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Goal-oriented Policies for Cost of Actuation Error

Minimization in Wireless Autonomous Systems
Emmanouil Fountoulakis, Nikolaos Pappas, and Marios Kountouris

Abstract—We consider the minimization of the cost of actua-
tion error under resource constraints for real-time tracking in
wireless autonomous systems. A transmitter monitors the state
of a discrete random process and sends updates to a receiver
over an unreliable wireless channel. The receiver then takes
actions according to the estimated state of the source. For each
discrepancy between the real state of the source and the estimated
one, we consider a different cost of actuation error. This models
the case where some states, and consequently the corresponding
actions to be taken, are more important than others. We provide
two algorithms, a first one reaching an optimal solution but of
high complexity, and a second low-complexity one that provides

a suboptimal solution. Our simulation results evince that the
performance of the two algorithms are quite close.

I. INTRODUCTION

Emerging cyber-physical and real-time autonomous systems

are envisioned to introduce various applications and services,

in which information distilled from measurements or obser-

vations is valuable when it is fresh, accurate, and useful

to the specific goal of the data exchange. In this context,

a relevant yet challenging problem is that of remote real-

time tracking and actuation driven by sampled and potentially

delayed measurements transmitted over a wireless channel

using limited resources.

Conventional communication system design has mainly

remained agnostic to the significance of transmitted messages,

in particular at the physical and medium access layers. The

optimization of system performance has been dominated by

metrics such as throughput, delay, and packet drop rate.

Although these performance metrics have turned out to be

instrumental for enabling reliable and efficient communication,

they fall short of differentiating the packets according to

their information content and its value. A recently developed

metric, named Age of Information (AoI), has been proposed

to measure the freshness and the timeliness of information

[1]–[3]. However, baseline AoI-based metrics do not take
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into account the source evolution and the significance of

the generated information with respect to the communication

task/goal and the context. Several variants of AoI have been

proposed for tackling the problem of remote estimation in sta-

tus update systems [4]–[7]. Nevertheless, the aforementioned

works do not consider the cost of actuation error, as they

mainly focus on the discrepancy between the source and the

estimated value of the process at the destination. A recently

proposed approach, which is also adopted in this paper, takes

into account the semantics of the information, i.e., signif-

icance, goal-oriented usefulness, and contextual importance

of information as a means to leverage the synergy between

data generation and processing, information transmission, and

signal reconstruction [8]–[11].

In this work, we consider the problem of real-time track-

ing and estimation of an information source from a remote

actuator. A transmitter samples and sends information about

the state of a source in the form of status update packets to a

remote actuator (receiver) over an unreliable wireless channel.

The actuator takes actions depending on the estimated state

of the remote source. We also consider that the transmitter

has limited resources, which prevents it from sampling and

transmitting updates continuously. This paper extends the

results of [12], [13], where the problem of remote monitoring

of a discrete Markov source is considered and semantics-

empowered policies are proposed to significantly reduce both

the real-time reconstruction and the cost of actuation errors,

as well as the amount of ineffective updates. Specifically, we

consider a more general discrete stochastic source process

and resource constraints, which make the solution essentially

different. The problem is formulated as a Constrained Markov

Decision Process (CMDP), and two goal-oriented semantic-

aware policies are proposed. A key takeaway is that it is

optimal for the transmitter to remain silent even if there is

a discrepancy between the actual state of the source and its

estimate at the receiver, due to the delay induced by the

wireless channel, the high transition probability, and the large

actuation error.

II. SYSTEM MODEL

We consider a time slotted communication system in which

a transmitter monitors a discrete random process and sends

status updates to a receiver over an error-prone wireless chan-

nel. Let t ∈ Z>0 denote the t-th slot. The receiver operates

as a remote actuator and performs actions according to the

estimated state of the source. The state of the process is mod-

eled by a Discrete-Time Markov Chain (DTMC) {Xt}t∈Z>0
,
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and is assumed to be ergodic. The state of the source takes

values from the set {0, 1, . . . , N}, where N ∈ Z>0. Each state

corresponds to a specific action that has to be performed by

the actuator.

The channel realization is denoted by ht, and is equal to 1 if

a packet is successfully received at time slot t and 0 otherwise.

The success probability is defined as ps = Pr(ht = 1),
and the failure probability as pf = Pr(ht = 0) = 1 − ps.

For every successful transmission, the receiver updates its

information regarding the state of the source with a new esti-

mate denoted by X̂t. The receiver sends an acknowledgement

(ACK)/negative ACK for successful/failed transmissions. We

assume that ACK/NACK information is sent and received

instantaneously and error free. If the receiver does not suc-

cessfully receive an update, it uses its previous estimate as the

current one, i.e., X̂t+1 = X̂t. We consider that the sampling

and transmission processes take a time slot to be performed.

Therefore, the receiver receives an update from the transmitter

with one slot delay, if a transmission is successful at time slot

t, and the actuator updates its state at slot t+ 1.

The transmitter generates a status update Xt by sampling

the source at will. The decision to sample and transmit at time

slot t is denoted by αt, where

αt =

{

1, if the source is sampled and its state transmitted,

0, otherwise.

(1)

A. Performance metrics

We consider that the actuator (receiver) takes actions ac-

cording to the estimated state of the source. If the estimated

state is different from the real state of the source, an actuation

error occurs depending on a pre-defined function. The cost

of actuation error captures the significance (semantics) of the

error at the point of actuation. Note that some errors may

have a larger or a more critical impact than others. Let Ci,j

denote the cost of being in state i at the source, and in

state j, estimated at the receiver, at time slot t, i.e., Xt = i
and X̂t = j. We assume that the costs Ci,j are given and

remain the same over the time horizon. Furthermore, for every

sampling and transmission actions, we consider a cost c. This

cost can represent, for instance, the power consumption for

both sampling and transmission procedures.

III. PROBLEM FORMULATION

The objective of this work is to minimize the average total

cost of actuation error under average resource constraints. The

expected time averages of the transmission and actuation costs

are defined as

c̄ , lim
T→∞

1

T

T
∑

t=1

E {αtc} , C̄ , lim
T→∞

1

T

T
∑

t=1

E
{

Ct
i,j

}

, (2)

respectively. To this end, we formulate our stochastic opti-

mization problem as

min
π

C̄π , s. t., c̄π ≤ cmax, (3)

where π is the policy that decides the rule of selecting the right

value αt at every time slot t, and c > 0 is the time-averaged

cost constraint. The problem in (3) is a CMDP. The system

state is described by tuple St = (Xt, X̂t, Ct), actions αt ∈ A,

where A = {0, 1}, and the transition matrix is described by

Pi,j = Pr {Xt+1 = j|Xt = i}. We assume that the transmitter

has knowledge of the channel and source statistics.

IV. PROPOSED ALGORITHMS

In this section, we provide two optimization algorithms for

solving problem (3) optimally and suboptimally.

A. Optimal Solution

The problem in (3) is a CMDP, which is, in general, difficult

to be solved [14]. In order to solve the constrained problem, we

relax the constraints in (3) by utilizing Lagrangian multipliers.

We show that this approach can provide the optimal solution.

We define the Lagrangian function as

L(π, λ) = lim
T→∞

1

T

T
∑

t=1

Eπ {Ct + λαtc} − λc, (4)

where the immediate cost is f(St) = Ct + λαtc. In order to

proceed with the solution in (3), we consider the following

optimization problem

min
π∈Π
L(π, λ), (5)

for any given λ ≥ 01. Since λc is independent of the chosen

policy π, the problem in (5) is equivalent to the following

optimization problem

min
π∈Π

h(λ, π) = min
π∈Π

lim sup
T→∞

1

T
E
π

(

T−1
∑

t=0

Ct + λαtc

)

. (6)

A policy that achieves L∗(λ) is called λ-optimal, denoted by

π∗
λ, and is a solution to the following optimization problem

min
πλ

L(π, λ). Since the dimension of the state space S is finite,

the growth condition [14, Eq. 11.21] is satisfied. In addition,

the immediate cost function is bounded below (≥ 0). Since

these conditions are satisfied, the optimal value of the CMDP

problem in (3), C̄∗
π, and the optimal value of the (5), L∗(λ),

ensure the following relation [14, Corollary 12.2]

C̄π∗ = sup
λ≥0
L∗(λ). (7)

Theorem 1 (Mixture of two randomized policies). [15,

Theorem 4.4] The optimal policy π∗ is a mixture of two

deterministic policies π∗
λ− , π∗

λ+ .

The optimal policy is written symbolically as π∗ = ηπ∗
λ− +

(1− η)π∗
λ+ , where η is a probabilistic factor. We characterize

η, λ−, and λ+, later in this paper.

We now proceed to find the solution to the problem (5). To

obtain the optimal policy of an infinite horizon average cost

1For λ = 0, one may expect that the optimal policy is to always transmit
because the sampling and the transmission processes are costless. However,
our simulation results show that this is not always optimal even for cost-free
transmissions.
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Markov Decision Process (MDP), it is sufficient to solve the

following Bellman equation [16]

θλ + V (St) =

min
αt∈A







Cat
+ λαtc+

∑

St+1∈S

PSt,St+1
V (St+1)







, (8)

where θλ is the optimal value of (6), for a given λ > 0, and

V (St+1) is the cost-to-go or value function. This is known to

be a challenging problem [16]. We apply the value iteration

algorithm and the bisection method to solve the problem and to

find the optimal Lagrange multiplier, respectively. The detailed

steps are provided in Algorithm 1 2.

Algorithm 1: Value Iteration Algorithm

1 Initialization: λ← 0, λ− ← 0, λ+ large positive

number, and ǫ > 0
2 Run VI(λ)
3 if c̄ ≤ cmax then

4 π∗ ← π∗
λ

5 else

6 while |λ+ − λ−| > ǫ do

7 Run VI(λ+−λ−

2 )
8 if c̄ ≥ cmax then

9 λ− ← λ
10 else

11 λ+ ← λ

12 λ∗ ← λ++λ−

2 , λ∗
+ ← λ−, λ∗

+ ← λ−

13 VI(λ∗)
14 if c̄ = cmax then

15 π∗ = π∗
λ

16 else

17 π∗ = ηπλ∗
−
+ (1− η)πλ∗

+

18 function VI(λ):
19 Initialization: V 0 = V 1 = 0, ∀s ∈ S, choose a small

ǫ > 0, set n = 1
20 while ||V n − V n−1|| ≥ ǫ(1− γ)/2γ do

21 for each s ∈ S compute do
22 V n(s) =

min
αt

{

Cαt
+ λαtc + γ

∑

St+1∈S

Pr {St+1|St, αt}V n−1(St+1)

}

23 n← n+ 1

24 return policy π

B. Suboptimal low-complexity algorithm

Although the value iteration algorithm is proven to converge

to the optimal solution, it suffers from high computational

complexity, known as the curse of dimensionality [18]. Our

goal is to provide a low-complexity algorithm that guarantees

that the average cost constraints are satisfied and which

2There is no closed form expression for η [17], thus we numerically search
for η ∈ [0, 1].

provides a solution close to the optimal one. Using tools

from Lyapunov optimization theory, we provide a real-time

algorithm named Drift-Plus-Penalty (DPP). We reformulate

the problem in (3), and we define the objective function g(t)
as

g(t) =






















(

N
∑

k=i

Ck,jPi,k(1− ps) +
N
∑

k=i

Ck,iPi,kps

)

, if αt = 1,

(

N
∑

k=i

Ck,jPi,k

)

, otherwise.

(9)

The expected time average of the objective function is defined

as ḡ , lim sup
T→∞

1
T

T
∑

t=1
E {g(t)} . The reformulated stochastic

optimization problem is the following

min
αt

ḡ, s. t., c̄ ≤ cmax. (10)

In order to satisfy the average cost constraints, we map the

average cost constraint in eqrefoptproblemLyapuno into a

virtual queue [19]. We show below that the time average cost

problem is transformed into a queue stability problem.

Let {Z(t)} be the virtual queue associated with constraint

(10). The virtual queue is updated at every time slot t as

Z(t+ 1) = max[Z(t)− c, 0] + αtc. (11)

Process {Z(t)} can be viewed as a virtual queue with arrivals

αt and service rate c. This idea is based on the fundamental

Lyapunov drift theorem [20].

With the above definitions in mind, we can now proceed

to describe our proposed algorithm and provide performance

guarantees regarding the average cost constraint.

Lemma 1. If Z(t) is rate stable3, then the constraint in (10)

is satisfied.

Proof. By using the basic sample property [19][Lemma 2.1,

Chapter 2], we obtain:

Z(t)

t
−

Z(0)

t
≥

1

t

t−1
∑

τ=0

cαt −
1

t

t−1
∑

τ=0

c. (12)

If Z(t) is rate stable, then lim
t→∞

Z(t)
t

= 0. By taking the time

average expectations in (12) on both sides, we obtain the result.

In order to stabilize virtual queue Z(t), and therefore by

Lemma 1 to satisfy the average cost constraints, we first

define the Lyapunov function as L(Z(t)) , 1
2Z

2(t) and the

Lyapunov drift as

∆(Z(t)) , E {L(Z(t+ 1))− L(Z(t))|Z(t)} . (13)

The above conditional expectation is with respect to the ran-

dom source state transitions, channel states, and transmission

decisions. We apply the DPP algorithm to minimize the time

3A discrete time process Q(t) is rate stable if lim
t→∞

Q(t)
t

=

0, with probability 1.
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average expected cost while stabilizing the virtual queues,

Z(t). Specifically, this approach seeks to minimize an upper

bound on the following expression

∆(Z(t)) +WE {g(t)} , (14)

where W > 0 is an importance factor to scale the penalty. By

utilizing (max [Q− b, 0]+A)2 ≤ Q2+A2+ b2+2Q(A− b),
we get the following upper bound on the expression in (14)

∆(Z(t)) +WE {g(t)}

≤ B +WE {g(t)}+ E {Z(t)(cαt − cmax)} , (15)

where B <∞, and B ≥
(αtcmax)

2+c2max

2 .

C. Drift-Plus Penalty Algorithm

At every time slot t, the transmitter observes the state of the

source (Xt) and the estimated state at the destination (X̄t),
and it takes a decision according to the following optimization

problem

min
αt

Wg(t) + Z(t)(cαt − cmax). (16)

Lemma 2. We consider a class of stationary policies, possibly

randomized, denoted by Ω. A policy ω(t) that belongs to the

class Ω is an i.i.d. process that takes probabilistic decisions

independent of the state of the system, at every time slot t. Let

y(t) = cαt − cmax, and c(t) = cαt. Then, if the problem in

(10) is strictly feasible, and the second moments of y(t) and

g(t) are bounded, then there is ǫ > 0 for which there is an

ω(t) policy such that the following holds

E {y(t)} ≤ ǫ, E {g∗(t)} = gω ≤ gopt + ǫ,

where y∗(t) and g∗(t) are the resulting values of the ω policy,

and gopt is the optimal value function in (10) achievable by

any optimal stationary randomized policy.

Proof. Since the cost for sampling and transmission is

bounded, the second moment of c(t) is also bounded. Fur-

thermore, since the values of the matrix C are bounded, the

second moment of g(t) is also bounded. Therefore, we have

E
{

c(t)2
}

≤ c2, E
{

g(t)2
}

≤ C2
max,

where Cmax is the maximum value of instantaneous actuation

cost. Then, the boundedness assumptions in [19][Ch. 4.2.1]

are satisfied. Therefore, from Theorem 4.5 in [19], we get the

result.

Theorem 2. The DPP algorithm satisfies any feasible set of

average cost constraints.

Proof. Since the DPP algorithm seeks to minimize the expres-

sion in (16), we obtain that

∆(Z(t)) +WE {g(t)|St} (17)

≤ B + Z(t)E {yDPP(t)} +WE {gDPP(t)} (18)

≤ B + Z(t)E {y∗(t)}+WE {g∗(t)} , (19)

where y∗(t) and g∗(t) are the resulting values after applying

policy ω. By considering the bound in Lemma 2, we get

∆(Z(t)) +WE {g(t)|St} ≤ B + ǫZ(t) +W (gopt + ǫ),
(20)

and taking ǫ→ 0, we have

∆(Z(t)) +WE {g(t)|St} ≤ B +Wgopt. (21)

The above expression is in the exact form of the Lyapunov

optimization theory [19][Theorem 4.2]. Therefore, the virtual

queue is mean rate stable, and the average constraints are

satisfied.

V. SIMULATION RESULTS

In this section, we compare the performance of the two

proposed algorithms with the baseline algorithm proposed in

[12] in terms of average real-time reconstruction error and cost

of actuation error. The baseline policy decides on sampling

and transmission whenever there is a discrepancy between the

states at the source and at the destination, i.e., Xt 6= X̄t. In

our setup, the average cost constraint, cmax, is set to 0.2, with

a cost of sampling and transmission equal to 1. Therefore,

a feasible policy decides 20% of the time for sampling and

transmission. Note that the baseline algorithm does not take

into account the sampling and transmission costs.

We consider two cases for the source dynamics: a slowly

varying source and a fast varying source. We consider that the

Markov source has four states and is modeled as a birth-death

process. The cost of the actuation error matrix remains fixed

in both cases. The values of the matrix are shown below

C =













0 1 2 3
0 0 10 50 30
1 10 0 40 20
2 20 10 0 10
3 30 20 40 0













, (22)

where element Ci,j is the cost of actuation error for the source

being in state i while the estimated value, X̂ , is j.

A. Slowly varying source

In Fig. 1, we compare the average reconstruction error

and the average cost of actuation error resulting from the

three algorithms for the case of a slowly varying source. The

transition of the Markov source is shown below:

P =









0.8 0.2 0 0
0.1 0.8 0.1 0
0 0.1 0.8 0.1
0 0 0.2 0.8









. (23)

We consider that the source remains in the same state with a

high probability (0.8). In Fig. 1a, we observe that the proposed

DPP and VIA algorithms have very similar performance and

provide lower average reconstruction error than the baseline

algorithm. Moreover, in Fig. 1b, we see that the difference

between the cost of actuation error performance of the base-

line and the proposed algorithms increases. This is because

the baseline algorithm decides on sampling and transmission

whenever there is a discrepancy between the source and the

destination, without explicitly taking into account the cost of

actuation error.
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Fig. 1: Performance of proposed policies as a function of the

success probability for a slowly varying source.
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Fig. 2: Performance of proposed policies as a function of the

success probability for a rapidly varying source.

B. Rapidly varying source

In the case of a rapidly varying source, we consider that the

Markov source remains in the same state with probability 0.2.

The corresponding transition matrix is

P =









0.2 0.8 0 0
0.4 0.2 0.4 0
0 0.4 0.2 0.4
0 0 0.8 0.2









. (24)

In Figs. 2a and 2b, we provide results for the average recon-

struction error and average cost of actuation error, respectively.

We observe that the performance of the baseline algorithm is

better than that of VIA and DPP as far as the reconstruction

error is concerned. However, the proposed algorithms still

provide superior performance in terms of cost of actuation

error, which is the metric of interest in this paper. The reason

is that the algorithms proposed here take into account both

the cost of actuation error and the statistics of the Markov

source. Therefore, a main observation from the results is that

low reconstruction error does not necessarily imply a low

average cost of actuation error. The reason is that these are

two different performance metrics, and in a remote monitoring

system with delayed measurements, it is crucial to take into

account the statistics of the source and how the states of the

source vary with the time horizon.

VI. CONCLUSION

In this work, we studied the minimization of the actuation

error under resource constraints for real-time tracking of a

remote source over wireless. We provided an optimal solution

to the optimization problem and a low-complexity algorithm

that guarantees the satisfaction of the average cost constraints.

Our simulation results show that the performance of the low-

complexity algorithm is close to optimal. We observed that an

optimal policy for this problem takes into account not only the

discrepancy in state between the source and the destination,

but also the cost of actuation error that occurs due to this

discrepancy, as well as the statistics of the source. Depending

on the setup, it is sometimes beneficial to remain silent rather

than perform sampling and transmitting a status update to the

destination when there are delayed measurements sent to the

actuator.

REFERENCES

[1] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?,” in Proc. IEEE INFOCOM,, pp. 2731–2735, 2012.

[2] A. Kosta, N. Pappas, V. Angelakis, et al., “Age of information: A new
concept, metric, and tool,” Foundations and Trends® in Networking,
vol. 12, no. 3, pp. 162–259, 2017.

[3] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and
S. Ulukus, “Age of information: An introduction and survey,” IEEE

Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1183–
1210, 2021.

[4] K. Huang, W. Liu, M. Shirvanimoghaddam, Y. Li, and B. Vucetic, “Real-
time remote estimation with hybrid arq in wireless networked control,”
IEEE Trans. on Wireless Commun., vol. 19, no. 5, pp. 3490–3504, 2020.

[5] Y. Sun, Y. Polyanskiy, and E. Uysal, “Sampling of the wiener process
for remote estimation over a channel with random delay,” IEEE Trans.

on Inform. Theory, vol. 66, no. 2, pp. 1118–1135, 2019.
[6] H. Tang, Y. Sun, and L. Tassiulas, “Sampling of the wiener process

for remote estimation over a channel with unknown delay statistics,”
Proceedings of the Twenty-Third International Symposium on Theory,

Algorithmic Foundations, and Protocol Design for Mobile Networks and

Mobile Computing, pp. 51–60, 2022.
[7] X. Zheng, S. Zhou, and Z. Niu, “Urgency of information for context-

aware timely status updates in remote control systems,” IEEE Trans. on

Wireless Commun., vol. 19, no. 11, pp. 7237–7250, 2020.
[8] M. Kountouris and N. Pappas, “Semantics-empowered communication

for networked intelligent systems,” IEEE Communications Magazine,
vol. 59, no. 6, pp. 96–102, 2021.
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