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Hybrid Active-Passive IRS Assisted Energy-Efficient
Wireless Communication

Qiaoyan Peng, Qingqing Wu, Guangji Chen, Ruiqi Liu, Shaodan Ma, Wen Chen

Abstract—Deploying active reflecting elements at the intelligent
reflecting surface (IRS) increases signal amplification capability
but incurs higher power consumption. Therefore, it remains a
challenging and open problem to determine the optimal number
of active/passive elements for maximizing energy efficiency (EE).
To answer this question, we consider a hybrid active-passive IRS
(H-IRS) assisted wireless communication system, where the H-IRS
consists of both active and passive reflecting elements. Specifically,
we study the optimization of the number of active/passive elements
at the H-IRS to maximize EE. To this end, we first derive the
closed-form expression for a near-optimal solution under the line-
of-sight (LoS) channel case and obtain its optimal solution under
the Rayleigh fading channel case. Then, an efficient algorithm is
employed to obtain a high-quality sub-optimal solution for EE
maximization under the general Rician channel case. Simulation
results demonstrate the effectiveness of the H-IRS for maximizing
EE under different Rician factors and IRS locations.

Index Terms—Intelligent reflecting surface (IRS), hybrid active-
passive IRS (H-IRS), energy efficiency (EE), the number of
active/passive elements.

I. INTRODUCTION

Intelligent reflective surface (IRS) has emerged as a revolu-
tion for future sixth-generation (6G) networks, which can be
generally classified into two categories, i.e., the fully passive
IRS and the fully active IRS [1]–[3]. Specifically, the fully
passive IRS can provide an asymptotic squared-power beam-
forming gain with low hardware cost [4], whereas it suffers
from the “multiplicative fading” effect [5], [6]. To overcome this
issue, the fully active IRS has been proposed and investigated in
[7]. Since the fully active IRS requires refection-type amplifiers
for each element, its total power consumption is much higher
than its passive counterpart of the same size [8]. In summary,
previous studies have shown that the conventional IRSs, i.e., the
fully passive and active IRS, have complementary advantages.

A hybrid active-passive IRS (H-IRS) composed of both pas-
sive and active reflecting elements, has been recently proposed
for further improving the performance beyond what can be
achieved by using an active or passive IRS alone [9]. The
motivation for the need for H-IRS arises from the advantages
and limitations of the conventional IRSs. As such, the H-IRS is a
promising solution for enhancing various wireless systems, such
as integrated sensing and communication (ISAC) systems [10]
and unmanned aerial vehicle (UAV) communication [11]. In
[9], the transmit precoder and H-IRS parameters were designed
to maximize the sum rate of a multi-user system. The optimal
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Fig. 1. An H-IRS assisted wireless communication system.

elements allocation of the H-IRS for spectral efficiency (SE)
maximization was explored in [12] under the given deployment
budget. In addition to SE, energy efficiency (EE) is also a major
requirement of future 6G networks, which characterizes the fun-
damental trade-off between SE and system power consumption.
Note that active elements introduce the new function of signal
amplification, which is beneficial for improving SE, while they
also require higher power consumption and hardware cost. As
such, the operating region for the active IRS outperforms the
passive IRS regarding EE, is not clear. Moreover, the H-IRS
has the potential to balance the SE-cost trade-off by flexibly
determining the number of active/passive elements. To this end,
how to determine the number of active/passive elements for EE
maximization is critical to make the H-IRS feasible for practical
scenarios.

Motivated by the above considerations, we investigate the EE
maximization problem in an H-IRS assisted wireless commu-
nication system. Specifically, we aim to determine the number
of active/passive elements at the H-IRS to balance the trade-off
between the power consumption incurred by active elements
and the ergodic SE. The main contributions of this letter are
summarized as follows: 1) To obtain useful insights, we first
consider two special cases, i.e., the line-of-sight (LoS) and
Rayleigh fading channel cases. Under the LoS channel case, we
derive the closed-form expression for a near-optimal solution.
Furthermore, we show that at most one active element is
required under the Rayleigh fading channel case. 2) We then
propose an efficient algorithm to maximize the EE under the Ri-
cian fading channel case. 3) Our numerical results demonstrate
the EE of H-IRS with the optimized number of active/passive
elements outperforms that of the fully active/passive IRSs under
different Rician factors and IRS locations.

Notation: For a vector x, ∥x∥, [x]n and arg(x) denote its
Euclidean norm, n-th entry and phase vector, respectively. ⊗
denotes the Kronecker product. The distribution of a circularly
symmetric complex Gaussian (CSCG) random variable with
mean µ and variance σ2 is denoted by CN (µ, σ2). ⌈·⌉ and ⌊·⌋
denote the ceiling and floor operations, respectively. argmax(·)
denotes the arguments at which the function value is maximized.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider an H-IRS assisted wireless
communication system composed of a single-antenna base
station (BS), a cluster of single-antenna users and an H-IRS with
Npas passive elements and Nact active elements. To guarantee
the overall system performance, we take the performance of the
worst-case user into account.

We assume that the direct links between the BS and the
users are blocked due to dense obstacles and IRS involved
links follow the practical Rician fading model similar to [8],
[12]. The Rician fading model is able to capture the gener-
alized channel environment with different LoS and non-LoS
(NLoS) components by adjusting the Rician factor. As such,
the equivalent baseband channel from the BS to the active
IRS sub-surface is modeled as hact

BI =
√

K1/(K1+1)h̄act
BI +√

1/(K1+1)h̃act
BI , where K1 denotes the corresponding Rician

fading factor. Specifically, the LoS component is expressed
as h̄act

BI = βBIar(θ
r
BI, ϑ

r
BI, Nact), where ar(θ

r
BI,ϑ

r
BI,Nact) =

u( 2dI
λ sin(θr

BI)sin(ϑ
r
BI),Nx)⊗u( 2dI

λ cos (ϑr
BI),Ny), N = NxNy ,

and u(υ,M) = [1, . . . , e−(M−1)jπυ]T . dI, λ and β2
BI denote

the element spacing of active elements, the wavelength and the
path loss, respectively. θrBI and ϑr

BI are the azimuth and elevation
angles of arrival at the IRS, respectively. The NLoS component
is given by [h̃act

BI ]n∼CN (0, β2
BI),∀n∈Nact≜ {1, · · · , Nact}. The

equivalent baseband channel from the active IRS sub-surface to
the worst-case user is modeled as hact

IU =
√
K2/(K2+1)h̄act

IU +√
1/(K2+1)h̃act

IU with the LoS component h̄act
IU ∈ CNact×1, the

NLoS component h̃act
IU ∈ CNact×1 and the corresponding Rician

fading factor K2. The equivalent baseband channel from the
BS to the passive IRS sub-surface and from the passive IRS
sub-surface to the worst-case user are denoted by hpas

BI ∈ CNpas×1

and hpas
IU ∈ CNpas×1, which are defined similarly as hact

BI and hact
IU .

Let Ψpas ≜ diag(ejφ
pas
1 , · · · , ejφ

pas
Npas ) denote the reflection

matrix of the passive sub-surface, where φpas
n represents the

corresponding phase shift with n ∈ Npas
∆
= {1, · · · , Npas}.

The reflection matrix of the active sub-surface is denoted
by Ψact ≜ AactΦact, where Aact ≜ diag (α1, · · · , αNact)

and Φact ≜ diag(ejφ
act
1 , · · · , ejφ

act
Nact ) denote its reflection am-

plification matrix and phase-shift matrix, respectively, with
the amplification factor αn and phase shift φact

n , n ∈ Nact.
Then, the signal received at the worst-case user is given by
y= (hact

IU )
HΨacthact

BI s+(hpas
IU )HΨpashpas

BI s +(hact
IU )

HΨactnr +n0,
where s ∈ C denotes the transmitted data, which satisfies
E{|s|2} = PB with PB denoting the transmit power of the
BS. nr ∼ CN (0Nact , σ

2
r INact) is the thermal noise introduced

by active elements with the amplification noise power σ2
r , and

n0 ∼ CN(0, σ2
0) is the additive white Gaussian noise (AWGN).

Accordingly, the signal-to-noise-ratio (SNR) of the worst-case
user is expressed as

γ =
PB|(hact

IU )
H
Ψacthact

BI + (hpas
IU )

H
Ψpashpas

BI |
2

σ2
r ∥(hact

IU )
H
Ψact∥

2
+ σ2

0

. (1)

As such, the ergodic achievable rate is given by

R = E {log2 (1 + γ)} . (2)

The average power consumption of the passive elements is
given by Ppas = NpasPc [6], where Pc represents the switch and
control circuit power consumption at each reflecting element.
The average power consumption of the active elements is given

by Pact = Nact(PDC + Pc)+ ξE{Pout} = Nact(PDC + Pc)+ ξPI,
where ξ is the inverse of energy conversion coefficient and PDC
is the DC biasing power consumption at each active element [6].
Pout = PB∥Ψacthact

BI ∥
2
+σ2

r ∥Ψact∥2 denotes the output power of
the active elements, which satisfies E{Pout} = PI. As such, the
average total power consumption is given by [13]

Ptotal = Ppas + Pact + PBS + ςPB, (3)

where ς and PBS are the inverse of energy conversion coefficient
and the dissipated power consumed at the BS, respectively.

We maximize the ergordic EE of the worst-case user by
optimizing the number of active and passive elements, Nact
and Npas, the IRS phase shifts, {Φact , Ψpas}, and the active-
elements amplification matrix Aact, which is defined as EE =
R/Ptotal. Given Aact, Nact and Npas, i.e., the total power con-
sumption is fixed, the EE maximization problem is equivalent to
the SE maximization problem in [12]. Accordingly, the optimal
IRS phase shifts can be expressed as [12]

φact
n = arg

([
h̄act

IU

]
n

)
− arg

([
h̄act

BI

]
n

)
,∀n ∈ Nact, (4)

φpas
n = arg

([
h̄pas

IU

]
n

)
− arg

([
h̄pas

BI

]
n

)
,∀n ∈ Npas. (5)

Similarly, given Φact, Ψpas, Nact and Npas, the optimal amplifi-
cation factor for the n-th active element is expressed as [12]

αn = α∗ ≜
√
PI/ (Nact(PBβ2

BI + σ2
r )),∀n ∈ Nact. (6)

Given Φact, Ψpas, Aact, the ergodic SE can be expressed

as R̃ = log2(1+
PBβ

2
BIβ

2
IU(γ1(

√
AsumNact+Npas)

2
+γ2(Asum+Npas))

Asumσ2
r β

2
IU+σ

2
0

) [12].
Then, the ergodic EE is given by

η(Nact, Npas)=R̃/Ptotal

=
log2(1+

PBβ
2
BIβ

2
IU(γ1(

√
AsumNact+Npas)

2
+γ2(Asum+Npas))

Asumσ2
r β

2
IU+σ

2
0

)

NpasPc+Nact(PDC+Pc)+ξIR+(Nact)PI+PBS+ςPB
, (7)

where Asum ≜ IR+(Nact)PI/(PBβ
2
BI + σ2

r ), and

γ1 ≜
K1K2

(K1 + 1) (K2 + 1)
, γ2 ≜

K1 +K2 + 1

(K1 + 1) (K2 + 1)
. (8)

The indicator function IR+ (Nact) = 1 if Nact>0, otherwise
IR+ (Nact) = 0 .

Our objective is to maximize the ergodic EE of the worst-case
user by optimizing the number of active/passive elements.
Under the Rician fading channel case, the optimization problem
is formulated as

max
Nact,Npas

η (Nact, Npas) s.t. Nact ∈ N, Npas ∈ N. (9)

Problem (9) is intractable because the discrete integer variables
{Nact, Npas} are coupled in the non-concave objective function.
When Npas (Nact) is zero, problem (9) is reduced to the
optimization problem with the fully active (passive) IRS. Thus,
the proposed model generalizes the fully active and passive IRSs
as two special cases.

III. PROPOSED SOLUTIONS

In this section, we first investigate the active/passive elements
allocation problem via two special cases, i.e., the LoS and
Rayleigh fading channel cases, to draw important insights.
In particular, the corresponding operating regions for active,
passive, and hybrid IRS for EE maximization are characterized.
Then, we propose an efficient algorithm to obtain its high-
quality sub-optimal solution.
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A. LoS Channel Case
We first consider the LoS channel case with K1 → ∞ and

K2 → ∞, which implies γ1 → 1 and γ2 → 0 from (8). By
relaxing the integer values Nact and Npas into the continuous
values xact and xpas, the EE is given by

ηL(xact, xpas)=
log2(1 +

PBβ
2
BIβ

2
IU(

√
Asumxact+xpas)

2)

Asumσ2
r β2

IU+σ2
0)

xpasPc+xact(PDC+Pc)+ξIR+(xact)PI+PBS+ςPB
. (10)

Then, problem (9) is transformed to

max
xact,xpas

ηL (xact, xpas) s.t. xact ∈ R, xpas ∈ R. (11)

We solve problem (11) by considering three cases, namely
the fully active, the fully passive, and the hybrid IRSs. By
comparing the achievable EEs of the three cases, we obtain
its near-optimal solution to problem (11).

1) Fully Active IRS with xpas = 0 and xact>0: We de-
fine ηa (xact) = log2(1 + β0xact)/(β1xact + β2) and reformulate
problem (11) as

max
xact

ηa (xact) s.t. xact ∈ R+, (12)

where β0 = PBβ
2
BIβ

2
IU/(σ

2
r β

2
IU + σ2

0/A
′

sum), β1 = PDC + Pc,
β2 = ξPI + PBS + ςPB and A

′

sum = PI/(PBβ
2
BI + σ2

r ).

Proposition 1. ηa(xact) first increases with xact ∈ (0,x∗
act] and

then decreases with xact ∈ [x∗
act,∞). The optimal solution to

problem (12) is given by x∗
act =−1/β0((β1−β0β2)/(β1L)+1),

where L = W(e−1(β0β2 − β1)/β1) with the Lambert W
function W(·).

Proof: The first-order derivative of ηa(xact) with respect to
(w.r.t.) xact is given by d(ηa(xact))

d(xact)
= d1(xact)

ln 2(β1xact+β2)
2(1+β0xact)

,
where

d1(xact)=β0(β1xact+β2)−(1+β0xact)β1 ln(1+β0xact). (13)

Since d(d1(xact))
d(xact)

<0, d1(xact) monotonically decreases
with xact. There exists one and only one root
xrt

act = −1/β0((β1 − β0β2)/(β1L) + 1) for (13). When
0<xact<xrt

act, we have d1(xact)>0 and d(ηa(xact))
d(xact)

>0, i.e.,
ηa(xact) monotonically increases with xact. When xact>xrt

act, we
have d1(xact)<0 and d(ηa(xact))

d(xact)
<0, i.e., ηa(xact) monotonically

decreases with xact. Accordingly, ηa(xact) is maximized at
x∗

act = xrt
act, which completes the proof. ■

2) Fully Passive IRS with xact = 0 and xpas>0:
Under the practical scenarios, the number of IRS elements
is very large, i.e., xpas ≫ 1. We define ηp (xpas) =
log2 (β3xpas)/(β4xpas + β5) and reformulate problem (11) as

max
xpas

ηp (xpas) s.t. xpas ∈ R+, (14)

where β3 =
√
PBβ2

BIβ
2
IU/σ

2
0 , β4 =

1
2Pc and β5 =

1
2 (PBS+ςPB).

Then, we have the following results.

Proposition 2. ηp(xpas) first increases with xpas ∈ (0, x∗
pas]

and then decreases with xpas ∈ [x∗
pas,∞). The optimal solu-

tion to problem (14) is given by x∗
pas = β5/(β4Q), where

Q = ω(−ln(β4/(β3β5))−1) with the Wright omega function
ω(·).

Proof: The first-order derivative of ηp (xpas) w.r.t. xpas is given
by d(ηp(xpas))

d(xpas)
=

d2(xpas)

ln 2(β4xpas+β5)
2β3xpas

, where

d2 (xpas) = β3 (β4xpas + β5)− β4β3xpas ln (β3xpas) . (15)

Since d(d2(xpas))
d(xpas)

<0, d2(xpas) monotonically decreases with xpas.
There must exist one and only one root xrt

pas=β5/(β4Q) for (15).
When 0<xpas<xrt

pas, we have d2(xpas)>0 and d(ηp(xpas))
d(xpas)

>0, i.e.,
ηp(xpas) monotonically increases with xpas. When xpas>xrt

pas, we
have d2(xpas)<0 and d(ηp(xpas))

d(xpas)
<0, i.e., ηp(xpas) monotonically

decreases with xpas. Accordingly, ηp(xpas) is maximized at
x∗

pas = xrt
pas, which completes the proof. ■

3) H-IRS with xact>0 and xpas>0: We assume that
g20(

√
A′

sumNact +Npas)
2 ≫ 1 and define ηh(xact, xpas) =

2log2(g0(
√
A′

sumxact + xpas))/(xpasPc + β1xact + β2), where
g0 =

√
PBβ2

BIβ
2
IU/(A

′
sumσ

2
r β

2
IU + σ2

0). Then, problem (11) is
reformulated as

max
xact,xpas

ηh (xact, xpas) s.t. xact ∈ R+, xpas ∈ R+. (16)

Proposition 3. For any fixed xpas, ηh(xact, xpas) is a
quasi-concave function w.r.t. xact. Moreover, for any fixed xact,
ηh(xact, xpas) is a quasi-concave function w.r.t. xpas. As such,
the optimal solution to problem (16) is given by

x∗
h-a = P 2

c A
′

sum/(2β1)
2
, x∗

h-p = (g2 − (1 +G) g1) /G, (17)

where g1 = PcA
′

sum/(2β1), g2 = g1/2 + β2/Pc and G =
W(e−1(g0g2 − g0g1)).

Proof: For any fixed xpas, denote the upper contour set
of ηh(xact, xpas) as Sα′ = {xact∈R+|ηh(xact, xpas)≥α

′}. Sα′

is equivalent to Sα′ ={xact ∈ R+|α′
Uα′(xact)−Vα′(xact) ≤ 0},

where Uα′(xact) = xpasPc + β1xact + β2 and Vα′(xact) =
2log2(g0(

√
A′

sumxact+xpas)). Since Uα′(xact) is linear and
Vα′(xact) is concave, Sα′ is convex for any α

′ ∈ R. For any
fixed xact, denote the upper contour set of ηh(xact, xpas) as
Sβ′ ={xpas∈R+|ηh(xact, xpas) ≥ β

′}. Similarly, Sβ′ is convex
for any β

′∈R. ηh(xact, xpas) is quasi-concave if its upper contour
set is convex. We set the partial derivative of ηh(xact, xpas) w.r.t.
xact and xpas to zero, i.e.,

g0(Pcxpas + β1xact + β2)

−Pc(g0
√

A
′
sumxact + xpas) ln(g0

√
A

′
sumxact + xpas)=0,

g0
√

A
′
sum(Pcxpas +β1xact + β2)

−2β1
√
xact(g0

√
A

′
sumxact+xpas)ln(g0

√
A

′
sumxact+xpas)=0.

(18)

For any xpas, the root xrt
act is unique. Given xrt

act, there
exists one and only one root xrt

pas. The partial derivative

of ηLoS(x
rt
act, xpas) w.r.t. xpas is given by ∂(ηLoS(x

rt
act,xpas))

∂xpas
=

d3(xpas)

2 ln 2(g0g1+g0xpas)(Pcxpas+Pcg1/2+β2)
2 , where

d3(xpas) =g0(Pcxpas + Pcg1/2 + β2)

− Pc(g0g1 + g0xpas) ln(g0g1 + g0xpas). (19)

Since d(d3(xpas))
d(xpas)

<0, d3(xpas) monotonically decreases with
xpas. If g0(Pcg1/4 + β2) − (Pc/2)(g0g1) ln(g0g1)<0, we have
d3(xpas)<0,∀xpas, i.e., ηLoS(x

rt
act, xpas) monotonically decreases

with xpas. Accordingly, ηLoS(x
rt
act, xpas) is maximized at x∗

pas = 0.
Otherwise, there must exist one and only one root xrt

pas =
(g2 − (1 +G)g1)/G for (19). When 0 ≤ xpas<xrt

pas, we have

d3(xpas)>0 and d(ηLoS(x
rt
act,xpas))

d(xpas)
>0, i.e., ηLoS(x

rt
act, xpas) monoton-

ically increases with xpas. When xpas>xrt
pas, we have d3(xpas)<0

and d(ηLoS(x
rt
act,xpas))

d(xpas)
<0, i.e., ηLoS(x

rt
act, xpas) monotonically de-

creases with xpas. Accordingly, ηLoS(x
rt
act, xpas) is maximized at

x∗
pas = xrt

pas. In this case, ηh(xact, xpas) is maximized if and only
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N∗

pas = 0, N∗
act = argmax

xact

ηa (xact) , if η∗
LoS = η∗

act = max
xact

ηa (xact) , xact ∈ {⌊x∗
act⌋, ⌈x∗

act⌉} ,

N∗
act = 0, N∗

pas = argmax
xpas

ηp (xpas) , if η∗
LoS = η∗

pas = max
xpas

ηp (xpas) , xpas ∈
{
⌊x∗

pas⌋, ⌈x∗
pas⌉

}
,

N∗
act,N

∗
pas=argmax

xact,xpas

ηh(xact,xpas), if η∗
LoS=η

∗
hyb=max

xact,xpas
ηh(xact,xpas), (xact,xpas)∈{(⌈x∗

h-a⌉,⌈x∗
h-p⌉),(⌈x∗

h-a⌉,⌊x∗
h-p⌋),(⌊x∗

h-a⌋,⌈x∗
h-p⌉),(⌊x∗

h-a⌋,⌊x∗
h-p⌋)}.

(20)

if xact = xrt
act = x∗

h-a and xpas = xrt
pas = x∗

h-p, which are expressed
in (17). As such, the proof is completed. ■

Under the LoS channel case, the optimized number of ac-
tive/passive elements and the architecture selection for the IRS
(i.e., passive, active or hybrid) are given in (20) on the top of this
page, where η∗LoS = max(η∗act, η

∗
pas, η

∗
hyb). η∗hyb>max(η∗act, η

∗
pas)

is the operating region for the EE of H-IRS that outperforms
that of the fully active/passive IRSs, where it is determined
by the system parameters, i.e., the IRS location, the power
consumption, etc. The maximum EE can be obtained at the IRS
by flexibly determining the number of active/passive elements
according to the system parameters.

B. Rayleigh Fading Channel Case

We next study the Rayleigh fading channel case with K1 =
K2 = 0, which implies γ1 = 0 and γ2 = 1 from (8). The EE
under the Rayleigh fading channel case is given by

ηRay(Nact,Npas)=
log2(1+PBβ

2
BIβ

2
IU(Asum+Npas)/(Asumσ2

r β
2
IU+σ

2
0))

NpasPc+Nact(PDC+Pc)+ξIR+(Nact)PI+PBS+ςPB
. (21)

Then, problem (9) is reformulated as

max
Nact,Npas

ηRay (Nact, Npas) s.t. Nact ∈ N, Npas ∈ N. (22)

We solve problem (22) via two cases, i.e., Nact = 0 and
Nact>0. First, we consider the case of Nact = 0 and define
η1(Np1)=log2(1+β

2
3Np1)/(Np1Pc+PBS+ςPB). Then, problem (22)

is transformed to

max
Np1

η1(Np1) s.t. Np1 ∈ N. (23)

By relaxing the integer value Np1 into the continuous value xp1,
problem (23) is converted to a convex problem. The optimal
solution is given by x∗

p1 =−1/β2
3((Pc−2β2

3β5)/(PcJ)+1), where
J = W(e−1(2β2

3β5−Pc)/Pc). The optimal solution to problem
(23) is given by

N∗
p1 = argmax

xp1

η1(xp1), xp1 ∈
{
⌊x∗

p1⌋, ⌈x∗
p1⌉

}
. (24)

Second, for Nact>0, we obtain that N∗
act = 1 because

ηRay(Nact, Npas) monotonically decreases with Nact. We define
η2(Np2) = log2(1+β0(1+A

′

sumNp2))/(Np2Pc+β6) and refor-
mulate problem (22) as

max
Np2

η2(Np2) s.t. Np2 ∈ N, (25)

where β6 = β1 + β2. By relaxing the integer value Np2
into the continuous value xp2, problem (25) is converted to a
convex problem. The optimal solution is given by x∗

p2 = 0

if β0β6/A
′

sum − Pc(1 + β0) ln(1 + β0)<0; otherwise, x∗
p2 =

A
′

sum/β0((β0β6/A
′

sum − (1+β0)Pc)/(PcL
′
)− (1+β0)), where

L
′
=W(e−1(β0β6/A

′

sum−(1+β0)Pc)/Pc). The optimal solution
to problem (25) is given by

N∗
p2 = argmax

xp2

η2 (xp2), xp2 ∈
{
⌊x∗

p2⌋, ⌈x∗
p2⌉

}
. (26)

Based on the previous discussions, the optimal solution to
problem (22) is expressed as{

N∗
act = 0, N∗

pas = N∗
p1,

N∗
act = 1, N∗

pas = N∗
p2,

η∗p1 ≥ η∗p2,

Otherwise,
(27)

where η∗p1 = η1(N
∗
p1) and η∗p2 = η2(N

∗
p2). It is observed from

(27) that at most one active element is required under the
Rayleigh fading channel case. In this case, the system cannot
attain beamforming gain since the design of IRS phase shifts
is based only on the LoS components. Moreover, the active
elements also cannot reap aperture gain due to the amplified
power constraint. Therefore, the ergodic rate is independent of
Nact and thus deploying more active elements only results in
higher power consumption rather than the improvement of rate,
which leads to the fact that at most one active element is needed.
By contrast, the ergodic rate still scales linearly w.r.t. Npas
benefited from the aperture gain provided by passive elements.

C. Rician Fading Channel Case

Finally, we study the general Rician fading channel case.
Since the discrete integer variables {Nact, Npas} are coupled in
the objective function, problem (9) is a non-convex optimization
problem, which is challenging to be solved optimally. To
overcome this issue, we obtain the following proposition.

Proposition 4. For any fixed xpas, η (xact, xpas) is a
quasi-concave function w.r.t. xact ∈ R+, where xact and xpas are
the continuous values of Nact and Npas with integer relaxation,
respectively.

Proof: For any fixed xpas, denote the upper contour set
of η(xact, xpas) as Sτ = {xact ∈ R+|η(xact, xpas) ≥ τ}. Sτ

is equivalent to Sτ = {xact ∈ R+|τUτ (xact)−Vτ (xact) ≤ 0},
where Vτ (xact) = log2(1 +PBβ

2
BIβ

2
IU(γ1(

√
Asumxact+xpas)

2 +
γ2(Asum + xpas))/(Asumσ

2
r β

2
IU+σ2

0)) and Uτ (xact) =
xpasPc+xactβ1+ξPI+2β5. Since Vτ(xact) is concave and
Uτ(xact) is linear, Sτ is convex for any τ ∈ R. As such, the
proof is completed. ■

Based on Proposition 4, we can apply an efficient algorithm
to obtain a high-quality sub-optimal solution under the Rician
fading channel case. Given xpas, we can obtain the optimal
solution x∗

act∈R+ by the Newton’s algorithm or x∗
act=0. Given

x∗
act, one stationary point of xpas can be obtained by adopting

the gradient ascent method. By updating xpas and xact iteratively
until the convergence is reached, one high-quality solution to
the original problem can be obtained.

IV. SIMULATION RESULTS

In this section, numerical results are provided to illustrate
the effectiveness of using the H-IRS to improve the ergodic
EE. The BS, the H-IRS and the worst-case user are located at
(0, 0) meter (m), (xIRS, 0) m, and (xIRS, 10) m, respectively.
For both the BS-IRS and IRS-user links, the Rician factors are
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Fig. 3. Comparison on EE and elements allocation of the H-IRS versus xIRS.

considered to be the same, i.e., K1 = K2 = K, the path-loss
factors are set to 2.2 and the signal attenuation at a reference
distance of 1 m is set to 30 dB. Other system parameters are
set as follows: σ2

r = σ2
0 =−80 dBm, PB = 20 dBm, PI =−15

dBm, PC = 1.5 dBm, PDC = 10 dBm, PBS = 30 dBm, and
ξ = ς = 1.1.

In Fig. 2a, we plot the ergodic EE of the worst-case user
versus Rician factor when xIRS = 40 m. It is observed that
the EE of H-IRS with the active/passive elements optimized by
the proposed method is close to that by the exhaustive search
algorithm, which outperforms that of the fully active/passive
IRS under different Rician factors. The reason is that the H-IRS
provides an additional degree of freedom for determining the
number of active/passive elements, thereby enabling a flexible
balance the trade-off between SE and power consumption. In
Fig. 2b, we plot the number of passive and active elements of
the H-IRS optimized by the proposed algorithm versus Rician
factor K. One can observe that the optimized Nact and Npas are
5 and 195, respectively when K = 15 dB, while the optimized
Nact is one and the optimized Npas is zero when K ≤ 10 dB,
which agrees with our analysis in Section III-B. Then, the EE of
the H-IRS is equal to that of the fully active IRS (see Fig. 2a).
In addition, it is observed that the required number of active
elements first increases and then decreases with the Rician
factor. This is because the received power scales proportionally
w.r.t. γ1N2

pas and thus increases significantly with Npas when K
is not very small, i.e., γ1 approaches 1. Benefiting from the high
passive beamforming gain in the LoS-dominated channel case,
the system tends to employ fewer active elements to reduce
power consumption, which is helpful for maximizing EE.

In Fig. 3a, we plot the ergodic EE of the worst-case user
versus xIRS when K = 15 dB. First, it is observed that the EE
of the three IRSs decrease with xIRS. Second, we observe that
the EE of the fully passive IRS decreases significantly and that
of the fully active IRS remains almost unchanged with xIRS.
The reason is that the fully passive IRS suffers from severe
path loss attenuation while the fully active IRS can amplify the
signal attenuated after the transmission via the BS-IRS link.
In Fig. 3b, we plot the number of passive and active elements
of the H-IRS optimized by the proposed algorithm versus the
IRS location xIRS. It is observed that the optimized Nact is
7 and the optimized Npas is 190 when xIRS = 50 m, while
the optimized Nact and Npas are 20 and 0, respectively when
xIRS ≥ 90 m. Then, the EE of the H-IRS is equal to that of the
fully active IRS (see Fig. 3a). In addition, it is observed that
the optimized number of active elements increases and that of
passive elements decreases with xIRS. It is because more active
elements should be deployed when the system suffers severe

path loss attenuation, thereby improving the EE.

V. CONCLUSION

This letter studied the elements allocation problem for
maximizing the ergodic EE in an H-IRS assisted wireless
communication system. We first derived the closed-form
expression for a near-optimal solution under the LoS channel
case and unveiled that at most one active element is required
under the Rayleigh channel case. Then, we proposed an
efficient algorithm under the general Rician fading channel case.
Simulation results demonstrated that the H-IRS is a promising
architecture for flexibly balancing the SE-cost trade-off. In
future work, it is worthy of further investigating the EE of
H-IRS assisted optical wireless networks.
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