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Abstract—In this letter, we investigate the mutual information
rate (MIR) achieved by an independent identically distributed
(IID) Gaussian input on the intensity-driven signal transduction
channel. Specifically, the asymptotic expression of the continuous-
time MIR is given. Next, aiming at low computational complexity,
we also deduce an approximately numerical solution for this MIR.
Moreover, the corresponding lower and upper bounds that can be
used to find the capacity-achieving input distribution parameters
are derived in closed-form. Finally, simulation results show the
accuracy of our analysis.

Index Terms—MIR, signal transduction channel, IID Gaussian
input, numerical solution, bound, molecular communication.

I. INTRODUCTION

Signal transduction, a typical form of molecular commu-

nication in nature, can support the communication between

living cells. Examples of such systems include: binding of

the acetylcholine (ACh) neurotransmitter to its receptor pro-

tein [1], modulation of the channel opening transition by light

intensity in the channelrhodopsin (ChR) protein [2], and so on.

At present, there are two main branches of signal trans-

duction research in the communication field. One is to con-

struct a stochastic model for the signal transduction system,

while the other is to provide insights into these systems

from the information-theoretic perspective. In the first branch,

stochastic modeling of signal transduction as a communication

channel has considered the chemical reactions in terms of

Markov chains [3] and in terms of the “noise” inherent in

the binding process [4]. Further, a linear noise approximation

was developed for signal transduction channels in [5]. In

the second branch, Shannon capacity or mutual information

of some typical signal transduction processes has been an-

alyzed based on the above stochastic model. In particular,

when considering a single receptor and multiple independent

receptors, the Shannon capacity of two-state Markov signal

transduction under arbitrary inputs was derived in [6] and [7],

respectively. Calculation of the mutual information rate (MIR)

and capacity for individual receptors with ChR-2 (ChR2),
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ACh, and calmodulin (CaM) was performed in [8], where the

states considered in the Markov chain are more diverse.

Notably, the previous work on the mutual information or

channel capacity analysis of the signal transduction channel

only considered the channel input to be independent and iden-

tically distributed (IID) discrete symbols, especially IID binary

symbols [6]–[8]. However, when it comes to the input of the

target system, continuous-valued variables are often used: the

concentration of a ligand, the intensity of a light source, the

potential difference across a cell membrane, etc. In nature, the

above input can be easily modeled as a Gaussian distribution,

due to the central limit theorem. For example, the spatial

intensity distribution for the LED (such as Laser TEM00

beam) can be approximated by a Gaussian profile (> 95%) [9].

Against this background, in this paper, we propose to exploit

the MIR achieved by an IID Gaussian or truncated Gaussian

continuous input on the intensity-driven signal transduction

channel. For ease of analysis, the approximate solution for the

MIR is theoretically studied, and the corresponding bounds are

also derived in closed-form. Finally, Monte Carlo simulations

are carried out to verify the analysis.

II. SYSTEM MODEL

In this paper, we consider a typical signal transduction

process, which can be regarded as a Markov chain model first,

and then as a communication model. The complete equivalent

process will be detailed in the sequel.

A. Markov Chain Model of Signal Transduction

The finite-state Markov chain model is first employed to

describe the signal transduction process for a single receptor.

Assuming a receptor with k discrete states, there exists a k-

dimensional vector of state occupancy probabilities p (t), i.e.,

p (t) = [p1 (t) , p2 (t) , . . . , pk (t)] , (1)

where pi (t) denotes the probability that the receptor is in state

i at time t with i = 1, 2, . . . , k. It is well known that this

probability evolves according to the master equation [8], i.e.,

dp (t)

dt
= p (t)Q (x (t)) . (2)

Here, Q (x (t)) is a k×k matrix of rate constants, where the el-

ement at the i-th row and j-th column of Q (x (t)), qij (x (t)),
is the instantaneous rate at which receptors starting in state i
enter state j under the input x (t). Here, we define a discrete

time step as ∆t to analyze the Markov chain [10]. When

∆t → 0, the master equation in (2) can be approximated as

http://arxiv.org/abs/2306.15421v1
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Fig. 1. State transition diagram for ChR2. Sensitive transitions are depicted

with bold arrows. States are labeled by their channel state: {C,O} for closed

and open, respectively; the state number is in subscript. Dashed lines surround

all states in either the closed or open state.

p (t+∆t) = p (t) (I+Q∆t) + o (∆t) , (3)

where I is the identity matrix and Q (x (t)) is simplified as

Q. Neglecting the high-order terms o (∆t), the channel state

can be represented as a discrete-time Markov chain with the

transition probability matrix

P = I+Q∆t, (4)

where P is given by using pij as the i-th row and j-th column

element, which indicates the probability of receptors moving

from state i to state j in one time step. Note that P (and Q)

is dependent on x (t), and thus the Markov chain described

via P is not generally time-homogeneous if x (t) is known.

For clarity, we take the ChR2 receptor as an example to

detail the state transition process. As shown in Fig. 1, the ChR2

receptor has three states, namely C1, O2, and C3. Specifically,

the C1 → O2 transition is sensitive to the input x (t), while

the O2 → C3 and C3 → C1 transitions are insensitive. Here,

the rate matrix for ChR2 can be written as

Q =







State 1 2 3

1 R1 q12x (t) 0

2 0 R2 q23

3 q31 0 R3






, (5)

where R1 = −q12x (t), R2 = −q23, and R3 = −q31. By

observing (5), we define S (or S ′) as a set where the state

transition is dependent (or independent) on x (t). For the

ChR2 receptor, we have S = {C1 → C1,C1 → O2}, while

S ′ includes all transitions except S.

B. Communication Model of Signal Transduction

Here, the signal transduction will be regarded as a commu-

nication system with Markov channels, consisting of the input,

output, and conditional input-output probability function.

• Input: The input x (t) is the concentration or intensity in

the environment at time t. When x (t) is discretized in

time, the input is x (i∆t) for integers i. For clarity, let

xi = x (i∆t) in the rest of this paper.

• Output: The output y (t) means the state of receptors at

time t. For simplicity, we employ the state number given

by the subscript of the state label in Fig. 1 to mark the

state of receptors. Therefore, for the ChR2 receptor, we

have y (t) = 1, 2, 3, corresponding to states {C1,O2,C3},

respectively. Similarly, y(t) can be discretized in time as

yi = y (i∆t).
• Input-output relationship: As a Markov channel, yi,

the state of the receptor at time i, depends on the current

input xi and the previous channel output yi−1. Here, we

can write the conditional input-output probability as

p
Y n
1 |Xn

1
(yn1 |xn

1 ) =
n
∏

i=1

pYi|Xi,Yi−1
(yi |xi, yi−1 ), (6)

where xn
1 = [x1, x2, . . . , xn], y

n
1 = [y1, y2, . . . , yn], and

pY1|X1,Y0
(y1 |x1, y0 ) = pY1|X1

(y1 |x1 ). From (4), we

can further obtain pYi|Xi,Yi−1
(yi |xi, yi−1 ) = pyi−1yi

.

In particular, we will omit the subscripts for probability

functions where unambiguous, e.g., pY (y) becomes p (y).
Additionally, we assume that the input xi follows an IID

Gaussian distribution, and then xi can be simplified as x. In

this work, the input x denotes the intensity, which should be

in a certain range without reaching infinity. To the best of our

knowledge, the truncated Gaussian distribution, in which the

range of definition is made finite at both ends of the interval, is

employed to avoid extreme values. Therefore, we suppose that

x has a Gaussian distribution with mean µ̄ and variance σ̄2 and

lies within the interval [a, b] with 0 ≤ a < b < +∞. Then x
conditional on [a, b] obeys the truncated Gaussian distribution,

whose probability density function can be given by [11]

p(x) =











0 if x < a
φ(µ̄,σ̄2;x)

Φ(µ̄,σ̄2;b)−Φ(µ̄,σ̄2;x) if a ≤ x ≤ b

0 if x > b

, (7)

where

φ
(

µ̄, σ̄2;x
)

= 1√
2πσ̄2

e

(

− (x−µ̄)2

2σ̄2

)

Φ
(

µ̄, σ̄2; b
)

= 1
2

(

1 + erf
(

(x− µ̄) /
√
2σ̄2
))

,

where erf(·) is the error function. For the considered x, its

mean and variance will be updated as

µ = µ̄− φ(0,1;β)−φ(0,1;α)
Φ(0,1;β)−Φ(0,1;α) σ̄

σ2 = σ̄2

{

1− βφ(0,1;β)−αφ(0,1;α)
Φ(0,1;β)−Φ(0,1;α) −

(

φ(0,1;β)−φ(0,1;α)
Φ(0,1;β)−Φ(0,1;α)

)2
} ,

where α = a−µ̄
σ̄

and β = b−µ̄
σ̄

. Under the above assumption,

the receptor states Y n
1 can form a time-homogeneous Markov

chain [10], i.e.,

p (yn1 ) =

n
∏

i=1

∫

x

p (x) p (yi |x, yi−1 ) dx =

n
∏

i=1

p̄yi−1yi
, (8)

where p̄yi−1yi
is the yi−1-th row and yi-th column element of

P̄ and P̄ is the transition probability matrix of Y n
1 , written as

P̄ = E [P] = I+ E [Q]∆t. (9)

Recalling (4) and (5), we can replace x (or x (t)) in these

terms with E [x] to form E [P] and E [Q], respectively, since

the sensitive terms in P and Q are assumed to be linear in x.
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III. MIR OF SIGNAL TRANSDUCTION

In this section, we first give an asymptotic expression for the

MIR in continuous time, i.e., obtaining lim
∆t→0

I(X;Y )
∆t

. Next, we

derive an approximately numerical solution for the continuous-

time MIR. Finally, its lower and upper bounds are deduced.

A. Calculation for the Continuous-time MIR

For any communication system with input x and output yi,
the MIR can be given by [8]

MIR = I(X;Y )
∆t

= lim
n→∞

1

n∆t
I (Y n

1 ;Xn
1 )

= lim
n→∞

1

∆t
{H (Yn |Yn−1 )−H (Yn |Xn, Yn−1 )} . (10)

Note that I (X ;Y ) in (10) is the mutual information ex-

changed between X and Y per channel use with a duration ∆t.
Correspondingly, the unit of the MIR is bits/s, when log2 (·) is

used for the entropy calculation. With the aid of (8), we have

H (Yn |Yn−1 ) = −E [log p (yn|yn−1)]

= −
∑

{yn−1,yn}
πyn−1 p̄yn−1yn

log p̄yn−1yn
, (11)

and

H (Yn |Xn, Yn−1 )

=

∫

x

p (x)H (Yn |Xn = x, Yn−1 ) dx

= −
∫

x

p (x)E [log p (yn|x, yn−1)] dx

= −
∑

{yn−1,yn}∈S
πyn−1

∫

x

p (x)pyn−1yn
log pyn−1yn

dx

−
∑

{yn−1,yn}∈S′

πyn−1pyn−1yn
log pyn−1yn

, (12)

where πyn−1 is the steady-state marginal probability that the

receptor is in state yn−1, which is the solution to the following

system of equations:






πP̄ = π
∑

yn−1

πyn−1 = 1 . (13)

It is clear from (9) and (13) that πyn−1 is only dependent on

E [x] and qij . Besides, since the transition in S ′ is independent

on x, we have p̄yn−1yn
= pyn−1yn

for {yn−1, yn} ∈ S ′. Here,

substituting (11) and (12) into (10) yields

I(X;Y )
∆t

=
1

∆t

∑

(yn−1,yn)∈S
πyn−1

(∫

x

p (x)φ
(

pyn−1yn

)

dx

−φ

(∫

x

p (x) pyn−1yn
dx

))

, (14)

and

φ(p) =

{

0, p = 0
p log p, p 6= 0

. (15)

Further, we will compute an asymptotic expression for the

MIR in continuous time, i.e., lim
∆t→0

I(X;Y )
∆t

. First, we have

lim
∆t→0

I(X ;Y )

∆t
=

∑

{yn−1,yn}∈S,yn−1 6=yn

ι(yn−1,yn)

+
∑

{yn−1,yn}∈S,yn−1=yn

ι(yn−1,yn), (16)

where

ι(yn−1,yn) = lim
∆t→0

πyn−1

(

∫

x
p (x)φ

(

pyn−1yn

)

dx

∆t

−φ
(∫

x
p (x) pyn−1yn

dx
)

∆t

)

. (17)

By using the L’Hôpital’s rule for (17), we find ι(yn−1,yn) = 0
when {yn−1, yn} ∈ S and yn−1 = yn [10]. Hence, (16) can

be further re-written as

lim
∆t→0

I(X ;Y )

∆t
=gyn−1,yn

(∫

x

p (x)x ln (x) dx−µ lnµ

)

, (18)

where

gyn−1,yn
=

∑

{yn−1,yn}∈S,yn−1 6=yn

πyn−1qyn−1yn

ln 2
. (19)

So far, the derivation for lim
∆t→0

I(X;Y )
∆t

has been finished.

B. Approximately Numerical Solution for lim
∆t→0

I(X;Y )
∆t

In this subsection, we provide an approximately numeri-

cal solution for (18). By observing (18), we need to focus on

the item with
∫

x
p (x)x ln (x) dx, since the other items in (18)

are given for the target system. According to the McLaughlin

formula, ln (x) can be approximately expressed as [10]

ln (x) = ln (1 + (x− 1)) =

∞
∑

k=1

(−1)
k−1 (x− 1)k

k
. (20)

It is worth noting that when 0 < x ≤ 2, the McLaughlin

series of ln (1 + (x− 1)) holds and successfully converges to

ln (1 + (x− 1)). Therefore, we assume 0 < x ≤ 2 in this

paper.1Substituting (20) into
∫

x
p (x) x ln (x) dx, we can have

∫

x

p (x)x (ln (x)) dx

=
∞
∑

k=1

(−1)
k−1

k

∫

x

p (x) x(x− 1)kdx

= −1 + E [x] +

∞
∑

k=2

(−1)
k

k (k − 1)
E
[

(x− 1)
k
]

= −1 + E [x] +

∞
∑

k=2

k
∑

m=0

(−1)mC (k,m)

k (k − 1)
E [xm], (21)

where C (·, ·) is the binomial coefficient and E [xm] denotes

the m-th moment. According to the description in [11], E [xm]
for the truncated Gaussian distribution can be calculated as:

1This assumption can easily hold for the considered system. For a truncated

Gaussian random variable, its product with a constant still obeys a truncated

Gaussian distribution. For example, when x ∼ N (µ, σ2|x ∈ [a, b]), we have

qx ∼ N (qµ, (qσ)2|qx ∈ [qa, qb]) for any possible q [11]. Herein, the value

range of x can be adjusted via q.
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E [xm] =

m
∑

i=0

C (m, i) σ̄iµ̄m−iLi, (22)

L0 = 1

L1 = − φ(0,1;β)−φ(0,1;α)
Φ(0,1;β)−Φ(0,1;α)

Li = −βi−1φ(0,1;β)−αi−1φ(0,1;α)
Φ(0,1;β)−Φ(0,1;α) + (i− 1)Li−2

. (23)

Finally, the limit of the continuous-time MIR in (18) can be

numerically expressed as

lim
∆t→0

I(X ;Y )

∆t
=gyn−1,yn

( ∞
∑

k=2

k
∑

m=0

(−1)
m
C (k,m)

k (k − 1)
E [xm]

−E [x] ln
E [x]

e
− 1

)

. (24)

C. Bounds for lim
∆t→0

I(X;Y )
∆t

In this subsection, we will provide lower and upper bounds

to estimate the possible range of the continuous-time MIR. It

is clear from (18) that
(∫

x
p (x) x ln (x) dx−µ lnµ

)

is a Jensen

gap of x ln (x). According to the description in [12], we can

calculate a bound for the considered Jensen gap. First, we

define f (x) = x ln (x). Next, assuming that E|x− µ|s < ∞
holds for s = 2m,m = 1, 2, 3 . . . and f (x) is a (s+ 1)-times

differentiable function on ∀x ∈ (a, b), we further have

h(s)(x;µ) =
f(x)− f(µ)

(x− µ)s
−

s−1
∑

i=1

f (i)(µ)

i!(x− µ)
s−i

, (25)

where f (i)(x) = di

dxi f(x). Based on Theorem 2.1 in [12], we

have

E[f (x)]−f (E [x])≥
s−1
∑

i=1

ri + inf
x∈(a,b)

{h(s)(x;µ)}µs

E[f (x)]−f (E [x])≤
s−1
∑

i=1

ri + sup
x∈(a,b)

{h(s)(x;µ)}µs

, (26)

where ri =
µi

i! f
(i)(µ) and µi = E[x− µ]i is the i-th central

moment of x with i = 1, 2, . . . , s, which can be solved via

(22). Besides, it is obvious from Lemma 2.3 of [12] that if

f (s−1)(x) is strictly convex (concave), h(s)(x;µ) strictly in-

creases (decreases) with respect to x. Assuming that f (s−1)(x)
is concave for ∀x ∈ (a, b), (26) can be re-written as

E[f (x)]− f (E [x]) ≥
s−1
∑

i=1

ri (µ) + h(s)(b;µ)µs

E[f (x)]− f (E [x]) ≤
s−1
∑

i=1

ri (µ) + h(s)(a;µ)µs

. (27)

Following the example given in [12], in this paper, we consider

s = 2 and s = 4 to derive the bounds for the target MIR.

1) s = 2: From the second derivative of f (1) (x) with

respect to x, i.e., f (3)(x) = − 1
x2 , it is clear that f (1) (x)

is concave. Therefore, h(2) (x;µ) is monotonically decreasing

with respect to x. Based on the aforementioned, (26) can be

rewritten as

E[f (x)]−f (E [x])≥
{

b ln b−u lnu
(b−u)2

− 1+lnu
b−u

}

σ2

E[f (x)]−f (E [x])≤
{

a ln a−u lnu

(a−u)2
− 1+lnu

a−u

}

σ2
. (28)

Substituting (28) into (18) yields

lim
∆t→0

I(X;Y )
∆t

≥gyn−1,yn

{

b ln b−u lnu

(b−u)2
− 1+lnu

b−u

}

σ2

lim
∆t→0

I(X;Y )
∆t

≤gyn−1,yn

{

a ln a−u lnu
(a−u)2

− 1+lnu
a−u

}

σ2
. (29)

2) s = 4: Similarly, h(4) (x;µ) is monotonically decreasing

with respect to x, due to f (3)(x) = − 6
x4 < 0 for ∀x ∈ (a, b).

Here, (26) can be rewritten as

E[f (x)]− f (E [x]) ≥ σ2

2µ − µ3

6µ2 + h(4)(b;µ)µ4

E[f (x)]− f (E [x]) ≤ σ2

2µ − µ3

6µ2 + h(4)(a;µ)µ4

. (30)

Here, the bounds for lim
∆t→0

I(X;Y )
∆t

can be obtained by substi-

tuting (30) into (18).

Remark: Note that the derivation in Section III is valid for

all Q, when the IID input x follows any possible distribution

within the range of (0, 2]. Therefore, we conclude that all MIR

expressions derived in this paper can be extended to arbitrary

signal transduction systems under the above condition.

IV. NUMERICAL RESULTS AND ANALYSIS

In this section, we employ the ChR2 receptor and the ACh

receptor as examples in our analysis, where their parameters

have been listed in Table I and Table II of [8], respectively.

Moreover, for analysis, we adjust the input range for these two

receptors as x ∈
[

10−5, 2
]

and x ∈
[

2× 10−2, 2
]

.

Fig. 2 shows the continuous-time MIR as well as the

corresponding numerical solution and bounds for the ChR2 re-

ceptor. For clarity, we employ µ̄ and σ̄ as variables to study the

MIR when defining x ∼ N
(

µ̄, σ̄2
)

and x
∣

∣x ∈
[

10−5, 2
]

∼
N
(

µ, σ2
)

. One can easily observe from Fig. 2 that the MIR

can achieve good performance when x with a small value holds

a sizable proportion of all inputs, corroborating the results

described in [8]. Further, it can be determined from Fig. 2

that the MIR and its approximately numerical counterparts can

accurately match when x is concentrated around large values,

and the accuracy performance is proportional to k. Moreover,

we can find that the bounds are gradually tighter as s goes

large, while the calculation complexity is also increasing.

Specifically, when s = 4, the derived bounds can provide

a relatively narrow range to estimate the exact MIR. Similar

numerical results are attained for the ACh receptor, when vary-

ing µ̄ or σ̄. In summary, the derived numerical solution and

bounds for the MIR can give an accurate approximation with

low complexity, when obtaining the exact MIR is challenging.

Fig. 3 depicts the MIR and its bounds when simultaneously

considering µ̄ and σ̄ for the ACh receptor. Particularly, given

the high calculation complexity from the derived bounds

with s = 4, its curves have been removed for the ACh

receptor. By comparing Fig. 3(a) and Figs. 3(b)-3(c), we can

discover that the trends of the MIR and its bounds near-

perfectly match, especially for the capacity-achieving values

of µ̄ and σ̄. Thus, the derived bounds can provide a possible

range for lim
∆t→0

I(X;Y )
∆t

, while predicting its trend with varying

parameters. For the receptor with a simple input distribution

model, the input distribution reaching the capacity can be

approximately calculated via (29) to guide the system design.
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(b) µ̄ = 1

Fig. 2. Numerical verification for the ChR2 receptor: the approximately numerical solution and bounds for lim
∆t→0

I(X;Y )
∆t

, where it is assumed that the input

x follows the truncated Gaussian distribution with x ∈
[

10−5, 2
]

.

(a) MIR (b) Upper bound (c) Lower bound

Fig. 3. Numerical verification for the ACh receptor: the lower and upper bounds for lim
∆t→0

I(X;Y )
∆t

, where it is assumed that the input x follows the truncated

Gaussian distribution with x ∈
[

2× 10−2, 2
]

and s = 2.

V. CONCLUSION

This paper brings new insights into the information theory

analysis for the signal transduction channels. Specifically, we

first derived an asymptotic continuous-time MIR for the signal

transduction channel with the IID Gaussian input. To improve

the practicality, the approximate numerical expression for the

continuous-time MIR was given. Meanwhile, its lower and

upper bounds for the considered MIR were deduced in closed-

form. Finally, simulation results with the ChR2 and ACh

receptors validated our analysis.
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