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Abstract

In this letter, we study the channel estimation for wireless communications with movable antenna

(MA), which requires to reconstruct the channel response at any location in a given region where the

transmitter/receiver is located based on the channel measurements taken at finite locations therein, so as

to find the MA’s location for optimizing the communication performance. To reduce the pilot overhead

and computational complexity for channel estimation, we propose a new successive transmitter-receiver

compressed sensing (STRCS) method by exploiting the efficient representation of the channel responses

in the given transmitter/receiver region (field) in terms of multi-path components. Specifically, the field-

response information (FRI) in the angular domain, including the angles of departure (AoDs)/angles

of arrival (AoAs) and complex coefficients of all significant multi-path components are sequentially

estimated based on a finite number of channel measurements taken at random/selected locations by

the MA at the transmitter and/or receiver. Simulation results demonstrate that the proposed channel

reconstruction method outperforms the benchmark schemes in terms of both pilot overhead and channel

reconstruction accuracy.
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I. INTRODUCTION

With the development of multiple-input multiple-output (MIMO) technologies, the capacity of

wireless communication systems has experienced a significant boost, owing to the exploitation

of new degrees of freedom (DoFs) in the spatial domain [1], [2]. However, conventional MIMO

and/or massive MIMO systems employ fixed-position antennas (FPAs), which may suffer from

deep fading at a given time and/or frequency resource block (RB). To address this issue, movable

antenna (MA) was recently proposed as a promising technology for efficiently adapting to the

spatial channel variation [3]–[5]. With the aid of mechanical drivers, MAs can be maneuvered

flexibly within a continuous spatial region where the transmitter/receiver is located to improve

the wireless channel condition.

Prior studies have demonstrated the effectiveness of MAs in enhancing communication per-

formance [3]–[5]. In [3], the MA architecture and field-response-based channel model were

proposed for the single-MA system, where the signal-to-noise ratio (SNR) gain over its FPA

counterpart was investigated under both deterministic and stochastic channels. In [4], an MA-

based MIMO communication system was analyzed, where the channel capacity was maximized

via joint optimization of transmitter and receiver MAs’ positions. It was shown that the MA-based

MIMO systems can achieve a substantial gain in channel capacity compared to conventional FPA-

based MIMO systems. Besides, the MA-based multiuser communication system was considered

in [5], where the MAs’ positions of multiple users were jointly optimized to minimize the

total transmit power, subject to the minimum achievable rate requirement of each user. It was

revealed that the antenna position optimization can significantly decrease the total transmit power

as compared to conventional FPA systems with perfect/imperfect channel state information (CSI).

It is worth noting that in practice, the moving speed of MAs may be constrained by the

mechanical drivers. As such, MAs are most suitable for communication scenarios with slow

channel variations over time (e.g., when the transmitter/receiver is deployed at fixed location)

and limited bandwidth (i.e., narrow-band transmission), such as machine-type communications

(MTC) [6]. In such scenarios, conventional diversity techniques in time and/or frequency domain

may not be applicable, and thus MA can be a new and cost-effective solution to enhance the

spatial diversity, especially when the number of antennas/radio-frequency (RF) chains at the

transceiver is small due to cost consideration.
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For MA communication systems, the knowledge of CSI in the entire region for positioning

the MAs is essential for finding their best locations to optimize the communication performance.

This thus gives rise to a new channel estimation problem for reconstructing the complete CSI in

a given region (field) based on finite channel measurements taken by the MA at random/selected

locations therein. However, conventional channel estimation methods for MIMO systems with

FPAs only need to acquire CSI at given positions where the antennas are located (see, e.g., [7],

[8]), and thus cannot be directly applied to solve the new channel estimation problem for MA

systems. On the other hand, if the complete CSI is obtained by positioning the MA over all

possible locations in the given region (e.g., by spatially sampling the region with a sufficiently

high rate) to perform channel measurement, this will result in prohibitively high pilot overhead

and large data transmission delay.

To efficiently solve the channel estimation problem for MA systems, we propose in this letter a

new method by exploiting the sparse representation of the channel responses in the MA’s residing

field in terms of multi-path components (MPCs), thus named field-response information (FRI).

Specifically, the FRI in the angular domain, including the angles of departure (AoDs)/angles

of arrival (AoAs) and complex coefficients of all significant MPCs at the transmitter/receiver

are first recovered based on finite channel measurements taken by the MA at random/selected

locations. Then, the channel response between any two locations in the MA’s residing regions at

the transmitter and receiver, respectively, is reconstructed based on the estimated angular-domain

FRI. Furthermore, to reduce the overhead of FRI estimation, we propose a new successive

transmitter-receiver compressed sensing (STRCS) scheme which is implemented in three steps.

First, the transmitter-side MA (T-MA) moves over different locations and the receiver-side MA

(R-MA) at a fixed position measures the corresponding channels, based on which the estimation

of the transmitter-side MPCs (T-MPCs)’ AoDs is formulated as a sparse signal recovery problem

and solved by compressed sensing algorithm. Second, with the T-MA’s position fixed, the R-MA

moves over different locations while measuring the corresponding channels for estimating the

AoAs of the receiver-side MPCs (R-MPCs), similarly as that for the AoD estimation. Finally,

based on the obtained AoD and AoA information, the T-MA and R-MA are jointly moved for

estimating the complex coefficients of all MPCs by using the least square (LS)-based algorithm1.

1Note that the proposed method also applies to the case where FPA is deployed at the transmitter or receiver, while only the

MA needs to be moved over different locations when conducting the channel estimation.
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Fig. 1. Wireless communication with one single MA at both the transmitter and receiver.

Simulation results show that the proposed channel reconstruction method is more efficient than

benchmark schemes in terms of pilot overhead and yet achieves higher channel reconstruction

accuracy.

Notations: Symbols for vectors (lower case) and matrices (upper case) are in boldface. (·)T ,

(·)∗, and (·)H denote the transpose, conjugate, and conjugate transpose (Hermitian), respectively.

The sets of P × Q dimensional complex and real matrices are denoted by CP×Q and RP×Q,

respectively. We use a[p] and A[p, q] to denote the pth entry of vector a and the entry of matrix

A at the pth row and qth column, respectively. ⊗ denotes Kronecker product. We use diag(a)

to denote the square diagonal matrix with the elements of vector a on the main diagonal. ‖a‖2
and ‖A‖F denote the l2 norm of vector a and Frobenius norm of matrix A, respectively. The

vectorization of matrix A is denoted by vec(A). A† denotes pseudo inverse.

II. SYSTEM AND CHANNEL MODEL

A. System Model

As shown in Fig. 1, we consider an MA communication system with one single MA at the

transmitter as well as at the receiver. The positions of T-MA and R-MA can be flexibly adjusted,

with their coordinates denoted by t = [xt, yt]T ∈ Ct and r = [xr, yr]T ∈ Cr, respectively. For

simplicity, we assume that Ct and Cr are given 2D regions at the transmitter/receiver side and

for convenience, we further assume that they are both square regions of equal size A× A.

Let h(t, r) denote the channel from the transmitter to the receiver, which depends on MAs’

positions t and r. Let s represent the transmit signal with normalized power equal to one. The

received signal can be expressed as

y(t, r) =
√
Ph(t, r)s+ z, (1)
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where P is the transmit power and z ∼ CN (0, σ2) denotes the additive white Gaussian noise

(AWGN) at the receiver with σ2 being the average noise power. For notation simplicity and

without loss of generality, we set s = 1 as the pilot signal for FRI estimation.

B. Field-Response Based Channel Model

For the considered MA communication system, the channel between the transmitter and

receiver is determined by the propagation environment and {t, r}. To characterize the FRI in

the MA’s residing region, we consider the far-field wireless channel model, which assumes that

the size of Ct/Cr is much smaller than the distance between the transmitter and receiver [3], [4].

Thus, the AoD, AoA and amplitude of the complex coefficient of each MPC can be assumed

to be approximately constant in Ct and Cr, while the phase of each MPC’s complex coefficient

generally varies over different T-/R-MA’s positions in Ct/Cr.

The number of T-MPCs and R-MPCs are denoted by Lt and Lr, respectively2. For the pth

(p = 1, 2, . . . , Lt) T-MPC, its elevation and azimuth AoDs are represented by θ̃tp ∈ [0, π] and

φ̃t
p ∈ [0, π], respectively. For simplicity, the virtual AoDs are defined as θtp , sin θ̃tp cos φ̃

t
p and

φt
p , cos θ̃tp. Then, the phase difference corresponding to the pth T-MPC between MA location

t ∈ Ct and the center of Ct is 2πρtp(t)/λ, where ρtp(t) = xtθtp + ytφt
p and λ is the carrier

wavelength. The transmitter-side field response vector (T-FRV) is thus obtained as [3]–[5]

g(t) =
[

ej
2π
λ
ρt
1
(t), ej

2π
λ
ρt
2
(t), . . . , ej

2π
λ
ρt
Lt (t)

]T

∈ C
Lt

. (2)

Similarly, let θ̃rq ∈ [0, π] and φ̃r
q ∈ [0, π] denote the elevation and azimuth AoAs of the qth

(q = 1, 2, . . . , Lr) R-MPC, respectively. We also define the virtual AoAs as θrq , sin θ̃rq cos φ̃
r
q and

φr
q , cos θ̃rq for convenience. Then, the receiver-side field response vector (R-FRV) is obtained

as [3]–[5]

f(r) ,
[

ej
2π
λ
ρr
1
(r), ej

2π
λ
ρr
2
(r), . . . , ej

2π
λ
ρr
Lr (r)

]T

∈ C
Lr

, (3)

where ρqr(r) = xr sin θrq + yrφr
q represents the difference in signal propagation distance for the

qth R-MPC between position r ∈ Cr and the center of Cr.

2Note that in conventional multi-path channel modeling, the number of multi-paths usually refers to that at the receiver side,

i.e., Lr .
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Furthermore, let Σ ∈ C
Lr×Lt

denote the path response matrix (PRM) characterizing all T-

/R-MPCs’ responses between the centers of Ct and Cr, where Σ[q, p] is the channel response

coefficient between the pth T-MPC and the qth R-MPC. Thus, the end-to-end channel between

the transmitter and the receiver as a function of the T-/R-MA’s position t/r can be expressed as

h(t, r) = f (r)HΣg(t). (4)

For MA systems, it is infeasible to estimate h(t, r) directly for all t ∈ Ct and r ∈ Cr by moving

a pair of MAs over the whole regions of Ct and Cr, respectively. However, it is observed from (4)

that the channel h(t, r) between any {t, r} can be reconstructed based on the angular-domain

FRI, including {θtp, φt
p}L

t

p=1, {θrq , φr
q}L

r

q=1, and Σ, which are constant over Ct and Cr. Hence, we

propose to estimate the FRI components first, and then reconstruct h(t, r) over the entire Ct

and Cr based on the estimated FRI via (4). However, since we consider single MA at both the

transmitter and receiver, only one pilot can be transmitted/received at each time for measuring the

channel between a given pair of T-/R-MAs’ positions. Moreover, the joint estimation of all FRI

components is complicated and may incur prohibitively high computational complexity. Thus,

efficient FRI estimation methods need to be designed to reduce the number of pilots (training

time) as well as the computational complexity.

III. PROPOSED METHOD FOR FRI ESTIMATION

In this section, we present the new STRCS method to efficiently estimate the angular-domain

FRI with affordable complexity, which is implemented in three steps as shown in Fig. 2. First,

the T-MA moves over different locations and the R-MA at a fixed position performs channel

measurement for estimating the T-MPCs’ AoDs, which is formulated as a sparse signal recovery

problem and solved by compressed sensing algorithm. Second, the T-MA’s position is fixed

and the R-MA moves over different locations while measuring the corresponding channels to

estimate the R-MPCs’ AoAs, similarly as that for the AoD estimation. Finally, the T-MA and R-

MA are jointly moved based on the obtained AoD and AoA information to estimate the complex

coefficients of all MPCs using the LS-based algorithm.
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Fig. 2. Illustration of the proposed STRCS method for angular-domain FRI estimation with MAs.

A. AoD Estimation

To estimate the T-MPCs’ AoDs efficiently, the single T-MA needs to be moved over different

positions to send pilot signals. The receiver measures the corresponding channels based on the

received pilot signals and then estimates the T-MPCs’ AoDs. Let M denote the total number of

moved positions for the T-MA, which are denoted by {tm}Mm=1 with tm , [xtm, y
t
m]

T ∈ Ct. For

each tm, we assume that one pilot is sent by the T-MA. Since the R-MA’s position is fixed as

r1 ∈ Cr, in this step, the received signals are given by

ytm =
√
Pf (r1)

H
Σg(tm) + ztm, m = 1, 2, . . . ,M, (5)

where ztm is the AWGN at the receiver and ztm ∼ CN (0, σ2). For convenience, we stack the M

received signals to obtain

(

yt
)T

=
√
Pf(r1)

H
ΣG(t̃) +

(

zt
)T
, (6)

with

yt , [yt1, y
t
2, . . . , y

t
M ]T ∈ C

M , (7)

zt , [zt1, z
t
2, . . . , z

t
M ]T ∈ C

M ,

t̃ , [t1, t2, . . . , tM ] ∈ R
2×M ,

G(t̃) , [g (t1) , g (t2) , . . . , g (tM)] ∈ C
Lt×M .

As can be observed from (7), each column of G(t̃) is the T-FRV with a fixed AoD and
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different positions of T-MA, while each row of it can be regarded as the steering vector with a

fixed position of T-MA and varying AoDs. Thus, for any AoD pair {θt, φt}, the transmitter-side

steering vector can be expressed as

a(θt, φt) ,
[

e−j 2π
λ
τ t
1
(θt,φt), e−j 2π

λ
τ t
2
(θt,φt), . . . , e−j 2π

λ
τ t
M

(θt,φt)
]T

∈ C
M , (8)

where τ tm(θ
t, φt) = xtmθ

t+ytmφ
t represents the signal propagation distance difference with respect

to {θt, φt}. Then, the transmitter-side steering matrix can be obtained as

A(αt) ,
[

a(θt1, φ
t
1),a(θ

t
2, φ

t
2), . . . ,a(θ

t
Lt , φt

Lt)
]

∈ C
M×Lt

, (9)

with αt , [θt1, θ
t
2, . . . , θ

t
Lt , φt

1, φ
t
2, . . . , φ

t
Lt ]T ∈ R

2Lt

. According to the definition A(αt) = G(t̃)H ,

the received signal vector can be rewritten as

yt =
√
PA(αt)ΣHf (r1) + zt , A(αt)xt + zt, (10)

with xt ,
√
PΣHf(r1) ∈ CLt

. To efficiently estimate {θtp, φt
p}L

t

p=1 by compressed sensing, we

make an approximation by uniformly discretizing θ ∈ [−1, 1] and φ ∈ [−1, 1] into G grids with

G ≫ Lt [8]. Thus, we have A(αt)xt ≈ Āx̄t, where Ā ∈ CM×G2

is an over-complete matrix

and its (g1 + (g2 − 1)G)th column is in the form of a(θ̄g1 , θ̄g2) with θ̄g , −1 + 2g/G, g1, g2 =

1, 2, . . . , G, and x̄t ∈ CG2

is a sparse vector with Lt nonzero elements corresponding to xt. If

G≫ Lt, the AoD estimation problem can be transformed into a sparse signal recovery problem,

i.e., finding a sparse x̄t to minimize ‖yt − Āx̄t‖2. Classical compressed sensing algorithms,

such as the orthogonal matching pursuit (OMP) [7], can be employed to estimate all AoD pairs

{θtp, φt
p}L

t

p=1 corresponding to the columns of Ā with non-zero coefficients in x̄t.

B. AoA Estimation

Similar to the AoD estimation procedure, in this subsection, the T-MA’s position is fixed as

tM ∈ Ct and the R-MA is moved over (N − 1) different positions denoted by {rn}Nn=2 with

rn , [xrn, y
r
n]

T ∈ Cr. For each rn, one pilot is assumed to be sent by the T-MA. The receiver

measures the corresponding channels based on the received pilot signals and then estimates the

R-MPCs’ AoAs. In this step, the received signal vector after (N − 1) channel measurements is
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given by

yr =
√
PF (r̃)HΣg(tM) + zr ∈ C

N , (11)

with r̃ , [r1, r2, . . . , rN ] ∈ R2×N and F (r̃) , [f (r1) , f (r2) , . . . , f (rN)] ∈ CLr×N . zr ∈ CN

is the AWGN vector with each entry following CN (0, σ2). The receiver-side steering vector is

defined as

b(θr, φr) ,
[

e−j 2π
λ
τr
1
(θr ,φr), e−j 2π

λ
τr
2
(θr ,φr), . . . , e−j 2π

λ
τrN (θr ,φr)

]T

∈ C
N , (12)

with τ rn(θ
r, φr) = xrnθ

r + yrnφ
r. Then, the receiver-side steering matrix can be written as

B(αr) , [b(θr1, φ
r
1), b(θ

r
2, φ

r
2), . . . , b(θ

r
Lr , φr

Lr)] ∈ C
N×Lr

, (13)

with αr , [θr1, θ
r
2, . . . , θ

r
Lr , φr

1, φ
r
2, . . . , φ

r
Lr ]T ∈ C

2Lr

. Thus, the received signal vector can be

rewritten as

yr =
√
PB(αr)Σg(tM) + zr , B(αr)xr + zr, (14)

with xr ,
√
PΣg(tM) ∈ CLr

. Similar to the AoD estimation algorithm in the previous

subsection, B(αr)xr can be approximated by B̄x̄r, where the (g1 + (g2 − 1)G)th column

of B̄ ∈ CN×G2

is b(θ̄g1 , θ̄g2), and x̄r ∈ CG2

is a sparse vector with Lr nonzero elements

corresponding to xr. If G ≫ Lr, all AoA pairs {θrq , φr
q}L

r

q=1 can be estimated using the OMP

algorithm [7], which correspond to the columns of B̄ with non-zero coefficients in x̄r.

It is worth noting that the AoD/AoA estimation performance is affected by the T-/R-MA’s

positions {tm}Mm=1/{rn}Nn=1. On one hand, a larger M and N indicate more number of pilots,

which can increase the total received signal power for channel reconstruction. On the other hand,

the spatial distribution of MA positions impacts the resolution in the angular domain to estimate

the AoDs/AoAs. Therefore, we will evaluate the AoD/AoA estimation performance with respect

to different MA position setups {{tm}Mm=1, {rn}Nn=1} in Section IV by simulation.

C. PRM Estimation

Based on the channel measurements in the previous two steps, it is generally not possible

to exactly estimate the PRM, Σ, because the rank of channel measurement matrix is usually
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smaller than the number of unknown entries in Σ. Thus, the receiver needs to conduct channel

measurements with additional T-/R-MA’s positions t ∈ Ct and r ∈ Cr, so as to estimate Σ. To

reduce the pilot overhead, we exploit the estimated AoDs and AoAs and move the T-MA and

R-MA to estimate Σ with the minimum number of additional channel measurements or MA’s

positions. Let L̂t and L̂r denote the estimated number of T-MPCs and R-MPCs, respectively.

Then, the estimated AoDs and AoAs can be denoted by {θ̂tp, φ̂t
p}L̂

t

p=1 and {θ̂rq , φ̂r
q}L̂

r

q=1, respectively.

Define γ , vec(Σ) ∈ CLrLt

. Consequently, the received signal vectors in (10) and (14) can be

rewritten as

(

yt
)∗ (a)

=
√
P
(

A(αt)∗ ⊗ f (r1)
H
)

γ +
(

zt
)∗

(15)

, Ψ
t(αt)γ +

(

zt
)∗
,

yr (b)
=

√
P
(

g(tM)T ⊗B(αr)
)

γ + zr,

, Ψ
r(αr)γ + zr,

with Ψ
t(αt) ,

√
P
(

A(αt)∗ ⊗ f(r1)
H
)

∈ C
M×LrLt

and Ψ
r(αr) ,

√
P
(

g(tM)T ⊗B(αr)
)

∈
CN×LrLt

. The two equalities marked by (a) and (b) hold since vec(UQV ) = (V T ⊗U )vec(Q)

for U ∈ Cp×q, Q ∈ Cq×r, and V ∈ Cr×t. Denote the number of additional pairs of T-/R-

MA positions by K, where the kth (k = 1, 2, . . . , K) positions of the T-MA and R-MA are

represented by tak = [xt,ak , y
t,a
k ]T ∈ Ct and ra

k = [xr,ak , yr,ak ]T ∈ Cr, respectively. Then, the received

signal for the kth additional channel measurement is given by

yak =
√
Pf (ra

k)
H
Σg(tak) + zak =

√
P
(

g(tak)
T ⊗ f (ra

k)
H
)

γ + zak , ψ (tak, r
a
k)

H
γ + zak , (16)

where zak ∼ CN (0, σ2) is the AWGN, and ψ (tak, r
a
k) ,

√
P (g(tak)

∗ ⊗ f(ra
k)) ∈ CLrLt

. Denote

J ,M +N +K. The K additional received signals can be stacked with yt and yr as

y = Ψ
(

αt,αr, t̃
a
, r̃a

)

γ + z, (17)

with

y , [
(

yt
)H

, (yr)T , ya1 , y
a
2 , . . . , y

a
K ]

T ∈ C
J , (18)

z , [
(

zt
)H

, (zr)T , za1 , z
a
2 , . . . , z

a
K ]

T ∈ C
J ,
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t̃
a
, [ta1, t

a
2, . . . , t

a
K ] ∈ R

2×K ,

r̃a , [ra
1, r

a
2, . . . , r

a
K ] ∈ R

2×K ,

Ψ̃
(

t̃
a
, r̃a

)

, [ψ (ta1, r
a
1) , ψ (ta2, r

a
2) , . . . , ψ (taK , r

a
K)] ∈ C

LrLt×K ,

Ψ
(

αt,αr, t̃
a
, r̃a

)

,

[

(

Ψ
t(αt)

)T
, (Ψr(αr))T , Ψ̃

(

t̃
a
, r̃a

)∗
]T

∈ C
J×LrLt

.

Define α̂t
, [θ̂t1, θ̂

t
2, . . . , θ̂

t

L̂t
, φ̂t

1, φ̂
t
2, . . . , φ̂

t

L̂t
]T ∈ C2L̂t

and α̂r
, [θ̂r1, θ̂

r
2, . . . , θ̂

r

L̂r
, φ̂r

1, φ̂
r
2, . . . , φ̂

r

L̂r
]T ∈

C2L̂r

. Then, γ can be estimated by

γ̂ = Ψ
(

α̂t, α̂r, t̃
a
, r̃a

)†
y. (19)

Since rank
(

Ψ
(

α̂t, α̂r, t̃
a
, r̃a

))

≤ L̂r + L̂t +K, it requires K ≥ L̂rL̂t − L̂r − L̂t such that the

measurement matrix Ψ
(

α̂t, α̂r, t̃
a
, r̃a

)

has a full-column rank.

The additional T-MA’s and R-MA’s positions affect the estimation performance of γ. If

Ψ
(

α̂t, α̂r, t̃
a
, r̃a

)

is not well-conditioned, it will amplify the noise and reduce the estimation ac-

curacy. Therefore, we optimize t̃
a

and r̃a to minimize the condition number of Ψ
(

α̂t, α̂r, t̃
a
, r̃a

)

,

which is formulated as

min
t̃
a
,r̃a

κ
(

Ψ
(

α̂t, α̂r, t̃
a
, r̃a

))

(20)

s.t. t̃
a ∈ Ct,

r̃a ∈ Cr.

Problem (20) is difficult to solve because the objective function is highly non-convex with respect

to t̃
a

and r̃a. Since t̃
a

and r̃a are real vectors and the constraints of problem (20) are linear,

the local optimum of problem (20) can be efficiently found based on the off-the-shelf fmincon

function in MATLAB. Finally, the estimated h(t, r) can be expressed as

ĥ(t, r) = f̂ (r)HΣ̂ĝ(t), (21)

where Σ̂ is obtained by devectorizing γ̂ to an L̂r × L̂t matrix, ĝ(t) ∈ CL̂t and f̂ (r) ∈ CL̂r are

the estimated T-FRV and R-FRV, with ĝ(t)[p] = ej
2π
λ
(xtθ̂tp+ytφ̂t

p) and f̂(r)[q] = ej
2π
λ
(xr θ̂rq+yrφ̂r

q),

respectively.

The detailed steps of the proposed STRCS-based channel reconstruction algorithm are sum-



12

Algorithm 1 STRCS-based Channel Reconstruction Algorithm

1: Input: yt, yr, K, L̂r, L̂t.

2: Obtain the estimated AoDs {θ̂tp, φ̂t
p}L̂

t

p=1 and estimated AoAs {θ̂rq , φ̂r
q}L̂

r

q=1 by using the OMP

method at the receiver.

3: Obtain t̃
a

and r̃a at the receiver by solving (20).

4: The receiver feeds back t̃
a

to the transmitter for changing T-MA positions, and then obtains

y via (17).

5: Compute γ̂ via (19) at the receiver.

6: Obtain ĥ(t, r) via (21) at the receiver.

7: Output: ĥ(t, r).

marized in Algorithm 1. Specifically, at step 2, we use the OMP method to obtain the estimated

AoDs {θ̂tp, φ̂t
p}L̂

t

p=1 and estimated AoAs {θ̂rq , φ̂r
q}L̂

r

q=1 at the receiver based on the methods given

in Sections III-A and III-B, respectively. Then, at step 3, we obtain Ψ
(

α̂t, α̂r, t̃
a
, r̃a

)

based

on {θ̂tp, φ̂t
p}L̂

t

p=1 and {θ̂rq , φ̂r
q}L̂

r

q=1, and then solve problem (20) to obtain t̃
a

and r̃a. Finally, γ̂ is

computed by LS via (19) at the receiver, and then ĥ(t, r) is reconstructed based on the estimated

FRI via (21).

Next, we analyze the computational complexity of the proposed STRCS-based algorithm.

The complexity of the AoD and AoA estimation using OMP is O(ML̂tG2) and O(NL̂rG2),

respectively [7]. The complexity of solving problem (20) is O(K3.5 log(1/ǫ)) with accuracy ǫ

for the interior-point method [9]. The complexity to obtain γ̂ by LS is O((L̂rL̂t)2J). Thus, the

total complexity of Algorithm 1 is O(ML̂tG2 +NL̂rG2 +K3.5 log(1/ǫ) + (L̂rL̂t)2J), which is

polynomial over M , N , L̂t, L̂r, G, K, and J .

IV. NUMERICAL RESULTS

This section presents simulation results for validating our proposed STRCS-based channel

reconstruction method for MA systems. In the simulation, Ct and Cr are both set as square areas

with A = 4λ. The numbers of T-MPCs and R-MPCs are set as Lt = Lr = 3 [10]. As such, PRM is

a square matrix with Σ[p, p] ∼ CN (0, η/((η+1)Lr)) and Σ[p, q] ∼ CN (0, 1/((η+1)(Lr−1)Lr))

for {(p, q)|p = 1, 2, . . . , Lr; q = 1, 2, . . . , Lr; p 6= q}, where η is set as 1 denoting the ratio of the

average power for diagonal elements to that for non-diagonal elements [3]. The elevation and

azimuth AoDs/AoAs are random variables following uniform distribution over [0, π]. Due to the

normalized channel power, the average receive SNR is defined as P/σ2. We set N =M = 256
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Fig. 3. NMSE versus SNR for different MA position setups in the first two steps.

as the number of T-/R-MA positions in the first two steps of the proposed STRCS method. The

OMP method is used to estimate AoDs/AoAs, with L̂r = Lr +1, L̂t = Lt+1, and G = 200 [8].

We present simulation results based on averaging over 104 independent channel realizations. To

investigate the channel reconstruction performance, Ct and Cr are uniformly divided into multiple

grids, with the distance of adjacent grids being ∆ , λ/5. Then, there are total D , (A/∆)2

grids in Ct/Cr, with their center locations denoted by {tsu}Du=1/{rs
v}Dv=1. Then, Let H ∈ CD×D

and Ĥ ∈ CD×D denote the channel matrix from all the centers of transmit grids to all the centers

of receive grids and the reconstruction of H , i.e., H [v, u] = h(tsu, r
s
v) and Ĥ [v, u] = ĥ(tsu, r

s
v),

respectively. Then, the normalized mean square error (NMSE) for channel reconstruction is

defined by

NMSE = E

{

‖H − Ĥ‖2F
‖H‖2F

}

, (22)

which is averaged over different channel realizations.

In Fig. 3, we show the NMSE versus average receive SNR. We use K = 16 additional pairs of

T-/R-MA positions in the third step, which are selected by solving (20). In particular, we consider

four different MA position setups in the first two steps: 1) Square-shape: {tm}Mm=1/{rn}Nn=1
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forms four lines along the contour of Ct/Cr, with spacing 4A/M between adjacent positions;

2) Cross-shape: {tm}Mm=1/{rn}Nn=1 forms two perpendicular lines intersecting at the center of

Ct/Cr, with spacing 2A/(M − 1) between adjacent positions; 3) Uniform planar array (UPA)-

shape: {tm}Mm=1/{rn}Nn=1 forms the UPA shape, with spacing A/(
√
M − 1) between adjacent

positions; and 4) Circle-shape: {tm}Mm=1/{rn}Nn=1 forms an inscribed circle in Ct/Cr, with spacing

2A sin(2π/M) between adjacent positions. Besides, we consider the exhaustive measurement

(EM) benchmark by directly measuring all D × D channels of H . As shown in Fig. 3, the

proposed channel reconstruction method can be applied to different MA position setups. Besides,

the UPA-shaped position setup can achieve lower NMSE as compared to the other setups. This

is because the UPA geometry can extract more spatial information to distinguish with different

MPCs’ AoDs/AoAs. For SNR = 25 dB, the UPA-shaped position setup achieves 65.8%, 94.7%,

and 54.3% performance improvements over the square-shaped, cross-shaped, and circle-shaped

position setups, respectively. Moreover, the proposed method with UPA-shaped position setup has

lower NMSE than the EM method when SNR < 12 dB, while its number of total measurements

is M+N−1+K = 527, which is much smaller than that of the EM method, i.e., D2 = 1.6×105.

In Fig. 4, we verify the performance of channel reconstruction under different MA posi-

tion selection methods in the third step of the proposed STRCS method. We set SNR = 20
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dB and use the same UPA-shaped MA position setup for AoD/AoA estimation in the first

two steps. The following benchmark schemes are considered for the third step: 1) Random

position (RP): Randomly generate t̃
a ∈ Ct and r̃a ∈ Cr; 2) Random position selection

(RPS): Randomly generate t̃
a ∈ Ct and r̃a ∈ Cr for 100 independent realizations, and select

t̃
a

and r̃a with the lowest κ
(

Ψ
(

α̂t, α̂r, t̃
a
, r̃a

))

; 3) PRM estimation only by additional

measurements (PEAM): Obtain t̃
a

and r̃a by minimizing κ
(

Ψ̃
(

t̃
a
, r̃a

)

)

, and then estimate γ

by γ̂ = Ψ̃
(

t̃
a
, r̃a

)†
[ya1 , y

a
2 , . . . , y

a
K ]

T without using the channel measurements in the first two

steps. It is observed that with the same number of additional channel measurements in the third

step, i.e., K, the proposed scheme by solving (20) can achieve much smaller NMSE as compared

to other benchmark schemes. For the case with K = 10, the proposed scheme has 88.9%, 52.2%,

and 88.6% performance improvements over the RP, RPS, and PEAM schemes, respectively.

Furthermore, it is shown in Fig. 4 that the proposed scheme outperforms the RP and RPS

schemes, indicating that optimizing the T-/R-MA’s positions can yield a more well-conditioned

measurement matrix such that higher estimation accuracy of the PRM can be achieved.

V. CONCLUSIONS

In this letter, we proposed a new channel reconstruction method for MA systems by exploiting

the sparse representation of the channel responses in the given transmitter/receiver region in terms

of MPCs. To reduce the pilot overhead and computational complexity for channel estimation,

the FRI in the angular domain, including the AoDs/AoAs and complex coefficients of all

significant MPCs were sequentially estimated based on finite channel measurements taken at

random/selected locations by the MA in the given region. Numerical results demonstrated that

the proposed method achieves high channel reconstruction accuracy with only moderate pilot

overhead required, which is suitable for wireless applications with slow-varying channels.
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