
ar
X

iv
:2

30
4.

05
79

5v
3 

 [
cs

.N
I]

  3
0 

A
ug

 2
02

3
1

A Low-Complexity Post-Weighting Predistorter in a

mMIMO Transmitter Under Crosstalk
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Abstract— The beam-oriented digital predistortion (BO-DPD)
is not sufficient to linearize the output from a subarray of
power amplifiers (PAs) in different directions except the desired
direction. Therefore, subsequent to the BO-DPD operation, we
perform a post-weighting (PW) processing to minimize the
nonlinear radiations in the wide range of directions under
crosstalk. Here, the optimized PW coefficients are multiplied by
the polynomial terms of the BO-DPD, then, the resultant signals
are distributed to the PAs to compensate the nonlinear radiations.
In this work, first, we propose fully-featured post-weighting (FF-
PW) scheme, then, we derive a low-complexity post-weighting
(LC-PW) scheme.

Index Terms—Predistortion, polynomial model, subarray of
PAs, post-weighting, convex optimization

I. INTRODUCTION

For efficient transmission of signals, radio frequency (RF)

power amplifiers (PAs) play an important role. However, the

design of highly linear PAs over the large dynamic range of

the signals is expensive. Further, it is costly for a massive

multiple-input multiple-output (mMIMO) transmitter with a

large number of PAs under crosstalk. So, the linearization

requires a less complex and proficient predistortion scheme.

Initially, the multiple antennas transmitter was linearized

using a single digital predistortion (DPD) by considering equal

nonlinear characteristics of its PAs [1]. However, in practice,

the nonlinear characteristics are not equal and later, instead

of fully linearizing all PAs, the beam-oriented (BO) output

in a desired direction was linearized using a single DPD,

known as BO-DPD1 under crosstalk [2], [3]. But, it is not

able to provide the linearization in other directions except

the desired direction, thus, it gives nonlinear sidelobes in the

BO output. Then, it is realized that a single DPD with one

predistorted output signal is not sufficient to linearize all the

PAs of different nonlinearites [4]. Later, the full linearization

of the PAs was achieved by including a tuning box to each

PA. But, it has high complexity as each tuning box requires a

training [5].

Recently, in a post-weighting (PW) scheme, a single DPD

training followed by a post-weighting (PW) optimization is

used to generate more than one predistorted signal in a

subarray, then, these signals are distributed to multiple PAs to

address their nonlinearities [6]. But, it provides only one PW

coefficient (one degree of freedom (DOF)) per PA that is not

sufficient to linearize the multiple PAs. In the proposed PW

scheme, the DOF per PA is increased with less complexity

G. Prasad and H. Johansson are with the Division of Communication
Systems, Department of Electrical Engineering, Linköping University, 581
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1In this work, the terms DPD and BO-DPD are used interchangeably.
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Fig. 1. An architecture of a DPD followed by a PW predistortion.

by reducing the adders, multipliers, and the RF chains. In

this regard, the key contribution of this work is three-fold. (i)

First, using the dual-input polynomial models of the PAs, an

approximate relationship is established between the crosstalks

at the PAs and the crosstalk compensation signal to the BO-

DPD. Then, using it, we train the DPD. (ii) Next, we propose

a fully-featured PW (FF-PW) scheme and using it, we derive a

low-complexity PW (LC-PW) scheme. Based on it, the system

parameters are arranged non-trivially into suitable vectors and

matrices to simplify the system analysis. (iii) Further, an

expression for nonlinear radiation from the BO transmitter

operating with DPD and PW is obtained. Using it, a convex

minimization problem is formulated. Then, its optimal PW

coefficients are obtained in a closed form. Finally, numerical

results are obtained to get various design insights.

II. SYSTEM DESCRIPTION AND BO-DPD TRAINING

A. System Architecture

In a mMIMO transmitter, we consider a uniform linear

array of K × S PAs where each of K subarrays contains

S PAs. The message vector that needs to be transmitted is

s = [s1, · · · , sK ]T , where sk is the message to be transmitted

by the kth subarray. Fig. 1 represents an architecture for

the linearization of the kth subarray under crosstalk signals

{ckl}; l ∈ {1, · · · , S} using two layers of predistortion

operations: DPD followed by the PW predistortion. Here, ckl
is the crosstalk signal at lth PA of the kth subarray due to

transmit signals from the remaining PAs. In this scheme, first,

the DPD is trained separately for the BO output from the

subarray. Thus, during the training of the DPD, the PAs are

directly connected to the DPD and isolated from the PW block

by closing the switch S0 and opening the switches, {Si};

i ∈ {1, · · · , N
RF

}, where N
RF

(≤ S) is the number of RF

chains in the subarray. In the training, the message sk and

http://arxiv.org/abs/2304.05795v3
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the signal ck are inputted to the dual-input DPD, where ck
is obtained from the training block as shown in the figure.

Using them, the DPD generates the predistorted signal xk to

address the nonlinearties of the PAs under the crosstalks {ckl}.

Using Fig. 1, the generation of xk can be described as follows.

The dual-input DPD is modeled using a polynomial model (as

described later using (1a)), having Q+ 1 terms which are its

outputs. Each term is a basis function (of sk and ck) multiplied

by its coefficient. The Q+1 coefficients are represented by a

vector Φk which needs to be trained in the training block. The

resultant predistorted signal from the DPD is xk which is the

sum of Q + 1 outputs (cf. (1a) in Section II-B)2. Thereafter,

xk is multiplied by the analog beamforming weights, {wkl} to

get the BO output in a given direction, where wkl (|wkl| = 1)
is the analog phase shifter to the lth PA of the kth subarray

and they are represented in a vector wk = [wk1, · · · , wkS ]
T .

The BO output is feedback to the training block to train the

coefficients Φk and the signal ck using the iterative method

as described in Section II-C. At the end of the training, their

estimated values, Φ̂k and ĉk are obtained. Using them, the

trained DPD provides the Q + 1 outputs that are connected

to the PAs via the PW block after opening S0 and closing

{Si}. In the PW block, the PW coefficients (dedicated for each

n
PA

= S/N
RF

PAs to enhance the predistortion DOF) are

multiplied by the Q nonlinear outputs of the DPD. Thereafter,

the PW block outputs the N
RF

number of signals and each of

these signals are distributed to n
PA

number of PAs to get the

desired BO output.

B. Dual Input Polynomial Model of DPD and PAs

We consider the dual-input memoryless polynomial mod-

els3 [2] for the the DPD and PAs. After omitting the nonlinear

terms of the signal ck, the output xk of the DPD as a function

of sk and ck can be expressed as in (1a) which is further

represented in matrix form in (1b).

xk =

(P−1)/2∑

p=0

φ0kpψ
0
p(sk) +

(P−1)/2∑

p=0

φ1kpψ
1
p(sk)ck +

(P−1)/2∑

p=1

φ2kpψ
2
p(sk)c

∗
k,(1a)

xk = Ψ̆(sk, ck)Φ̆k; k ∈ {1, 2, · · · ,K}, (1b)

where P is the order of the polynomial4 and Ψ̆(sk, ck) =
[Ψ0(sk),Ψ

1(sk)ck,Ψ
2(sk)c

∗
k] is the row vector of basis

functions, Ψ
v(sk) = [ψv

µ(sk), · · · , ψ
v
(P−1)/2(sk)] for v ∈

{0, 1, 2}. ψ0
p(sk) = sp+1

k s∗k
p, ψ1

p(sk) = spks
∗
k
p, and ψ2

p(sk) =

sp+1
k s∗k

p−1. µ is the initial value of p and µ = 1 for

v = 2; otherwise, µ = 0. Φ̆k is a column vector of the

coefficients for the basis functions in Ψ(sk, ck), given by

Φ̆k = [Φ0
k
T
,Φ1

k
T
,Φ2

k
T
]T . Φv

k = [φvkµ, · · · , φ
v
k(P−1)/2]

T and

φvkp is the coefficient of basis ψv
p(sk). Note that Ψ̆(sk, ck) and

Φ̆k contain the basis functions and coefficients for the poly-

nomial of order P in (1a). However, in practice, certain basis

2A conventional DPD has one output xk based on a polynomial model [2].
But, here, each term of the polynomial is further processed by the PW block
(cf. Fig. 1), thus, the DPD has Q+ 1 outputs and xk is the sum of them.

3For simplicity, we consider the memoryless polynomial models, however,
the proposed work is equally applicable for memory polynomial models.

4Although, for simplicity, the orders of the polynomials are represented by
the same symbol, P in (1a) and (2a), they can take different values.

functions with their nonzero coefficients play the dominant

role in predistortion for a given type of PAs. Thus, in general,

if (Q+1) basis functions have their dominant role in the pre-

distortion, then, the basis row vector Ψ(sk, ck) is defined as:

Ψ(sk, ck) , [ψv1
p1
Cv1
k , · · · , ψ

v(Q+1)
p(Q+1)

C
v(Q+1)

k ] and corresponding

coefficient column vector is: Φk , [φv1kp1
, · · · , φ

v(Q+1)

kp(Q+1)
]T .

Here, Cvi
k = δ(vi) + ckδ(vi − 1) + c∗kδ(vi − 2), pi ∈

{0, · · · , (P − 1)/2}, vi ∈ {0, 1, 2} for i ∈ {1, · · · , (Q + 1)},

Q is the number of nonlinear basis functions, and only one

basis function, ψvi
pi
Cvi
k = sk is linear for pi = vi = 0 (thus,

the total number of basis functions is (Q + 1)). δ(·) is the

Kronecker delta function. Hereafter, we consider the DPD in

Ψ(sk, ck) and Φk. Moreover, output signal vector of K DPDs

is denoted as x = [x1, · · · , xK ]T .

Similarly, based on dual input memoryless polynomial

model, for the inputs, xk and ckl to the lth PA of the kth

subarray, its output ykl is expressed as in (2a) and its matrix

form in (2b).

ykl =
∑(P−1)/2

p=0 φ0klpψ
0
p(wklxk) +

∑(P−1)/2
p=0 φ1klpψ

1
p(wklxk)ckl

+
∑(P−1)/2

p=1 φ2klpψ
2
p(wklxk)c

∗
kl (2a)

ykl =Ψ̆(wklxk, ckl)Φ̆kl; l ∈ {1, 2, · · · , S}, (2b)

where Ψ̆(wklxk, ckl) and Φ̆kl are the row and column vectors

of the basis functions and its coefficients respectively. They

can be represented similarly as described above for the DPD

basis functions and coefficients with additional suffix l to

represent it for lth PA of the subarray. Further, for a given

type of PAs, similar to the DPD, the Q
′

+ 1 dominant basis

functions to identify them can be represented in a row vector

Ψ(wklxk, ckl) and corresponding coefficients in a column

vector can be given by Φkl. Note that the PAs coefficients

Φkl; l ∈ {1, · · · , S} are assumed to be known which can

be identified using least square (LS) estimation as described

briefly in the numerical section. Further, all the outputs from

the PAs can be expressed in a matrix form as:

Yk = ΩkΘk, (3)

where Yk = [yk1, · · · , ykS ]
T , Ωk = diag([Ψ(wk1xk, ck1)

T ,
· · · , Ψ(wkSxk, ckS)

T ]T ) and Θk = [ΦT
k1, · · · ,Φ

T
kS ]

T .

Using (3), for the stearing vector h
ϕ
k at angle (direction) ϕ

to the vertical plane of the array, the BO signal zϕk is:

zϕk = h
ϕ
k
T
Yk = h

ϕ
k
T
ΩkΘk, (4)

where h
ϕ
k = [hϕk1, · · · , h

ϕ
kS ]

T and hϕkl is the lth steering

element. As ckl cannot be measured at the lth PA, it can be

expressed as a linear combination of the transmit signals from

the other PAs as [2]:

ckl =
∑K

i=1

∑S
r=1 λ

′

kl,iryir = λ
′

klY , (5)

where λ
′

kl = [λ
′

kl,1, · · · ,λ
′

kl,K ], and λ
′

kl,i =

[λ
′

kl,i1, · · · , λ
′

kl,iS ], and Y = [Y T
1 , · · · ,Y

T
K ]T . λ

′

kl,ir is

the coefficient for contribution in crosstalk signal ckl at lth
PA of the kth subarray from rth PA of the ith subarray.

Simplifying (5) in linear terms of cir and xk after omitting

the negligible nonlinear terms, we get ckl as in (6a). Further,

it is expressed in a matrix form in (6b), then, simplified
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to (6c).

ckl =
∑K

i=1

∑S
r=1

[
λ

′

kl,irφ
0
ir0wirxi + λ

′

kl,irφ
1
ir0cir

]
(6a)

c = A0WDx+A1c (6b)

⇒ c = (I −A1)−1A0WDx = ΛWDx, (6c)

where c = [cT1 , · · · , c
T
K ]T , ck = [ck1, · · · , ckS ]

T ,

Av = Λdiag(Φ
v

1, · · · ,Φ
v

K), Φ
v

k = [φvk10, · · · , φ
v
kS0] for

v ∈ {0, 1}, Λ = [λ
′T
11 , · · · ,λ

′T
1S , · · · , λ

′T
K1, · · · ,λ

′T
KS]

T ,

and WD = diag([w11, · · · , w1S ]
T , · · · , [wK1, · · · , wKS ]

T ).
From (6c), Λ = (I − A1)−1A0 which is nothing

but the coefficients associated with the weighted signal

vector WDx to get c. It can be expressed as Λ =
[ΛT

1 , · · · ,Λ
T
K ]T , where Λk = [λT

k1, · · · ,λ
T
kS ]

T and λkl =
[λkl,11, · · · , λkl,1S , · · · , λkl,K1, · · · , λkl,KS ]. Next, using (4)

and (6c), we describe the training of the BO-DPD.

C. Training of BO-DPD

In [2], the relationship between ck and ck is obtained

without considering wk. To include wk, first, we consider

the same approximation, λkl,ir ≈ αlλki due to uniform and

linear arrangement of PAs [2]. It denotes that the crosstalk

from rth PA of the ith subarray to lth PA of the kth subarray

with coefficient λkl,ir can be approximated to αl times

the overall crosstalk from the ith subarray to kth subarray

with coefficient λki. Applying it to λkl (cf. Section II-B),

we get: λkl ≈ αl[λk1, · · · , λk1︸ ︷︷ ︸
S times

, · · · , λkK , · · · , λkK︸ ︷︷ ︸
S times

] =

αl[λk11
T
S , · · · , λkK1

T
S ] = αlλ

T
kD1, where λk =

[λk1, · · · , λkK ]T , D1 = diag(1T
S , · · · ,1

T
S︸ ︷︷ ︸

K times

) and 1S is

the column vector of ones of length S. Thus, Λk (cf.

Section II-B) is: Λk ≈ αλT
kD1, where α = [α1, · · · , αS ]

T .

After applying this approximation in (6c), we get:

ck = αck; ck = xTWT
DD

T
1
λk. (7)

Using (7), the inputs to the basis functions in Ωk of (3) can

be expressed in xk and ck. As ck depends on λk, we estimate

λk to find ck. In this regard, using (7), zϕk in (4) is given as:

zϕk = g0k + g1
kλ̂k + g2

kλ̂
∗
k, (8)

where g0k =
∑S

l=1 h
ϕ
klΨ

0(wklxk)Φ̂
0
kl, g1

k =∑S
l=1 h

ϕ
kl Ψ

1(wklxk)Φ̂
1
klx

TWT
DD

T
1

, and g2
k =∑S

l=1 h
ϕ
klΨ

2(wklxk)Φ̂
2
klx

HWH
D DH

1
. Further, by including

time samples of x, (8) is given by:

z
ϕ
k = g0

k +G1
kλ̂k +G2

kλ̂
∗
k, (9)

where zϕk , g0k, g1
k, and g2

k are denoted as z
ϕ
k , g0

k, G1
k, and G2

k

respectively after including the time samples5. By splitting (9)

into real and imaginary parts, the real part R(λ̂k) and the

imaginary part I(λ̂k), can be determined as:[
R(λ̂k)

I(λ̂k)

]
=

[
R(G1

k+G
2
k) I(−G1

k+G
2
k)

I(G1
k+G

2
k) R(G1

k−G
2
k)

]† [
R(zϕ

k−g
0
k)

I(zϕ
k−g

0
k)

]
(10)

To determine λ̂k, first, xk is set as: xk = sk. Thus, we

can compute G1
k, G2

k, and g0
k and using the measured z

ϕ
k ,

5Note that in this work, the boldface symbol a represents the scalar signal
a with its time samples.
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(j−1)
k )Φ
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(j)
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TWT
DDT

1
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(j)
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Fig. 2. Flow diagrams for the identification of DPD coefficients.
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Fig. 3. Two PW schemes, (a) FF-PW and (b) LC-PW for S = 4.

from (10), we find λ̂k. Further, the obtained λ̂k is used in

the algorithm as shown in Fig. 2. Here, initially, we again set

xk = sk and for given λ̂k, ck is determined. Then, using

post-inverse, the measured z
ϕ
k and ck are set as inputs to the

DPD to find Φk using LS method. Using it, the output xk of

the DPD and ck are computed. The process repeats until the

value of Φk converges. The complexity of the algorithm in an

iteration is determined using the dominant matrix operations in

Steps 1, 2, and 3 (cf. Fig. 2) which is: O((Q+1)2)+O(K2S).
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III. POST-WEIGHTING SCHEMES AND OPTIMIZATION

To investigate the PW processing, first, we express zϕk in (8)

as a function of sk. By substituting (1b) into (8) and separating

the first basis function from the rest, we get:

zϕk=h
ϕ
k
T
Wkφ̃

0
kφ

0
k0sk+h

ϕ
k0

T
Wkφ̃

0
k0Ψ

′

(sk, ck)Φ
′

k+Z̃
ϕ
k,NL,(11)

where Wk = diag(wk), φ̃0
k0 = [φ0k10, · · · , φ

0
kS0]

T ,

Ψ
′

(sk, ck) = {Ψ(sk, ck)\ψ
0
0(sk) = sk}, Φ

′

k = {Φk\φ
0
k0},

and Z̃k,NL is the nonlinear higher order terms with less

power contents, obtained after removing the term consisting

first (linear) basis function in (4). In (11), the first term is

the desired output. But, the second and third terms inject

nonlinearties, denoted as the nonlinear radiation zϕk,NL as:

zϕk,NL = h
ϕ
k
T
Wkφ̃

0
k0Ψ

′

(sk, ck)Φ
′

k + Z̃ϕ
k,NL. (12)

In (12), zϕk,NL gives the nonlinearties in other directions except

ϕ. Because, in BO-DPD, its coefficients Φ
′

k are trained to

provide the linearization in the direction ϕ. Therefore, to

linearize it further in other directions too, the predistortion

output of the trained DPD is passed through the PW block by

changing the modes of the switches (S0 is open and {Si} are

closed). Next, we describe the proposed two PW schemes.

A. Post-Weighting

The outputs of the DPD are the Q + 1 basis functions (in

Ψ(sk, ck)) multiplied by the respective coefficients (in Φk)

and they are inputted to the PW block. The two types of PW

schemes: (a) FF-PW and (b) LC-PW are shown in Fig. 3 for

S = 4 and Q = 3. The PW coefficients are only multiplied by

the Q nonlinear outputs of the DPD comprising the nonlinear

basis functions (in Ψ
′

(sk, ck)) except the linear basis function

ψvi
pi
Cvi
k = sk for pi = vi = 0 (cf. Section II-B). Thereafter,

the outputs of the PW block are distributed to the inputs of

the PAs to get the desired linear output.

1) Fully-Featured PW (FF-PW): For instance, the FF-PW

scheme in Fig. 3(a) is for S = 4 and Q = 3. Here, Q = 3 non-

linear outputs of the DPD are multiplied by the S = 4 different

sets of PW coefficients to generate the resultant predistorted

signals for the respective S PAs. For the generation of the

predistorted signal to the lth (l ∈ {1, 2, 3, 4}) PA, the corre-

sponding set of coefficients is {γv1klp1
, γv2klp2

, γv3klp3
}. These PW

coefficients are multiplied by the respective DPD outputs given

in the set {φv1kp1
ψv1
p1
Cv1
k , φ

v2
kp2
ψv2
p2
Cv2
k , φ

v3
kp3
ψv3
p3
Cv3
k }. Thereafter,

the sum of the three multiplications along with the linear

DPD output, φ0k0sk gives the lth predistorted signal. Therefore,

the total number of PW coefficients, NF
γ = S × Q = 12

which are completely different from each other without any

repetition and it provides the full DOF to further linearize

the individual PA. However, in LC-PW, the PW coefficients

are assigned adaptively (some coefficients repeat) to the PAs

to reduce their number as described later. In general, the

Q PW coefficients associated with the predistorted signal

to the lth PA are represented as: γv1klp1
, · · · , γ

vQ
klpQ

, where

γviklpi
is the PW coefficient multiplied by the ith nonlinear

DPD output. Further, for the convenience in analysis, the

PW coefficients of the S PAs are arranged in a vector as:

γk , [γv1k1p1
, · · · , γv1kSp1

, · · · , γ
vQ
k1pQ

, · · · , γ
vQ
kSpQ

]T , where the

coefficients multiplied by the same DPD output are grouped

together. The PW processing can be analyzed by incorpo-

rating the γk in (12). As its first term has Ψ
′

(sk, ck), to

multiply γk with it, we need to rearrange Ψ
′

(sk, ck) along

with other matrices and vectors according to arrangement of

PW coefficients in γk. So, h
ϕ
k , Wk, φ̃0

k0, Ψ
′

(sk, ck), and

Φ
′

k are arranged as h
ϕ

k , W k, φ̃
0

k0, Ψ
′

(sk, ck), and Φ
′

k,

respectively. h
ϕ

k = 1Q ⊗ h
ϕ
k , W k = diag(1Q ⊗ wk),

φ̃
0

k0 = diag(1Q⊗φ̃0
k0), Ψ

′

(sk, ck) = diag(Ψ
′

(sk, ck)
T ⊗1S),

and Φ
′

k = diag(Φ
′

k ⊗ 1S). Now, (12) can be expressed as:

zϕk,NL = Tϕ
k γk + Zϕ

k,NL, (13)

where Tϕ
k = h

ϕ

k

T
W kφ̃

0

k0Ψ
′

(sk, ck)Φ
′

k. Also, after incor-

porating PW coefficients in Z̃ϕ
k,NL, it is expressed as Zϕ

k,NL

in (13). As described earlier, due to small power content, we

neglect the PW effect on Zϕ
k,NL. Moreover, in FF-PW, the

number of multipliers NF
γ and the number of adders NF

a

are same as the number of PW coefficients in γk, given

as: NF
γ = NF

a = S × Q. Also, the number of RF chains

NF
RF = S. So, to reduce them, we propose a LC-PW scheme.

2) Low-Complexity PW (LC-PW): As the complexity of

the PW block depends on the number of PW coefficients,

therefore, in the LC-PW scheme, the number of PW coeffi-

cients are reduced by a factor based on a geometric sequence.

In general, the nonlinear DPD outputs in this scheme are

arranged in their decreasing order of dominance (or increasing

order of the polynomial terms). Besides, the numbers of PW

coefficients that are multiplied by the Q DPD outputs, decrease

in a geometric sequence as: {Srν , Sr(ν+1), · · · , Sr(ν+Q−1)},

where r (< 1) is the common ratio. For example, in Fig. 3(b),

for S = 4, Q = 3, r = 1/2, and ν = 1, the sequence of

numbers of PW coefficients is: {2, 1, 0.5}. But, the number

cannot be a fraction value, so, the value in the sequence less

than one is assigned as one, thus the sequence is: {2, 1, 1}. So,

we keep decreasing the number of coefficients until Sri < 1;

i ∈ {ν, ν + 1, · · · , ν + Q − 1} and after that we assign one

PW coefficient to each of the remaining DPD outputs. Thus,

in general, the total number of coefficients (or the multipliers),

NL
γ in the LC-PW is given by (14a) and the total number of

adders, NL
a is expressed in (14b).

NL
γ =





S × rν(1−rQ)
1−r ; for S × r(Q+ν−1) ≥ 1

S × rν(1−rm)
1−r +Q−m; for {S × r(m+ν−1) ≥ 1}

∧{S × r(m+ν) < 1},

(14a)

NL
a = NL

γ + Srν −
⌈
Sr(ν+Q−1)

⌉
. (14b)

For the first case in (14a), the PW coefficient vector, γk =
[γv1k1p1

, γv1k(1+r−ν)p1
, · · · , γv1k(1+(Srν−1)r−ν)p1

, · · · , γ
vQ
k1pQ

,

γ
vQ
k(1+r−(ν+Q−1))pQ

, · · · , γ
vQ
k(1+(Sr(ν+Q−1)−1)r−(ν+Q−1))pQ

]T

and Φ
′

k = diag(Φ
′

k ⊗ 1S)diag(1r−ν , · · · ,1r−ν︸ ︷︷ ︸
Srν times

, · · · ,

1r−(ν+Q−1) , · · · ,1r−(ν+Q−1)︸ ︷︷ ︸
Sr(ν+Q−1) times

). Otherwise,

for the second case, γk = [γv1k1p1
,

γv1k(1+r−ν)p1
, · · · , γv1k(1+(Srν−1)r−ν)p1

, · · · , γvmk1pm
,

γvm
k(1+r−(ν+m−1))pm

, · · · , γvm
k(1+(Sr(ν+m−1)−1)r−(ν+m−1))pm

,
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γ
v(m+1)

k1p(m+1)
, γ

v(m+2)

k1p(m+2)
, · · · , γ

vQ
k1pQ

]T and Φ
′

k = diag(Φ
′

k ⊗

1S)diag(1r−ν , · · · ,1r−ν︸ ︷︷ ︸
Srν times

, · · · ,1r−(ν+m−1) , · · · ,1r−(ν+m−1)︸ ︷︷ ︸
Sr(ν+m−1) times

,

1S , · · · ,1S︸ ︷︷ ︸
Q−m times

). Moreover, remaining vectors and matrices, h
ϕ

k ,

W k, and φ̃
0

k0, Ψ
′

(sk, ck) are expressed same as for FF-PW

(cf. Section III-A1). Also, the expression for the nonlinear

radiation, zϕk,NL is same as in (13). Moreover, from Fig. 3(b),

the number of RF chains, NL
RF depends on the number

of coefficients assigned to the first nonlinear output, i.e.,

NL
RF = Srν = NF

RF r
ν . Thus, in LC-PW, the number of RF

chains, multipliers, and the adders are reduced by the factors,

r−ν , NF
γ /N

L
γ , and NF

a /N
L
a , respectively. For example, in

Fig. 3(b), the respective factors are 2, 4, and 2.4. Hence, the

LC-PW is less complex and economical for the mMIMO.

B. Optimization of γk

The optimization problem can be formulated as:

P0 : minimize
γk

∑
t E[|z

ϕt

k,NL|
2]

s. t.: h
ϕ0

k

T
W kφ̃

0

k0Ψ
′

Φ
′

kγk = h
ϕ0

k

T
W kφ̃

0

k0Ψ
′

Φ
′′

k,

where Φ
′′

k = Φ
′

k ⊗ 1S and E[·] is the expectation with

respect to time samples. In problem P0, the objective function

which needs to be minimized in γk, is the sum of the average

value of the power of nonlinear radiation in the given range

of directions with sample points {ϕt}. The constraint ensures

the linearization of BO signal in the desired direction ϕ0.

1) Optimal Solution: To investigate the convexity of the

problem, the objective function, OP0 ,
∑

t E[|z
ϕt

k,NL|
2] =∑

t E[z
ϕtH
k,NL z

ϕt

k,NL], can be expressed using (13) as:

OP0 =γH
k

∑
t E[T

ϕt

k
H
Tϕt

k ]γk + γH
k

∑
t E[T

ϕt

k
H
Zϕt

k,NL]

+
∑

t E[Z
ϕtH
k,NL T

ϕt

k ]γk +
∑

t E[Z
ϕtH
k,NLZ

ϕt

k,NL]. (15)

As the constraint is linear and from (15), the objective function

is quadratic in γk, the problem P0 is convex and gives a global

solution using the Karush–Kuhn–Tucker (KKT) conditions.

From P0, the Lagrangian function, L(γk, η) is:

L(γk, η) = OP0 + η(Tϕ0

k γk − h
ϕ0

k

T
W kφ̃

0

k0Ψ
′

Φ
′′

k), (16)

where η is the Lagrangian multiplier which is 6= 0 to consider

the constraint in the optimization. Using the complex gradient

of L(γk, η) in γk, the KKT conditions are obtained as:
∑

t

E[Tϕt

k
H
Tϕt

k ]γk+
∑

t

E[Tϕt

k
H
Zϕt

k,NL]+ηT
ϕ0

k
H

= 0,(17a)

Tϕ0

k γk = T
ϕ′

0

k , (17b)

where T
ϕ′

0

k = h
ϕ0

k

T
W kφ̃

0

k0Ψ
′

Φ
′′

k. Using (17), the optimal

solution γ̂k and corresponding Lagrangian multiplier η̂ are:

γ̂k =η̂
(∑

t E[T
ϕt

k
H
Tϕt

k ]
)−1

Tϕ0

k
H
−
(∑

t E[T
ϕt

k
H
Tϕt

k ]
)−1

×
∑

t E[T
ϕt

k
H
Zϕt

k,NL], (18a)

η̂ =
T

ϕ′

0
k

+T
ϕ0
k

(
∑

t E[T
ϕt
k

HT
ϕt
k

])−1 ∑
t E[T

ϕt
k

HZ
ϕt
k,NL

]

T
ϕ0
k

(
∑

t E[T
ϕt
k

HT
ϕt
k

])−1T
ϕ0
k

H . (18b)

(a) (b)

Fig. 4. Performance comparison of the different PW schemes against
(a) the benchmark schemes and (b) the systems with only BO-DPD.

TABLE I
AVERAGE ACPR OF TWO ADJACENT CHANNELS.

Scheme ACPR (dB) Scheme ACPR (dB)

Intra [6] 41.6683 BO-DPD w/ CTP [2] 33.0106

Inter [6] 45.7127 BO-DPD w/o CTP [4] 27.5087

FF-PW 63.4938 LC-PW 52.1726

IV. NUMERICAL EXPERIMENT AND CONCLUSION

To evaluate the performance, we use the set of 16 PA mem-

oryless polynomial models obtained by measuring the outputs

of 16 HMC943APM5E PA ICs at 28.5 GHz to the OFDM

input signal of 200 MHz bandwidth. Although, the signal is

wideband, the memoryless model provides an accuracy around

−23 dB in normalized mean square error [3]. Besides, two

subarrays, each comprising 16 PAs, are considered. The PAs

are arranged in a uniform linear array and the distance between

the two adjacent antennas is half the operating wavelength.

The beamforming and steering weight for a given azimuth

angle is determined using the procedure in [7]. The crosstalk

between two adjacent antennas is −10 dB, whereas, it decays

as a square of distance between other two antennas [3]. Using

the measured output of HMC943APM5E PA ICs at 28.5

GHz with −10 dB crosstalk, we identified the dual-input

memoryless model for each PA using LS estimation as follows.

For a given input signal x̊k, a test crosstalk signal c̊kl to the

PA, and the measured output ẙkl, the coefficients of the PA

are identified using LS estimation as: Φ̂kl = Ψ(̊xk, c̊kl)
† ẙkl.

Fig. 4 depicts the performance comparison of the schemes in

the nonlinear radiations. A notch in each curve at 0 rad is due

to BO-DPD linearization in the direction. PW coefficients are

optimized for the angle range [−π/3, π/3] and [−π/2, π/2]
for Figs. 4(a) and 4(b), respectively. So, intra-PW and inter-

PW schemes overshoots beyond the range in Fig. 4(a). In the

direct nonlinear radiation (DNR), the message signal is directly

transmitted from the subarray where the average power of the

transmit signal is normalized to 0 dB. So, the predistortion

schemes give significant performance enhancement against

DNR. Further, FF-PW and LC-PW provide the improvements

by 20.01 dB and 9.88 dB against intra-PW due to their higher

DOF in PW, but, inter-PW gives marginal improvement of

3.44 dB. Fig 4(b) quantifies the performance improvement

due to crosstalk preprocessing (CTP) in the schemes. Here, a

scheme name followed by w/ (w/o) represents the predistortion

with (without) CTP. In BO-DPD w/o [4] and BO-DPD w/ [2],
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only DPD is used to linearize the BO outputs. Thus, the

PW schemes always perform better. Moreover, BO-DPD, LC-

PW, and FF-PW schemes with CTP provide the respective

on average improvements by 5.06 dB, 5.82 dB, and 8.11 dB

against the schemes without CTP. Also, the average adjacent

channel power ratios (ACPRs) of the schemes are shown in

Table I. Here, average ACPR is the average of the ACPRs

of the two adjacent channels which are computed as in [3].

Again, the FF-PW has the best average ACPR while the LC-

PW has an intermediate performance.
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