estimation algorithms.
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