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Abstract—We propose a distributed cooperative positioning
algorithm using the extended Kalman filter (EKF) based spatio-
temporal data fusion (STDF) for a wireless network composed
of sparsely distributed high-mobility nodes. Our algorithm first
makes a coarse estimation of the position and mobility state
of the nodes by using the prediction step of EKF. Then it
utilizes the coarse estimate as the prior of STDF that relies
on factor graph (FG), thus facilitates inferring a posteriori
distributions of the agents’ positions in a distributed manner. We
approximate the nonlinear terms of the messages passed on the
associated FG with high precision by exploiting the second-order
Taylor polynomial and obtain closed-form representations of each
message in the data fusion step, where temporal measurements
by imperfect hardware are considered additionally. In the third
stage, refinement of position estimate is performed by invoking
the update step of EKF. Simulation results and analysis show that
our EKF-STDF has a lower computational complexity than the
state-of-the-art EKF-based algorithms, while achieving an even
superior positioning performance in harsh environment.

Index Terms—Cooperative positioning, extended Kalman filter
(EKF), high mobility, sparsely distributed, wireless localization.

I. INTRODUCTION

THE location information of radio devices plays a crucial

role in many emerging applications relying on wireless

networks [1]. In harsh environments where the global naviga-

tion satellite system (GNSS) is denied, cooperative positioning

(CP) [2]–[7] is capable of providing the essential location

information by solving a parameter estimation problem, where

the wireless links between adjacent radio nodes are used to

exchange spatial and/or temporal information, such as ranging

measurements, angle of arrival [8], [9], and inertial measure-

ments. In particular, a class of distributed CP algorithms based

on the factor graph (FG) have attracted intense attention [1]–

[3], [6], [7], and they are actually specific adaptations of

the sum-product algorithm (SPA) [1]. In these algorithms,

FG enables calculating the marginal a posteriori probability

density functions (PDFs) more efficiently, and the use of FG

is more suitable for distributed implementations.
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In some practical wireless networks, the nodes whose po-

sitions are unknown move fast and are sparsely distributed.

However, the SPA-based algorithms ignore the mobility state

of the nodes in the modeling process, hence resulting in

increased positioning error in the high-mobility scenario over

time. Additionally, in wireless networks comprising sparsely

distributed nodes, the number of ranging measurements for

agents (i.e., the nodes to be localized) may be insufficient,

which inevitably leads to degraded positioning accuracy. To

achieve more accurate location estimation in mobile networks,

Huang et al. proposed a state-transition and observability

constrained extended Kalman filter (STOC-EKF) scheme [10],

which employed EKF to characterize the velocities of agents.

However, it approximates the nonlinear system model as a

linear model around selected linearization points, which in-

evitably degrades the positioning accuracy. In [11], the authors

proposed an SPA-aided CP scheme, dubbed SPA-EKF, which

utilized EKF to estimate the velocities of agents as the a priori

information. However, it requires a large number of samples to

approximate the nonlinear terms in the ranging measurements,

hence imposing a high computational complexity. The authors

of [12] proposed a graph neural network (GNN) enhanced

belief propagation (BP) scheme for network navigation. This

scheme refines the original messages propagated on FG by

information learned from data driven GNNs. However, it also

suffers from high complexity caused by massive particles

and iterative message computations. Furthermore, all the ap-

proaches of [10]–[12] ignored the temporal-domain internal

ranging measurements of agents, i.e., the distance traveled by

each agent during a given period.

Against the above background, we propose an EKF-based

spatio-temporal data fusion (STDF) algorithm for solving

the distributed CP problem in wireless networks composed

of sparsely distributed high-mobility nodes. This problem is

challenging and important for both commercial and military

applications. Our contributions are summarized as follows.

i) We develop a second-order Taylor polynomial (TP) based

parametric method to approximate the nonlinear terms of

both spatial and temporal messages passed on the FG. As a

beneficial result, closed-form representations for each type of

messages are derived, and our method enjoys a competitive

representation accuracy and a significantly reduced compu-

tational complexity than particle-based approaches. ii) We

develop a joint prediction and refinement framework based

on the integration of EKF and the second-order TP based

parametric STDF to estimate the mobility state information

http://arxiv.org/abs/2308.00419v1
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of nodes, which is beneficial not only for compensating

the lack of spatial ranging measurements caused by sparse

distribution of nodes, but also for improving the accuracy of

the prior knowledge used by STDF at each time slot. Thus,

the proposed EKF-STDF alleviates performance degradation

caused by the EKF-based model linearization and is more

suitable to distributed CP than the data fusion module of [11]

that relies on the original FG-free BP method. iii) Simulation

results demonstrate that the proposed EKF-STDF achieves a

significantly higher positioning accuracy than the schemes of

both [10] and [11] at an even lower computational complexity.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a mobile network comprising N agents and A

anchors in a GNSS-denied environment, and the transmission

time is slotted. We denote the set of anchors and the set of

particular agents from which agent i receives signals at time

slot t by At
i and Ut

i, respectively. In the two-dimensional (2D)

scenario1, the state vector of agent i can be described as sti =
[

(xt
i)

T
, (vt

i)
T
]T

, where (·)T
denotes the transpose operation,

xt
i , [xt

i, y
t
i ]

T and vt
i , [vti,x, v

t
i,y ]

T represent the position and

the velocity of agent i, respectively.

The noise-contaminated external ranging measurements ob-

tained by agent i from node j at time slot t is written as2

ztj→i = dtij + etj→i, (1)

where dtij is the Euclidean distance between agent i and node j

at time slot t, etj→i ∼ N
(

0, (σt
j→i)

2
)

represents the Gaussian

noise with zero-mean and variance (σt
j→i)

2, and j ∈ At
i ∪Ut

i.

In addition, we assume the error of internal measurement zti,int

obeys the Gaussian distribution with zero-mean and variance

(σt
i,int)

2. We denote all the noisy ranging measurements (both

external and internal) obtained by agent i at time slot t as zt
i .

Our goal is to estimate the positions of agent i given only

these noisy measurements, i.e. p (xt
i | z

t
i).

III. THE PROPOSED EKF-STDF ALGORITHM

The proposed EKF-STDF comprises three stages: 1) pre-

diction, 2) spatio-temporal data fusion, and 3) refinement.

A. Stage 1: Prediction

The prediction stage is based on the prediction step of EKF,

with the purpose of producing a coarse prediction concerning

the state of the agent at the current time slot.

Consider a state transition model of EKF for agent i as3

sti = Fst−1

i +wt
i , (2)

where F denotes the state transition matrix, satisfying

F =

[

I2 ∆TI2
02 I2

]

, (3)

1Our algorithm can be extended to the three-dimensional space, but for
convenience of presentation, in this paper we only discuss the 2D case.

2The scenario considered in this paper is different from that of our previous
work [6], where we studied CP for wireless networks composed of static
or slowly moving agents that operate in three-dimensional non-line-of-sight
(NLOS)/LOS mixed environments.

3Our EKF-STDF is not limited to any specific state transition model.

where I2 and 02 represent the identity matrix and the zero

matrix of dimension 2, respectively; ∆T is the duration of a

single time slot; and wt
i represents the state transition noise

that is modeled by the Gaussian vector with zero mean and

covariance matrix Qt
i . Then, the predictions about the mean

and the covariance of the state sti, relying on the a posteriori

estimate at time slot t− 1, are given by

ŝ
t|t−1

i,mean = F ŝ
t−1|t−1

i,mean , (4)

P̂
t|t−1

i = FP̂
t−1|t−1

i FT +Qt
i. (5)

Here, given observations up to and including at time t − 1,

(·)t−1|t−1 represents the a posteriori estimate at time t − 1,

and (·)t|t−1 represents the a priori estimate at time t, since

ŝ
t|t−1

i,mean and P̂
t|t−1

i are utilized by the data fusion stage as the

a priori distribution.

B. Stage 2: Spatio-temporal data fusion

We first factorize the a posteriori distribution of the position

concerning agent i at time slot t as

p
(

xt
i | z

t
i

)

∝ p
(

xt
i

)

p
(

zti,int|x
t
i,x

t−1

i

)

∏

j∈At
i
∪Ut

i

p
(

ztj→i|x
t
i,x

t
j

)

. (6)

The a priori distribution of xt
i, i.e., p(xt

i), is obtained in

Stage 1 upon assuming xt
i ∼ N (x̂t

i, R̂
t
i), where x̂t

i =

[x̂t
i, ŷ

t
i ] denotes the position components4 in ŝ

t|t−1

i,mean, R̂t
i =

diag
(

(σ̂t
i,x)

2, (σ̂t
i,y)

2
)

, while (σ̂t
i,x)

2 and (σ̂t
i,y)

2 are the

(1, 1)th and (2, 2)th elements of P̂
t|t−1

i , respectively. Then an

iterative SPA is run on the FG of p (xt
i | z

t
i), as depicted in

Fig. 15. Since the proposed EKF-STDF is fully distributed, let

us consider the belief about the x-component of the position

concerning agent i at time slot t and iteration l, i.e., bl(x
t
i),

as an example. It satisfies

bl(x
t
i) ∝ µft

i
→xt

i
µft

i,int
→xt

i

∏

j∈Ut
i
∪At

i

µl,φj→i→xt
i
, (7)

where we have µft
i
→xt

i
= p(xt

i) ∝ N
(

x̂t
i, (σ̂

t
i,x)

2
)

, µft
i,int

→xt
i

denotes the temporal message obtained by internal measure-

ments, and µl,φj→i→xt
i

represents the spatial messages passed

from factor φj→i to variable xt
i at iteration l, satisfying

µl,φj→i→xt
i
∝

∫∫∫

φj→ibl(x
t
j)bl(y

t
j)dx

t
jdy

t
jdy

t
i . (8)

In particular, when j = k ∈ At
i, in (8) we have bl(x

t
k) =

δ (xt
k − E{xt

k}), bl(y
t
k) = δ (ytk − E{ytk}), and the factor rep-

resenting the likelihood function of ztk→i, i.e., φk→i satisfies

φk→i =
1

√

2πσ2

k→i

exp

{

−

(

ztk→i − ‖xt
i − xt

k‖2
)2

2σ2

k→i

}

, (9)

where δ(·) is the Dirac delta function, E{·} denotes the

expectation, and ‖ · ‖2 represents the Euclidean norm. How-

ever, (8) involves integrals and it is difficult to obtain the

4The velocity components are not involved in the data fusion.
5For more details about how to create and represent an FG, see [7].
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Fig. 1. FG of p
(

x
t
i | z

t
i

)

, where agent j ∈ Ut
i , anchor k ∈ At

i , f t
i = p

(

x
t
i

)

,

f t
i,int

= p
(

zt
i,int

| xt−1

i ,xt
i

)

, and φj→i = p
(

ztj→i | x
t
i,x

t
j

)

.

closed-form expression due to the nonlinear function of xt
i,

i.e., ‖xt
i − xt

k‖2 of (9). To address this issue, ‖xt
i − xt

k‖2
is approximated by invoking the second-order TP, which is

different from the method used in [6], [7]. Upon substituting

bl(x
t
k), bl(y

t
k) and (9) into (8) we obtain6

µl,φk→i→xt
i
∝

∫

exp

{

−

(

ztk→i − ‖xt
i − E{xt

k}‖2
)2

2σ2

k→i

}

dyti .

(10)

The second-order TP of r1 ,

∥

∥

∥
xt
i,l−1

− E{xt
k}
∥

∥

∥

2

at

(x̂t
i,l−1

, ŷti,l−1
) satisfies:

r1 = r1(x̂
t
i,l−1

, ŷti,l−1
) +

∑

κ∈{xt
i
,yt

i
}

(κ− κ̂) (r1)
′
κ (x̂

t
i,l−1

, ŷti,l−1
)

+
1

2

∑

κ,λ∈{xt
i
,yt

i
}

(κ− κ̂)(λ− λ̂) (r1)
′′
κλ (x̂

t
i,l−1

, ŷti,l−1
) +Rr1 ,

(11)

where Rr1 denotes the remainder term. Substituting (11) into

(10), the message passed from anchor k to agent i at iteration

l satisfies

µl,φk→i→xt
i
∝ N (

βk,l

2αk,l

,
γk,l

2αk,l

), (12)

where we have










































αk,l =3
(

ztk→ie
2

1
− ‖e‖3

2

) (

ztk→ie
2

2
− ‖e‖3

2

)

− 7(ztk→i)
2e2

1
e2
2
,

βk,l =6
(

ztk→ie1e2ŷ
t
i,l−1 + ztk→ie1‖e‖2 − ztk→ie

2

2x̂
t
i,l−1

+E
{

xt
k

}) (

‖e‖3
2
− ztk→ie

2

2

)

− 14ztk→ie1e2
(

E
{

ytk
}

+ztk→ie2‖e‖2 − ztk→ie
2

1ŷ
t
i,l−1 + ztk→ie1e2x̂

t
i,l−1

)

,

γk,l =6‖e‖3
2
σ2

k→i

(

‖e‖3
2
− ztk→ie

2

1

)

,

e =[e1, e2]
T
=

[

x̂t
i,l−1

− E
{

xt
k

}

, ŷti,l−1
− E

{

ytk
}]T

.
(13)

When we have j ∈ Ut
i, µl,φj→i→xt

i
satisfies

µl,φj→i→xt
i
∝

∫∫∫

exp











−

(

ztj→i −
∥

∥xt
i − xt

j

∥

∥

2

)2

2σ2

j→i











bl(x
t
j)bl(y

t
j)dx

t
jdy

t
jdy

t
i ,

(14)

6The positions of anchors are known constants during the iterations.

where

bl(x
t
j) =

1
√

2πσ2

xt
j

exp

{

−

(

xt
j − E{xt

j}
)2

2σ2

xt
j

}

, (15)

bl(y
t
j) =

1
√

2πσ2

yt
j

exp

{

−

(

ytj − E{ytj}
)2

2σ2

yt
j

}

. (16)

We utilize the second-order TP to approximate
∥

∥xt
i − xt

j

∥

∥

2

at (x̂t
i,l−1

, ŷti,l−1
, x̂t

j,l−1
, ŷtj,l−1

), and the message µl,φj→i→xt
i

satisfies

µl,φj→i→xt
i
∝ N (

βj,l

2αj,l

,
γj,l

2αj,l

), (17)

where we have














































































































αj,l = −q2
2
−
(

28m1m
2

2
n1σ

4

yt
j,l−1

)2

,

βj,l = 28m1m
2

2
n1σ

4

yt
j,l−1

(q3 − 2) + q2 (q3 + 2) ,

γj,l = 18m1n1q1(q2 − 28m1m
2

2n1σ
4

yt
j,l−1

),

g = [g1, g2]
T
=

[

x̂t
i,l−1

− x̂t
j,l−1

, ŷti,l−1
− ŷtj,l−1

]T

,

q1 = 3n1σ
2

yt
j,l−1

(3n1 + 4m1σ
2

yt
j,l−1

),

q2 = 3m2

2q1 − 9‖g‖22m1q1,

q3 = 3n1m1m2E
{

ytj,l−1

}

σ2

j→iσ
2

yt
j,l−1

−4m1m2n2σ
2

j→iσ
2

yt
j,l−1

− 9q1n3,

m1 = ztj→ig
2

1
− ‖g‖3

2
,

m2 = 2ztj→ig1g2,

n1 = σ2

j→i‖g‖
3

2
,

n2 = −ztj→ig2‖g‖
2

2
,

n3 = ztj→ig1‖g‖
2
2 − (ztj→i)

2g1‖g‖2.
(18)

Similar to the treatment of the spatial messages originating

from j ∈ Ut
i, the x-component temporal message of agent i

from time slot t− 1 to t, i.e., µft
i,int

→xt
i
, satisfies7

µft
i,int

→xt
i
∝ N (

βi

2αi

,
γi

2αi

), (19)

where we have














































































































αi = −q2
5
−
(

28m3m
2

4
n4σ

4

y
t−1

i

)2

,

βi = 28m3m
2

4
n4σ

4

y
t−1

i

(q6 − 2) + q5 (q6 + 2) ,

γi = 18m3n4q4(q5 − 28m3m
2

4
n4σ

4

y
t−1

i

),

h = [h1, h2]
T
=

[

x̂t
i − x̂t−1

i , ŷti − ŷt−1

i

]T
,

q4 = 3n4σ
2

y
t−1

i

(3n4 + 4m3σ
2

y
t−1

i

),

q5 = 3m2

4
q4 − 9‖h‖2

2
m3q4,

q6 = 3n4m3m4E
{

yt−1

i

} (

σt
i,int

)2
σ2

y
t−1

i

−4m3m4n5

(

σt
i,int

)2
σ2

y
t−1

i

− 9q4n6,

m3 = zti,inth
2

1
− ‖h‖3

2
,

m4 = 2zti,inth1h2,

n4 =
(

σt
i,int

)2
‖h‖3

2
,

n5 = −zti,inth2‖h‖22,

n6 = zti,inth1‖h‖22 −
(

zti,int

)2
h1‖h‖2.

(20)

7Note that the temporal messages do not participate in the spatial iterations.
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Upon substituting (12), (17), (19) and the expression of

p(xt
i) into (7), and completing the iterations, we obtain

p(xt
i|z

t
i) = blmax

(xt
i) ∝ N (E{xt

i|z
t
i}, σ

2

xt
i
|zt

i
), (21)

where lmax is the maximum number of iterations, and we have

E{xt
i|z

t
i} = σ2

xt
i
|zt







x
t|t−1

i
(

σ
t|t−1

i,x

)2
+

∑

k∈At
i

βk,lmax

γk,lmax

∑

j∈Ut
i

βj,lmax

γj,lmax

+
βi

γi



 ,

(22)

σ2

xt
i
|zt

i
=







1
(

σ
t|t−1

i,x

)2
+

∑

k∈At
i

2αk,lmax

γk,lmax

+
∑

j∈Ut
i

2αj,lmax

γj,lmax

+
2αi

γi





−1

.

(23)

The p(yti |z
t
i) can be obtained in a similar manner. Therefore,

the mean vector mt
i and covariance matrix Rt

i concerning the

position of agent i satisfy

mt
i = [E{xt

i|z
t
i},E{y

t
i |z

t
i}]

T, (24)

Rt
i = diag

(

σ2

xt
i
|zt

i
, σ2

yt
i
|zt

i

)

. (25)

C. Stage 3: Refinement

This step uses the update step of EKF to refine the a pos-

teriori distribution of agent i at time slot t. The measurement

residual ∆mt
i and its covariance matrix Ct

i are given by

∆mt
i = mt

i −Hŝ
t|t−1

i,mean, (26)

and

Ct
i = HP̂

t|t−1

i HT +Rt
i, (27)

respectively, where H =
[

I2 02

]

is the observation

matrix. Thus the near-optimal Kalman gain is given by

Kt
i = P̂

t|t−1

i HT
(

Ct
i

)−1
, (28)

and it refines the marginal state distribution by weighting the

measurement residual with

ŝ
t|t
i,mean = ŝ

t|t−1

i,mean +Kt
i∆mt

i, (29)

P̂
t|t
i = P̂

t|t−1

i −Kt
iC

t
i

(

Kt
i

)T
. (30)

To sum up, our EKF-STDF is presented in Algorithm 1.

D. Computational Complexity

Since we consider a fully distributed network, it is suffi-

cient to analyse the computational complexity imposed on a

single agent during one time slot. Specifically, the proposed

EKF-STDF has a complexity of O (Nrellmax + log2 (Nrellmax)),
while each of the particle-based schemes, e.g., the SPA-EKF

[11], the particle-based SPAWN [1] and the NEBP [12], has

a complexity of O (NrelNslmax + log
2
(NrelNslmax)). Here Nrel

is the number of neighbors of the agent considered, while Ns

denotes the number of particles required.

Algorithm 1 The proposed EKF-STDF algorithm

Require: The a priori distribution ŝ0i,mean, P̂
0

i ,∀i.

Ensure: the refined marginal distribution ŝ
t|t
i,mean, P̂

t|t
i ,∀i.

for agent i = 1 to N do

predict the a priori distribution according to (4) and (5).
compute the internal measurements based messages according to (19).
for iteration l = 1 to lmax do

broadcast bl−1(x
t
i).

receive bl−1(x
t
j ), j ∈ At

i ∪ Ut
i and compute the corresponding

incoming messages according to (12) and (17).
using (22) and (23) to calculate the a posteriori distribution.

end for

obtain the position statistics mt
i and Rt

i by (24) and (25).
refine the a posteriori state distribution using (29) and (30).

end for

IV. SIMULATION RESULTS

We evaluate the performance of our EKF-STDF against

some representative positioning algorithms by numerical sim-

ulations in terms of root mean squared error (RMSE) between

the estimated positions and the true positions. Specifically,

consider a wireless network composed of 13 anchors in the

area of [0, 3000] m × [0, 3000] m and a given number of

agents (30 ∼ 60) uniformly placed in the area of [100, 2900]
m × [100, 2900] m. The communication radius is set to

600 m. We assume that8 the initial speed of each agent is

50 m/s and the random variation of the speed of each agent

follows a Gaussian distribution with zero-mean and standard

deviation of 5 m/s. We also assume that σ2

j→i = 0.01dtij and
(

σt
i,int

)2
= 0.01‖xt

i − xt−1

i ‖. To ensure that the number of

agents in the network remains constant, we place a new agent

whenever an existing agent has left the considered area.

In Fig. 2 we compare the positioning performance of our

EKF-STDF against the particle-based SPAWN [1], STOC-

EKF [10], SPA-EKF [11] and NEBP [12], by considering

a single agent of interest that may have insufficient spatial

ranging measurements from time to time. We set the number

of agents to 40 and lmax = 30. We have the following

observations. Firstly, the performance of SPAWN and NEBP

degrades rapidly when the agent does not have sufficient

spatial ranging measurements, as characterized by the number

of neighbor nodes, while the SPA-EKF, STOC-EKF, and EKF-

STDF schemes are more robust to the deficiency of spatial

ranging measurements. The results are compliant with our

intuition that the prediction operation of EKF is helpful to

improve the accuracy of the agent position estimation, and

the high-precision prior values used in data fusion can reduce

the ambiguity of the agent position estimation. Secondly,

our EKF-STDF outperforms the SPA-EKF and STOC-EKF

schemes whether the number of neighbor nodes is sufficient

or not. This is attributed to the high-accuracy second-order TP

approximation based STDF and the exploitation of the internal

measurements based temporal information. Thirdly, the STOC-

EKF is inferior to the SPA-EKF, because it linearizes the

nonlinear observation model. This causes intrinsic perfor-

mance degradation, especially in the high mobility scenario

with insufficient neighbor nodes. Finally, when the number of

8Typically agents do not know in which direction they move, but they do
know the distance they travel by internal ranging measurements.
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Fig. 2. The positioning performance of a single agent under insufficient
number of neighbors.

neighbor nodes is sufficient, the positioning performance of

NEBP is slightly superior to that of our EKF-STDF. However,

the former is inapplicable to the scenario of insufficient

neighbors.

Then we evaluate the positioning performance under differ-

ent numbers of agents. We assume that the number of agents

is increased from 30 to 60. Fig. 3 shows how the number of

agents influences the positioning performances of the above

schemes. We have the following observations. Firstly, as the

number of agents in the network increases, the gap between

the EKF-based algorithms and SPAWN becomes smaller, but

the positioning performance of the latter remains inferior to

that of the former. This observation is consistent with our

intuition that when the distribution of agents is sparse, the lack

of sufficient spatial ranging measurements leads to endogenous

positioning bias in the regular SPA based SPAWN. When the

number of agents in the network becomes larger, the existence

of gap between SPAWN and EKF-based algorithms is due to

the fact that the prediction and refinement modules of the latter

make the a priori and the estimates of agent positions more

accurate. Secondly, our EKF-STDF outperforms NEBP when

the number of agents is increased from 30 to 50, and the

situation is reversed when the number of agents reaches 60.

This indicates that when the number of agents is small, NEBP

is limited by insufficient spatial ranging information, which

results in degraded positioning accuracy. However, when the

number of agents in the network is sufficient, the NEBP

outperforms the EKF-based schemes. Other observations are

similar to those obtained from Fig. 2.

V. CONCLUSION

We have developed a low-complexity high-performance

EKF-STDF algorithm to achieve a more attractive trade-off be-

tween the positioning accuracy and computational complexity

for wireless networks that operate in sparsely distributed high-

mobility environments. The proposed EKF-STDF exploits the

prediction step of EKF to compute the a priori state of the

agents. Then aided by the a priori position estimates and

spatio-temporal ranging measurements, the data fusion stage
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Fig. 3. The positioning performance under different numbers of agents.

infers the marginal distribution of the positions of the agents

on the FG. In particular, we leverage the second-order TP to

approximate the nonlinear functions in the messages passed

on the FG in order to reduce the complexity. Finally, the

refinement stage further enhances the positioning accuracy.

Analysis and simulation results validated that our EKF-STDF

has achieved competitive positioning performance with a lower

computational complexity in the high mobility scenario with

insufficient neighbor nodes.
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