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Selection of XP-HARQ
Da Wu, Jiahui Feng, Zheng Shi, Hongjiang Lei, Guanghua Yang, and Shaodan Ma

Abstract—The complex transmission mechanism of cross-
packet hybrid automatic repeat request (XP-HARQ) hinders its
optimal system design. To overcome this difficulty, this letter
attempts to use the deep reinforcement learning (DRL) to solve
the rate selection problem of XP-HARQ over correlated fading
channels. In particular, the long term average throughput (LTAT)
is maximized by properly choosing the incremental information
rate for each HARQ round on the basis of the outdated channel
state information (CSI) available at the transmitter. The rate se-
lection problem is first converted into a Markov decision process
(MDP), which is then solved by capitalizing on the algorithm
of deep deterministic policy gradient (DDPG) with prioritized
experience replay. The simulation results finally corroborate
the superiority of the proposed XP-HARQ scheme over the
conventional HARQ with incremental redundancy (HARQ-IR)
and the XP-HARQ with only statistical CSI.

Index Terms—Cross-packet hybrid automatic repeat request
(XP-HARQ), deep reinforcement learning (DRL), outdated chan-
nel state information, rate selection.

I. INTRODUCTION

Hybrid automatic repeat request (HARQ) is one of the key

technologies that is capable of offering reliable transmissions.

However, this benefit is essentially reaped at the price of

large transmission delay, which is unfavorable for fulfilling

the ultra-reliable and low-latency communications (URLLC).

To resolve such a dilemma, there is a urgent need to develop a

flexible HARQ transmission mechanism that could be recon-

figurable to meet diverse URLLC requirements. In this letter,

we focus on the cross-packet HARQ (XP-HARQ) that is an

evolutionary version of HARQ with high spectral efficiency,

albeit at the price of high complexity [1]–[3]. Unlike the con-

ventional HARQ schemes, new information bits are introduced

in retransmissions such that surplus wireless resources are

substantially exploited. Hence, it is unnecessary to wait for
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the end of the retransmissions of the current message before

the delivery of the next message especially under benign

channel conditions. As a consequence, the spectral efficiency

of HARQ is boosted, meanwhile the average transmission

delay is reduced.

Recently, the investigations on the XP-HARQ scheme are

still in their fancy. Several efforts have been made to accu-

rately evaluate and optimally design XP-HARQ schemes. In

[1], Mohammed Jabi et al. examined the long term average

throughput (LTAT) of XP-HARQ, with which the throughput

improvement gained by XP-HARQ was verified. In [2], a two-

layer coding scheme was developed to implement XP-HARQ

to guarantee the inputs of the encoder with the same length,

where puncturing and mixing operations were leveraged. The

puncturing rates were then optimized with dynamic program-

ming in [2]. The adaptive modulation and coding scheme was

further introduced to boost the LTAT of XP-HARQ in [3].

In [4], the effective capacity of XP-HARQ was analyzed for

buffer-limited XP-HARQ. However, the performance metrics

of XP-HARQ in [1]–[4] were obtained by conducting Monte-

Carlo simulations and lacked insightful analysis. To fill this

vacancy, the most fundamental performance metric, namely,

outage probability, was derived in closed-form for XP-HARQ

over independent Rayleigh fading channels in [5], with which

full time diversity of XP-HARQ was proved. However, even

under such a simple channel model, the outage analysis is too

complex to further assist the optimal design of XP-HARQ, not

to mention under more complicated fading channels.

To address the above issue, we resort to the data-driven deep

reinforcement learning (DRL) for the optimal design of XP-

HARQ over correlated fading channels. It should be noticed

that only a few works attempted to devise the conventional

HARQ schemes using the DRL methods. Particularly, in

[6], a DRL enabled user scheduling policy was designed to

minimize the age of information (AoI) for HARQ systems.

In [7], a deep deterministic policy gradient (DDPG) algorithm

was leveraged to maximize the throughput via optimizing the

incremental redundancy bits. Unfortunately, the extension of

the DRL methods to general HARQ schemes has never been

reported. This letter maximizes the LTAT via adaptive rate

selection by considering outdated channel state information

(CSI). The optimization problem is firstly formulated as a

problem of Markov decision process (MDP). By taking into

account the continuous state and action spaces, the problem is

then solved by using DDPG with prioritized experience replay.

By conducting Monte Carlo simulations, the proposed XP-

HARQ scheme is proved to be superior to the conventional

HARQ with incremental redundancy (HARQ-IR) and the XP-

http://arxiv.org/abs/2308.02140v1
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Fig. 1. An example of the XP-HARQ scheme with K = 3.

HARQ with only statistical CSI. Furthermore, it is found that

the time correlation among fading channels does not lead to a

significant impact upon the LTAT of the proposed XP-HARQ

scheme.

The rest of this letter is outlined as follows. Section II

introduces the system model. Section III develops a DRL em-

powered rate selection algorithm for XP-HARQ.The simulated

results are presented in Section IV. Section V finally concludes

this letter.

II. SYSTEM MODEL

This letter considers a point-to-point communication sys-

tem, in which XP-HARQ is adopted to enable the retrans-

missions of the message. To start, this section delineates the

system model, including the XP-HARQ transmission mecha-

nism, the channel model, performance metrics, and the rate

selection problem.

A. XP-HARQ

As shown in Fig. 1, an example is used to illustrate the

transmission mechanism of the XP-HARQ. To avoid network

congestion in unfavorable propagation environment, the num-

ber of transmissions of XP-HARQ is limited up to K . For

notational simplicity, let n(t) ∈ Z
+ and κ(t) ∈ [1,K] be the

functions that map the time slot t to the current HARQ cycle

and the current transmission round, respectively. In the initial

transmission round of the n(t)-th HARQ cycle, the message

m
n(t),1 is encoded as a codeword x

n(t),1 with a transmission

rate R1. The received signal y
n(t),1 reads as

y
n(t),1 =

√

P1hn(t),1xn(t),1 + n
n(t),1, (1)

where h
n(t),1 denotes the channel coefficient of the first round

of the n(t)-th HARQ cycle with E(|h
n(t),1|

2) = 1, n
n(t),1

stands for the complex additive Gaussian noise (AWGN)

having zero mean and a variance of σ2, and P1 is the

average transmit power in the initial HARQ round. If x
n(t),1

is successfully decoded, a positive acknowledgement (ACK)

will be sent back to confirm the successful reception of m
n(t),1

and the next HARQ cycle with index t+ 1 will be triggered

immediately. Otherwise, a negative acknowledgement (NACK)

will be fed back to initiate the retransmissions. According

to the coding strategy of XP-HARQ [1], as opposed to the

conventional HARQ-IR that only redundant information bits

are retransmitted, new information bits are introduced in

the retransmissions by XP-HARQ to substantially exploited

wireless resources. Accordingly, prior to the κ(t)-th trans-

mission of the n(t)-th HARQ cycle, the previously failed

messages m
n(t),1, · · · ,mn(t),κ(t)−1 are combined with the

currently received message m
n(t),κ(t) to form a longer message

m
n(t),[κ(t)]. The concatenated message m

n(t),[κ(t)] is encoded

as a codeword x
n(t),κ(t) with a nominal transmission rate

∑κ(t)
κ=1 Rκ , RΣ

κ(t), where the increment of the transmission

rate, i.e., Rκ, originates from the new information bits involved

in the κ-th transmission. Therefore, the signal y
n(t),κ(t) re-

ceived in the κ(t)-th round of the current XP-HARQ cycle is

written as

y
n(t),κ(t) =

√

Pκ(t)hn(t),κ(t)xn(t),κ(t) + n
n(t),κ(t), (2)

where h
n(t),κ(t), nn(t),κ(t), and Pκ(t) follow the similar defini-

tions as h
n(t),1, n

n(t),1, and P1, respectively, which are omitted

here to save space. The messages m
n(t),1, · · · ,mn(t),κ(t) are

jointly decoded by using the observations y1, · · · , yκ(t). The

current XP-HARQ cycle stops and the next process begins

once the receiver succeeds in reconstructing all the previously

delivered messages or the maximum number of HARQ trans-

mission attempts κ(t) is used. Interested readers are referred to

[8] for more details of the encoding/decoding implementation

of XP-HARQ.

B. Channel Model

This letter considers time-correlated Rayleigh flat-fading

channels, where the channel keeps constant during each code-

word transmission slot and changes time-dependently across

consecutive transmission slots. We define t as the index of the

time slot in the sequel. For notational simplicity, we use the

notation ~t to represent h
n(t),κ(t). As a commonly used time-

correlated channel model that takes place in the environment

of low-to-medium mobility, ~t is modeled according to a first-

order Gauss-Markov process as [9], i.e.,

~t = ρ~t−1 +
√

1− ρ2wt, (3)

where ρ is the correlation coefficient between ~t and ~t−1,

wt ∼ CN
(

0, σ2
)

denotes the channel discrepancy and is

independent of ~t−1. In order to account for the impact of

channel aging, the outdated channel state ~t−1 is sent back to

the transmitter.

C. Performance Metrics

1) Outage Probability: The outage probability is an essen-

tial performance metric for evaluating the system reliability.

The outage probability of XP-HARQ is the probability of the

event that the accumulated mutual information in each HARQ

round is below the transmission rate. More specifically, the

outage probability of XP-HARQ after K HARQ rounds is

given by [1]

fK = Pr
(

I1 < R1, I2 < RΣ
2 , · · · , IK < RΣ

K

)

, (4)

where Ik =
∑k

l=1 log2(1 + |~l|2Pl/σ
2) stands for the accu-

mulated mutual information until the l-th transmission.
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2) Long Term Average Throughput: The long term average

throughput (LTAT) is a frequently used performance metric to

evaluate the expected throughput of HARQ systems [10]. The

LTAT of XP-HARQ system is defined as [1]

ηK = lim
T→∞

R(T )

T
=

∑K

k=1 Rk (fk−1 − fK)

1 +
∑K−1

k=1 fk
, (5)

where R(t) refers to the total number of successfully received

information bits till time t, and the second equality in (5) is

derived in [1], [10] by capitalizing on the renewal theory if

only the statistical CSI is available at the transmitter.

D. Maximization of LTAT

This paper aims to maximize the LTAT through optimal rate

selection if only the aged channel state information (CSI) is

available at the transmitter. The optimization problem of the

transmission rates can be formulated as

max
R1,··· ,RK

ηK

s.t. 0 ≤ Rk ≤ R̄, k ∈ [1,K],
(6)

where the transmission rate {Rk, k ∈ [1,K]} is upper

bounded by R̄ to avoid frequent outages because of the limited

resources. However, due to the time correlation among fading

channels in (3) and the involved outage definition in (4), it is

hardly possible to get the explicit outage expression. Hence,

it is unlikely to solve the LTAT maximization problem in

(6) with the conventional optimization tools. To overcome

this difficulty, we recourse to the deep reinforcement learning

(DRL) for the optimal solution of the transmission rate.

III. DRL EMPOWERED RATE SELECTION

Due to the rapid change of time-varying fading channels,

it results in a prohibitively high system overhead to acquire

the instantaneous CSI. Therefore, we assume that only the

outdated and statistical CSIs are available at the transmitter,

including the channel state of the previous slot ~t−1 and the

correlation coefficient ρ. Moreover, the transmission rate of

the current transmission round for XP-HARQ is determined

by the transmission status (success or failure), rates, and

channel states in the previous transmission rounds. Towards

this end, the proposed optimization problem is transformed

into a Markov decision process (MDP), which can be solved

with DRL methods.

A. Problem Reformulation and MDP

By using the definition of the LTAT and replacing the limit

operation with the expectation (the time average converges

to the ensemble average for ergodic processes), the original

problem (6) can be reformulated as

max
R(t)

E

(

R(T )
T

)

= E

(

1
T

∑T

t=1Rn(t),κ(t)

)

s.t. 0 ≤ R(t) ≤ R̄,
(7)

where the expectation is taken over the randomness of the

channel states, R(t) is the effective transmission rate for the

new information bits in the time slot t, R
n(t),κ(t) denotes

the effective transmission rate for the successfully received

information bits after κ(t) rounds during the n(t)-th HARQ

cycle. According to the Shannon theory, the successful decod-

ing occurs if and only if the transmission rate is less than the

channel capacity. Therefore, R
n(t),κ(t) can be obtained as

R
n(t),κ(t) =

{

RΣ
κ(t), Iκ(t) ≥ RΣ

κ(t)

0, else
. (8)

With the problem reformulation of (8), the adaptive rate

selection scheme can be modeled as an MDP, which can be

solved by leveraging reinforcement learning (RL) method. The

MDP essentially comprises four elements, including environ-

ment E , state space S, action space A, and reward space R.

More specifically, at each time step t, the process is in state

st ∈ S. According to the current state, the agent makes a

decision to choose an action at ∈ A. After taking the action

at, the next state st+1 is observed along with a reward rt ∈ R
received from the environment E . By mapping the optimal rate

selection of XP-HARQ as an MDP, the states, actions, and

rewards are designed as follows.

1) State st: To capture the channel aging effect, the his-

torical channel state ht is considered into the observation

of environment. Moreover, the decoding status of XP-HARQ

essentially depends on the accumulated mutual information

and rate. Accordingly, the state st is a vector consisting

of the previously accumulated transmission rate and mutual

information intended for the n(t)-th XP-HARQ, and the aged

channel state ht−1, namely

st
∆
=

{ (

RΣ
κ(t−1), Iκ(t−1), ~t−1

)

, n(t− 1) = n(t)

(0, 0, ~t−1) , else
, (9)

wherein the accumulated transmission rate and mutual infor-

mation for the current HARQ cycle are zero if a new HARQ

cycle is initiated, i.e., n(t− 1) 6= n(t).
2) Action at: The action is defined as the effective trans-

mission rate for the new information bits in the next HARQ

round, i.e.,

at , R(t). (10)

3) Reward rt: The reward function can be defined as

the effective transmission rate of the successfully received

information bits for the current HARQ cycle n(t), i.e.,

rt = r(st, at, st+1) , Rn(t),κ(t). (11)

By noticing the continuous space of the states and actions, the

MDP problem can be solved with the DRL, which combines

the reinforcement learning and deep neural networks to learn

the policy. The details are deferred to the next subsection.

B. DRL Empowered Rate Selection

A DRL based rate selection scheme is proposed for the

LTAT maximization of the XP-HARQ. By considering the

continuous state and action spaces, a deep deterministic policy

gradient (DDPG) with prioritized experience replay will be

applied to develop the rate selection framework, as shown

in Fig. 2. This framework consists of four neural networks,

i.e., two policy networks (also termed as the actor network,
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i.e., µ(st; θ) and µ(st+1; θ
−)) and two evaluation networks

(also termed as the critic network, i.e., Q(st, at;ω) and

Q(st+1, ât+1;ω
−)), wherein the target-evaluation and target-

policy networks are used to calculate the temporal-difference

(TD) target to address the overestimation issue, and these

neural networks are parameterized by θ, θ−, ω, and ω
−. In

addition, for the stability and fast convergence, a prioritized

experience reply memory pool M is adopted to collect the

agent’s experience tuple et = (si, ai, ri, si+1) at each time t.
At each time step, the four neural networks will be updated

with a mini-batch of experience samples Bt that are drawn

fromM according to the priority of the playback experience,

that is, et ∼ P(M) for ∀et ∈ Bt, where P is the probability

function defined in (12). In what follows, priority experience

playback mechanism and the training processes of the four

neural networks are described in detail.

�� ← � ����;��

������;��

 �
 �

�

← ���

.  �

��

Fig. 2. The DDPG network for Rate Selection of XP-HARQ.

1) Prioritized Experience Replay: In contrast with the

uniform random experience replay, the prioritized experience

replay is capable of accelerating the learning process and en-

hancing the training stability [11]. According to the prioritized

sampling strategy, the sampling probability pi of the tuple

ei = (si, ai, ri, si+1) is proportional to the absolute value of

TD error δi, i.e.,

pi ∝ |δi|+ ǫ, (12)

where ǫ is a positive constant to avoid a zero sampling

probability, δi = Q(si, ai;ω) − ri − γQ(si+1, âi+1;ω
−)

denotes the TD error, and γ is the discount factor.

2) Evaluation Network: The evaluation network aims to

approximate the actual state-action function Qπ(s, a) with a

neural network parameterized by ω. The network parameters

ω can be updated with the TD algorithm. More specifically,

the loss function is defined as the weighted squared TD error

averaged over the sampled mini-batch Bt, i.e.,

L(ω) =
1

2|Bt|

∑

ei∈Bt

wiδ
2
i , (13)

where |Bt| represents the batch size and the importance-

sampling weight wi is used to eliminate the bias introduced

by prioritized sampling and ensure the same learning rate of

all samples. According to [11], wi is given by

wi ∝ (|Bt|pi)
−β

, (14)

which β ∈ [0, 1] is a hyperparameter that controls the extent

of the correction. Then, the gradient descent algorithm is

leveraged to update the network parameters ω as

ωnew ← ωnow − α∇ωL(ωnow), (15)

where ∇ωL(ω) = 1
|Bt|

∑

ei∈Bt
wiδi∇ωQ(si, ai;ω) refers to

the gradient of the loss function with respect to (w.r.t.) ω, and

α is the learning rate.

3) Policy Network: The policy network µ(st; θ) aims to

learn action policy by mapping the states to the specific ac-

tions. Since the action-value function Qπ(s, a) can evaluate the

score of the current action policy, the performance objective

for µ(st; θ) can be defined as [12]

J(θ) =
1

|Bt|

∑

ei∈Bt

Q(si, µ(si; θ);ωnow). (16)

To learn the best policy, the parameters of the policy network

can be optimized through the maximization of J(θ). Accord-

ingly, the gradient ascend method is used to update θ, i.e.,

θnew ← θnow + υ∇θJ(θnow), (17)

where υ is the learning rate, and using chain rule yields

∇θJ(θ) =
1

|Bt|

∑

ei∈Bt
∇θµ(si; θ)∇aQ(si, âi;ωnow).

4) Target Evaluation/Policy Networks: To further improve

the stability, the soft update strategy is applied to update the

parameters of the target networks, i.e., ω
− and θ

−. More

specifically, with the new parameters ωnew and θnew given by

(15) and (17), respectively, the parameters of the two target

networks will be updated as

ω
−
new ← τωnew + (1− τ)ω−

now, (18)

θ
−
new ← τθnew + (1− τ)θ−

now, (19)

where the hyperparameter τ ≪ 1.

IV. SIMULATIONS AND DISCUSSIONS

In this section, simulated results are presented for verifi-

cations and discussions. For illustration, the system param-

eters are set as σ2 = 1, ρ = 0.4, and R̄ = 10 bps/Hz

unless otherwise specified. Besides, we assume equal power

allocation for XP-HARQ, i.e., P1 = · · · = PK , and the

average transmit signal-to-noise ratio (SNR) is defined as

P1/σ
2 = · · · = PK/σ2 , SNR. To deploy the DDPG,

both the actor and critic networks consist of one input layer,

three hidden layers, and one output layer. The number of the

neurons in the three hidden layers are 100, 50, and 30 neurons,

respectively. The three hidden layers of both networks use

“ReLu” activation functions. The output layer of the actor

network invokes “sigmoid” activation function to restrict the

transmission rate within R̄, while the critical network does

not leverage any activation function in the output layer. Both

the actor and critical networks capitalize on the adaptive

moment estimation (Adam) optimizer to update the network

parameters, and the learning rates are set to υ = α = 0.001.

Furthermore, we assume that the number of epochs in the

training state is 100, the number of time slots in each epoch is

6000, the size of the prioritized replay buffer is |M| = 20000,



5

the mini-batch size is |Bt| = 512. In addition, we assume that

the weight of the soft update τ = 0.01, the discount factor

γ = 0.9, the extent of the correction β = 0.5, and the noise

variance of the behavior policy ϑ2 = 0.2.

Fig. 3 depicts the LTAT performance of XP-HARQ versus

of the average transmit SNR under different K . To exhibit

the superiority of the proposed DRL-empowered rate selection

scheme, two baseline HARQ schemes are used for com-

parison, including the conventional HARQ-IR [13] and the

XP-HARQ with only statistical CSI (labeled as “S-CSI” in

the figure) [5]. The results of XP-HARQ with S-CSI can

be regarded as the worst performance limit of our proposed

scheme. In the meantime, the ergodic capacity is incorporated

for benchmarking purpose or as design guidelines. It is shown

in Fig. 3 that the XP-HARQ scheme performs much better than

the HARQ-IR scheme. For example, by fixing SNR = 35 dB

and K = 5, the XP-HARQ scheme achieves a higher LTAT

than the HARQ-IR scheme by around 1.65 bps/Hz. It is also

seen from Fig. 3 that the proposed XP-HARQ scheme with

outdated CSI surpasses the XP-HARQ scheme with statistical

CSI by around 0.15 bps/Hz. Moreover, as the maximum

number of transmissions K increases from 3 to 5, a remarkable

performance gain can be attained by both XP-HARQ schemes

with the outdated CSI and the statistical CSI, whereas the

HARQ-IR scheme achieves a negligible LTAT enhancement

particularly at high SNR. This advantage of XP-HARQ at-

tributes to new information bits introduced in retransmissions.

Moreover, this merit also brings about a reduced transmission

delay.

5 10 15 20 25 30 35

SNR  [dB]
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Fig. 3. The comparison of the LTAT for different HARQ schemes.

Fig. 4 investigates the impact of the time correlation co-

efficient on the LTAT given a fixed SNR = 20 dB. Overall,

it is not beyond our expectation that the time correlation has

a detrimental effect on the LTAT. This is because more time

diversity gain can be achieved from fading channels with a

lower time correlation [13]. Nevertheless, it is noteworthy that

the superiority of the proposed XP-HARQ schemes essentially

stems from utilizing the outdated CSI. Hence, a low channel

correlation will result in less similarity of CSIs between two

adjacent transmissions, which limits the time diversity gain

from retransmissions. Accordingly, it can be seen from Fig. 4

that the LTAT curves slightly decrease with ρ.
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Fig. 4. Impact of correlation coefficient ρ.

V. CONCLUSION

Due to the lack of simple analytical results of the perfor-

mance metrics of XP-HARQ, we applied the DRL to properly

select the incremental information rate for XP-HARQ over

correlated fading channels, without recourse to the traditional

optimization tools. More specifically, the maximization of

the LTAT was formulated as a problem of MDP, which can

be solved by using the algorithm of DDPG with prioritized

experience replay. To demonstrate the efficacy of the proposed

XP-HARQ scheme, its LTAT performance was compared to

the conventional HARQ-IR and the XP-HARQ with only

statistical CSI through simulations. It was found that IR-

HARQ is more aggressive than XP-HARQ when determining

the initial rate. In the meantime, it was also found that the

time correlation has a slightly negative impact on the LTAT of

the proposed XP-HARQ scheme.
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