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Nonlinear Energy-Harvesting for D2D Networks
Underlaying UAV with SWIPT Using MADQN

Mohamed Amine Ouamri, Gordana Barb, Daljeet Singh, Abuzar B. M. Adam, M. S. A. Muthanna, Xingwang Li

Abstract—Energy Efficiency (EE) has become an essential
metric in Device-to-Device (D2D) communication underlaying
Unmanned Aerial Vehicles (UAVs) Among the several tech-
nologies that provide significant energy, simultaneous wireless
information and power transfer (SWIPT) has been proposed as
a promising solution to improve EE. However, it is a challenging
task to study the EE under nonlinear energy harvesting (EH)
due to the limited sensitivity and the composition of the non-
linear circuit. Moreover, when D2D users transmit information
using the EH from UAVs, interferences to cellular users occur
and deteriorate the throughput. To tackle these problems, we
leverage concepts from artificial intelligence (AI) to optimize
EE of UAV-assisted D2D communication. Specifically, multi-agent
deep reinforcement learning was proposed to jointly maximize
throughput and EE, where the reward function is defined in terms
of the introduced goal. Simulation results verify the supremacy
of proposed approach over traditional algorithms.

Index Terms—Device-to-device, Energy harvesting, Multi-
agent DRL, Resource allocation, SWIPT, UAV.

I. INTRODUCTION

IN todays and future wireless communication networks, un-
manned aerial vehicles (UAVs) are attracting further atten-

tion for enhancing coverage and capacity in diverse scenarios
[1]. As such, with the use of flexible placement and reliable
line-of-sight (LoS) link in air-to-ground (A2G) connexions,
UAVs can assist congested terrestrial networks during sporting
events or natural disaster scenarios [2]. Although UAVs offer
several advantages such as a high probability of LoS transmis-
sion and easy transportation, the constraints related to UAVs
communications must be taken into consideration when con-
ceiving device-to-device (D2D) networks namely, interference
management, quality of service (QoS), and in particular energy
efficiency (EE) [3]. Among the multiple technologies that
provide significant energy, simultaneous wireless information
and power transfer (SWIPT) is projected to harvest some of the
energy carried from the same RF signals [4], [5]. To improve
the network EE, the power-splitting (PS) scheme is an effective
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technique employed in Energy Harvesting (EH) mechanism
[6]. Meanwhile, Deep reinforcement learning (DRL) can be
an efficient alternative to achieve sustainable EE in complex
wireless networks with SWIPT [7], and has been widely used
to analyse EH [8]. A handful of studies have incorporated
this approach for D2D networks underlying UAVs, e.g. [9],
[10]. However, these works do not address nonlinear EH while
considering interference. For instance, most existing solutions
are only applicable to UAV networks with no underlying D2D.
Authors in [11] studied the three-dimension UAVs- enabled
wireless communication system with EH to minimize the total
energy consumption. Nevertheless, this work assumes that
there are no terrestrial networks, and the optimization is not
obtained using artificial intelligence (AI). DRL-based multi-
UAVs data harvesting was proposed in [12]. This framework
maximizes harvested data from internet of things devices
and total throughput by optimizing trajectory. However, the
authors did not consider the EH and the influence of UAV
height on the network. In [13], the authors leveraged a
deep neural network architecture to jointly optimize spectral
efficiency (SE) and EH in D2D communication. This work
adopted an unsupervised method and assumed a discrete-time
block fading model. Although this work presents the trade-off
between SE and EH, the existence of UAVs and nonlinear EH
is not considered. To accommodate EE requirements in UAVs-
assisted D2D communication, authors in [14] investigated on-
board deep Q-network (DQN) to minimize the overall data
packet loss. The objective is to find the device to be loaded
and patrolling velocity of the UAVs. According to the above-
mentioned literature review, and to the best of our knowledge,
most existing contributions in this field focus only on EE and
throughput optimization with SWIPT. However, it was noticed
that the nonlinear EH schemes were not considered for D2D
communication underlaying UAVs. Besides, most previous
research rarely considers the influence of PS on energy and
throughput together. Motivated by this assessment, we propose
a MADRL to address intelligent resource allocation for UAV-
assisted D2D networks where a UAV acts as an agent. Firstly,
we introduce a nonlinear EH model for SWIPT to include
the underlying harvest circuit. We then formulate EE and
total throughput in a mmWave scenario while ensuring the
minimum QoS requirements for all users according to the
environment. Multiple constraints, such as path loss model,
UAV height, distance, and minimum transmission rate are
employed to describe our mathematical problem.



2

II. SYSTEM MODEL

We consider a D2D communication underlying UAVs net-
work with SWIPT. Our model includes N D2D pairs and a set
of UAVs U ∈ {u1, u2, um} distributed randomly as illustrated
in Fig.1. We assume that UAVs are deployed at a particular
altitude H . The fading between UAVs and device users is
denoted ashu,d, and it is assumed to be the small-scale fading.
Without loss of generality, D2D user transmitter (D2D-Tx) can
harvest energy from the RF energy transmitted by the UAVs
[10]. Compared to [9], our framework considers that D2D-Tx
applies a power split policy, which means splitting the received
power into two parts such as EH power and information power.
The PS ratio for D2D-Tx is given as 0 ≤ ρ ≤ 1. A power-
splitter is used for each D2D-Tx, where the ratio ρ of the
power is allocated to the energy receiver and the rest ratio
1−ρ is split to the information receiver. Moreover, UAVs and
D2D are supposed to transmit in the same mmWave frequency
spectrum and therefore interfere with each other. In this work,
a typical D2D is associated with UAV or D2D-Tx with an LoS
link or a non-line-of-sight (NLoS) caused by blockage effects
[15]. The position of each device on the ground and UAV are
(xi

d, y
i
d), and (xu, yu, H) where i ∈ (D2D−Tx,D2D−Rx).

Let Pd, Pu denote the power transmission of D2D-Tx and
UAVs respectively, the downlink achievable throughput (data
rate) of D2D-Rx can be expressed as

RToT = puBu log2(1 + γu) + pdBd log2(1 + γd) (1)

Where γu and γd are the signal-to-interference-plus-noise ratio
(SINR), Bu and Bd represent the bandwidth for UAV and
D2D respectively, pu =

∣∣(δ − PLoS
u

)∣∣ and pd =
∣∣(δ − PLoS

d

)∣∣
are the probabilities when the link between UAV/D2D-Tx and
D2D-Rx is in LoS or NLoS transmission, where δ is a binary
variable that defines the association mode and | · | is the
absolute value. In particular, if D2D-Rx is associated with
UAV/D2D-Tx according to LoS link, then δ = 0, otherwise
δ = 1. We can introduce the following form to describe the
LoS probability of A2G link [15]

PLoS
u (z) =

1

1 + b+ exp
(
−c
(
180
π tan−1

(
H
z

)
− b
)) (2)

where b and c are constants that depend on network envi-

ronment and z =
√
(xu − xDTx

d )2 + (yu − yDTx

d )2 +H2 is
the Euclidean distance between the typical UAV and D2D-Tx.
Similarly, the LoS probability function when communication
is established between D2D-Tx and D2D-Rx is given by

PLoS
d (D) = 1− eβD (3)

where β is the blockage parameter that defines the average
size of obstacles. Here, D corresponds to the distance between
D2D pairs.

A. Channel Model

Regarding propagation, the signal through the wireless
channel is characterized by attenuation that depends relatively
on distance and antenna components. There is no doubt that
an adequate channel model is essential for establishing reliable
communication links. As discussed in [1], [7], the A2G

Fig. 1. DQN for D2D communication underlaying UAV.

channel depends strongly on the altitude and environment.
However, according to [15], the path loss in LoS and NLoS
transmission for A2G can be modeled as

PLu =

{
ΦLOS(z)

αLOS/2, for LOS Link
ΦNLOS(z)

αNLOS/2 for NLOS Link
(4)

where αLOS and αNLOS are the path loss exponents, ΦLOS <
ΦNLOS = (ϑi∈{LoS,NLoS}(c/4πf))

−1 represent the addi-
tional path loss for LoS and NLoS links respectively, which
depend on environment and frequency. Indeed, an additional
path loss is included because, in NLoS links, there is higher
signal attenuation compared to LoS transmission. For D2D
ground communication, we adopt a standard path loss model
with mean additional losses δLoS and δNLoS as

PLSBS =

{
δLOSD

−αLOS , for LOS Link
δNLOSD

−αNLOS for NLOS Link
(5)

where D is the distance between D2D-Tx and D2D-Rx. Thus,
the channel power gain from the UAV to a particular D2D-Tx
can be given as

Gu,d = PLoS
u ΦLOS(z)

αLOS
2 +PNLoS

u ΦNLOS(z)
αNLOS

2 (6)

In addition, we assume that the channel gain between D2D-Tx
and D2D-Rx is given by

Gd,d = PLoS
d δLOSD

−αLOS + PNLoS
d δNLOSD

−αNLOS (7)

where PNLoS
d = 1− PLoS

d is the NLoS probability link.

B. Nonlinear Energy Harvesting and SINR
The energy harvesting process is considered to be a promis-

ing solution to power up low-power consuming devices. In
particular, EH techniques can be exploited to generate energy
from the surrounding environment. This converted energy will
then be used in the network devices [16]. Available sources of
energy for harvesters can be grouped into linear and nonlinear
models. Generally, a practical EH circuit displays a non-linear
characteristic due to the non-linear elements implemented in
the UAVs and D2D users such as resistances, diodes and
capacitance [1]. Here, we consider a nonlinear EH model,
where the harvested power is expressed as [17]

EH = T


(

PMax

1+e−a(Pr,u+I
u′+I

d′ )
− PMax

1+eab

)
1− 1

1+eab

 (8)
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where T is the transmission time, PMax is the maximum
harvested energy, a and b are constants that define resistance
and capacitance, respectively. Pr,u = ρPuhu,dGu,d, I(u′) =∑

u′ ̸=u ρPu′hu′,dGu′,d and Id′ =
∑

d′ ̸=d ρPd′hd′,dGd′,d rep-
resent the received power, interference from adjacent UAV and
D2D-Tx, respectively. In this work, the SINR when the PS
SWIPT is applied at the D2D-Tx can be given by

γu =
(1− ρ)Puhu,dGu,d∑

u′ ̸=u(1− ρ)Pu′hu′,dGu′,d + σ2
(9)

where σ2 refers to additive white Gaussian noise, (1−ρ) des-
ignates the part of the received signal intended for information.
On the other hand, the instantaneous SINR at the typical D2D-
Rx can be computed as

γd =
ρPdhd,dGd,d

Id′Iu′ + σ2
(10)

C. Global Energy Efficiency

One of the objectives that keeps the network alive is
energy efficiency. The EE metric is employed to evaluate the
total energy consumption for the network, and it is defined
as a ratio of the total transferred bits to the total power
consumption. Based on the nonlinear harvested energy of
D2D-Tx, the global energy efficiency of the UAVs assisted
D2D communication can be formulated as

GEE = EEu + EEd =
SEu

Pu + Pc +
∑N

n=1 EH
+

SEd

Pd + Pc

(11)
where 0 < Pu ≤ Pu,m, Pc represent the power consumed in
the circuit of the transmitter and SEu is the spectral efficiency
that is given by the following equation

SEu = log2

(
1 +

(1− ρ)Puhu,dGu,d∑
u′ ̸=u(1− ρ)Pu′hu′,dGu′,d + σ2

)
(12)

III. PROBLEM FORMULATION

Due to the discrete nature of data and the high traffic
demands in UAV-assisted D2D networks, traditional algo-
rithms for resource allocation do not converge on optimal
solutions for improving throughput and achieving large-scale
EE. In this section, we present the problem formulation where
the performance analysis is calculated in terms of EE and
throughput. Our objective is to maximize GEE and throughput.
Mathematically the optimization problem is formulated as
follows:

max
SE,Pu,Pd,ρ,γu,γd

GEE (13)

s.t. C1 : SEu > SEQoS
u ∀u ∈ U ;C2 : SEd > SEQoS

d ∀d ∈ N

C3 : 0 < Pu ≤ Pmax
u ; C4 : 0 < Pd ≤ Pmax

d

C5 : 0 < ρ ≤ 1; C6 : γu > γth
u ∀u ∈ U

C7 : γd > γth
d ∀d ∈ N

Constraints C1 and C2 indicate the QoS constraint, where
SEQoS

u and SEQoS
d are the spectral efficiency threshold

in UAV and D2D communication, respectively. C3 and C4
impose that the transmit power Pu and Pd must be in the

interval [0, Pmax]. It specifies the upper limit of the power
transmission. The constraint in C5 means that the power-
splitting ratio is bounded between [0, 1]. Finally, constraints in
C6 and C7 impose that the SINR γu, γd are more significant
than a designated threshold γth

u and γth
d . On the other hand,

the second objective focuses on total throughput maximization
of the network, which is given by

max
Pu,Pd,ρ,H,γu,γd

RTOT (14)

s.t. C1 : RTOT ≥ RDLmin

TOT ∀d ∈ N

C2 : Hmin ≤ H ≤ Hmax∀u ∈ U

Constraint C1 indicates that the total throughput should be
greater than the minimum required data rate for QoS. Con-
straint C2 denotes that the altitude of UAVs ranges between
[Hmin, Hmax]. Obviously, at higher altitudes, the distance
between the UAV and D2D-Tx increases, resulting in a con-
siderable path loss. On the other hand, when the UAV is
positioned at a certain minimum height, the NLOS conditions
are recorded and they can be affected by the throughput, thus
the necessity to study this constraint. C3, C4, C5, C6, and C7
are given in the previous paragraph.

IV. MULTI AGENT DEEP Q-NETWORK

In this section, we present MADRL to solve the problem
of (13) and (14). The approach of RA is modeled as Markov
decision process (MDP). In MADRL algorithms, the problem
representation can be divided into three parts according to
the nature of the interaction between the agents such as
cooperative, competitive and mixed. Moreover, the agent can
fully or partially observe the environment. In this letter, we
propose an MADQN algorithm based on fully observable
settings.

A. Reinforcement Learning

Similar to existing works [9], [10], we consider a tuple
(st, at, rt, st+1), where the agent observes the Markov state
of the environment s ∈ S, and interacts to take an action
a ∈ A. Here, S and A are the state-space and action-space
respectively. Based on the transition probability p(st+1|st, at)
the current network state st transits to a new state according
to the action at selected by the agent at time slot t. rt denotes
the reward function performed by the agent at each time
slot t. However, we assume that UAVs act as an agent that
continuously interacts with the environment to optimize policy
π. For agent j, we denote network state at each time t as
sjt . After observing the current environment, agent j performs
an action according to the policy πj and sjt . Then, at each
time policy, the agent receives the reward rjt conditioned by
an action and moves to the next state sjt+1. Lastly, j performs
the above operations until the maximum episode is completed.
We define the components, namely the state space, the action
space and the reward function as
State and Observation: In general, the state describes a
specific configuration of the network. UAV agents determine
state sjt from the environment observation. Each UAV j
observes the SINR γj

u , altitude Hj
t and power transmission



4

P j
u . At time slot t, the observation of the agent j can be

represented as Oj
t = {γj

u, H
j
t , P

j
u}. The environment is fully

observable, and the state space is composed by all observations
as sjt = {O1

t , O
2
t , · · · , O

j
t}.

Action space: The agent interacts with the environment and
selects the action ajt . At each time slot t, the action of UAV
includes the PS ratio ρ and altitude Hj

t . Therefore, the actions
can be given as a tuple ajt = {ρjt , H

j
t }.

Reward Function: Reinforcement learning is based on the
reward function, stating that the UAV is guided towards an op-
timal policy. The objective of this work is to jointly maximize
the total throughput and GEE. For this purpose, the rewards
obtained by UAVs are expressed by vector rjt = {r1t , r2t }. In
our model, we consider a scalarization reward function as

r = max (ω1GEE + ω2RToT ) (15)

where ω1 and ω2 are weight for each objective and
∑

ω = 1.
We suppose that ω1 = ω2 = 0.5. A weighted reward criterion
is a weighted combination of the average and discounted
reward criteria. The agent can give more or less attention to the
long-term reward than to the short-term reward by changing
the associated weights.

B. Learning Algorithm Process

In this part, inspired by [10] we propose a MADQN to op-
timize the EE and throughput resource allocation framework.
In particular, we extend the single-agent DQN algorithm to a
multiple-agent approach. In a non-linear deep neural network
(DNN), the Q function is defined as Q(sjt , a

j
t )θ ≈ Q∗(s, a),

where θ represents the weights of the neural networks. As
illustrated in Fig. 1, the action at is taken according to the ϵ-
greedy policy, and the transition tuple (sjt , a

j
t , rt, s

j
t ) is stored

in a replay memory denoted by D. To remove the correlation
between the samples, the DQN agent will randomly sample
minibatch from D to adjust θ of the DNN. Another target
network model Q(sjt , a

j
t ; θ

−) with weight θ− is used in the
DQN procedure to ensure DQN stability. At each episode, the
optimal state-action function is formulated as

Q(sjt , a
j
t |θ) = Est′

[
r + γmax

aj′
t

Q∗
(
sj

′

t , a
j′

t

) ∣∣∣∣sjt , atc
]

(16)

To train the DQN, the Q-network updates θ according to L(θ)
to minimize the following loss function given as

L(θ) =Esjt ,a
j
t ,rt,s

j
t+1∈D

[
rt

(
sjt , a

j
t

)
+ γmax

at+1
Q
(
sjt , a

j
t

) ∣∣∣∣θ−
−Q

(
sjt , a

j
t

) ∣∣∣∣θ]2 (17)

Our proposed pseudo code is outlined in Algorithm 1.

V. SIMULATION RESULTS

We evaluate our proposed model and verify the effectiveness
of the introduced algorithm-based energy harvesting for UAV-
assisted D2D communication, comprising 3 UAVs and 25 D2D
pairs uniformly distributed over an area of 3 × 3km2. We
assume that the maximum power transmission for UAVs is

set as Pmax
u = 30dBm. In addition, the power consumed in

the circuit of the transmitterPc = 40dBm. The additive white
Gaussian noise σ2 = −114dBm. In the MADQN algorithm,
the DNN of each agent is a four-layer fully connected neural
network with two hidden layers: 64 and 32 neurons in each
hidden respectively. We compare the convergence of our
algorithm to that of the DQN and Double DQN. First, Fig.
2(a) illustrates the effect of the number of D2D pairs on
the GEE for different algorithms. A common observation in
Fig. 2(a) is that by increasing the number of D2D pairs can
lead to an increase in GEE, since the degree of improvement
in EH becomes more important. As shown in Fig. 2(b), the
power splitting ratio ρ has an impact on the GEE. Indeed,
when the PS ratio is low, GEE increases significantly to the
value GEE=1.8(bits/J/Hz) and then starts to decrease to a
value of ρ = 0.72. This can be explained by the fact that
at a low PS ratio, the EH by D2D-Tx increases. We can also
observe from the two previous figures that the performance
is clearly outperformed in MADQN compared to DDQN and
DQN. Fig. 3(a) and Fig. 3(b) illustrate the variation of GEE
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Fig. 2. GEE (bits/J/Hz) versus (a) number of D2D pairs with different
algorithms, and (b) PS ratio ρ.
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Fig. 3. (a) UAVs Height with different algorithms, and (b) GEE (bits/J/Hz)
vs. Distance of D2D.

according to UAVs height and D2D distance, respectively. As
can be seen from Fig. 3(a), the GEE decreases as the UAVs’
height increases. This is due to the increase in the distance
between UAV and D2D-Tx, resulting in a considerable path
loss. Fig. 3(b) presents the GEE as function of the maximum
distance between D2D. We conclude that when the distance
between devices increases, the GEE gradually decreases. This
is explained by the fact that increasing distance leads to greater
path loss. Fig. 4(a) shows the variation of total throughput
versus UAVs height for ρ = 0.2 and ρ = 0.4, with different AI
algorithms. As can be easily seen in Fig. 4(a), total throughput
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Fig. 4. (a) Throughput vs. UAV height with different ρ, and (b) Throughput
as function of blockage β.

increases as the UAVs height increases and then decreases
after H = 300m. This is because UAVs experience LoS
conditions when 120 < H ≤ 300m and the deterioration of
the throughput after the 300m is due to increased pathloss.
Finally, we plot the throughput as a function of blockage
parameter β (blockage between D2D) in Fig. 4(b). It can
be observed that when β increases, the total throughput of
the network decreases. Thus, with the increases in obstacle
density, more UEs are served by NLoS conditions. We can also
observe from Fig. 4(b) that the proposed MADQN algorithm
converges to highly satisfactory results compared to the other
approaches. This is because our algorithm handles interference
perfectly.

Algorithm 1 MADQN for UAVs assisted D2D
INITIALIZATION

Initialize parameters: learning rate, ϵ-greedy, discount
factor γt, memory buffer D

for agent j = 1 to N do
Replay memory D to capacity N
Initialize action-value function Qj(sj , aj |θj) with random
weight θj
Target Network Qj(s

′
j , a

′
j |θ

−
j ), θ−

j → θj (θ−
j equals to θj)

end for
LEARNING
for iteration 1, 2, . . . , L do
s1: Initialize the first state from stj = (zt

1, z
t
2 . . . zt

j)
for episode 1, E do

Each agent (UAV) j execute random actions at
j according

to ϵ−greedy
otherwise, choose at

j = maxat+1 Q(st+1
j , at

j |θ
−)

Get the immediate reward r(stj , a
t
j) and next state st+1

j

Store transition (stj , a
t
j , rt, s

t+1
j ) in D

Update SD-WAN information from the controllers
for j = 1 to N do

Controllers randomly sample minibatch of
(stj , a

t
j , rt, s

t+1
j ) in D

Set rt(stj , a
t
j) + γmax

at+1Q(st+1
j , at

j |θ
−
j )

Apply gradient descent step on
[rt(s

t
j , a

t
j) + γmax

at+1Q(st+1
j , at

j |θ
−) − Q(stj , a

t
j |θj)]

2

end for
end for
UAV j replaces target parameters θ−

j → θj ;
Empty D;

end for

VI. CONCLUSION

This paper investigated the energy efficiency and throughput
optimization in D2D communication underlying UAVs with
SWIPT. The objective was to maximize both EE and sum-rate
under power splitting. A distributed MADQN was applied and
compared to traditional approaches such as DDQN and DQN.
The simulation results demonstrated that our algorithm outper-
forms EE and throughput with different parameter variations.

Our results also indicated that the EE is affected by the number
of D2D pairs to be deployed in the coverage area, as well as the
maximum altitude variation. Moreover, it is important to obtain
an optimal value of PS ratio for efficient resource allocation.
As a future research direction, we will extend our work to
combine power splitting and time EH while considering UAV
mobility.
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