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Deep Learning for Joint Design of Pilot, Channel
Feedback, and Hybrid Beamforming in FDD

Massive MIMO-OFDM Systems
Junyi Yang, Weifeng Zhu, Shu Sun, Xiaofeng Li, Xingqin Lin, and Meixia Tao

Abstract—This letter considers the transceiver design in fre-
quency division duplex (FDD) massive multiple-input multiple-
output (MIMO) orthogonal frequency division multiplexing
(OFDM) systems for high-quality data transmission. We propose
a novel deep learning based framework where the procedures
of pilot design, channel feedback, and hybrid beamforming are
realized by carefully crafted deep neural networks. All the
considered modules are jointly learned in an end-to-end manner,
and a graph neural network is adopted to effectively capture
interactions between beamformers based on the built graphical
representation. Numerical results validate the effectiveness of our
method.

Index Terms—Hybrid beamforming, limited feedback, deep
learning, graph neural network.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is an es-
sential technology in the fifth generation (5G) wireless systems
and beyond, owing to its remarkable capacity of beamforming
towards desired directions thus significantly enhancing spec-
tral efficiency [1]. Massive MIMO beamforming requires the
knowledge of downlink channel state information (CSI) at the
base station (BS). In time-division duplex (TDD) systems,
downlink CSI can be estimated directly at the BS based
on uplink transmission by channel reciprocity. In contrast,
in frequency-division duplex (FDD) systems, downlink CSI
acquisition typically requires the user equipment (UE) to
channel estimation based on downlink pilot transmission and
then feedback the CSI to the BS. Considering the signaling
overhead and computational complexity, the pilot design,
channel estimation, feedback mechanism, and beamforming
design constitute the primary challenges for implementing
massive MIMO beamforming in FDD systems.

Recently, thanks to the powerful deep learning (DL) tech-
niques, many studies have proposed using deep neural net-
works to design the aforementioned modules, namely, pilot
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transmission, CSI estimation and feedback, and beamform-
ing, in FDD massive MIMO systems either separately or
jointly [2]–[10]. In particular, in works [2]–[4], only one of
the modules is individually optimized using DL techniques.
More specifically, the work [2] introduces a DNN called
CsiNet for CSI feedback, while works [3], [4] utilize DNNs
comprised of fully-connected and convolutional layers for
beamforming design. To further enhance performance, works
[5]–[8] propose the DL-based method for the joint design
of CSI feedback and beamforming. Therein, works [5], [6]
consider beamforming design based on channels estimated by
conventional methods, while works [7], [8] assume perfect
CSI at the receiver. In works [9], [10], the pilot design,
CSI feedback and beamforming are jointly optimized by DL
techniques. Note that these works on joint design [9], [10]
only focus on fully digital beamforming, which requires each
antenna to be connected to a dedicated RF chain, yielding
potentially unaffordable hardware costs and increased power
consumption [11]. In addition, the aforementioned works [2]–
[10] only consider narrowband systems. Directly extending
these methods to broadband systems can result in a substantial
increase in the number of trainable parameters.

This letter considers the practical FDD broadband massive
MIMO systems with orthogonal frequency division multiplex-
ing (OFDM) modulation and hybrid analog-digital beamform-
ing architecture. We propose a novel DL framework to realize
the joint design of pilot transmission, channel feedback, and
hybrid beamforming. The main distinctions and contributions
of this work in comparison to the existing literature are as
follows. First, our considered FDD massive MIMO system
is more practical with OFDM-based broadband transmis-
sion using hybrid analog-digital beamforming architecture.
Therein, each subchannel consists of a set of subcarriers
and is associated with an individual digital beamformer, and
all subchannels share a common analog beamformer. Sec-
ond, our DL-based joint design utilizes learned pilot signals
and a paired vector quantized variational auto-encoder (VQ-
VAE) for channel estimation and feedback. Compared to con-
ventional compression-reconstruction-based channel feedback
methods, VQ-VAE can represent the discrete characteristics
of the received signal space more accurately, thus facilitating
the efficient collection and feedback of channel information.
Third, a novel graph neural network (GNN) is proposed for
hybrid beamforming and combining (HBC) design based on
the channel information feedback. The proposed GNN can
effectively capture the interactions between the analog and dig-
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ital beamformers in broadband systems, leading to significant
performance improvements. Numerical results demonstrate
that our method can consistently achieve a 16%∼21% higher
spectral efficiency comparing to existing alternatives under the
same pilot length and closely approach the performance of
the benchmark system with the fully digital architecture and
unlimited channel feedback capacity.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an FDD MIMO-OFDM system, where an Nt-
antenna BS with NRF,t RF chains serves an Nr-antenna UE
with NRF,r RF chains and Ns parallel data streams s[k] ∈
CNs×1 over K subchannels. Here, we have Nt > NRF,t ≥ Ns,
Nr > NRF,r ≥ Ns. Let K = {1, 2, . . . ,K} denote the set of
subchannels.

The whole communication procedure between the BS and
UE involves three stages of pilot transmission, channel feed-
back and data transmission. First, in the pilot transmission
stage, the BS transmits pilots to the UE over Kp uniformly-
spaced subchannels. Let Kp = {1,M + 1, . . . , (Kp − 1)M +
1} ∈ K denote the subchannel set for pilot transmission, where
M represents the subchannel interval. We assume that the pilot
length is L and each pilot vector, denoted as s̃l ∈ CNRF,t×1

is subject to the power constraint ||s̃l||22 ≤ NRF,t. Let
L = {1, 2, . . . , L} denote the set of pilot indices. Then the l-th
received pilot signal at the kp-th subchannel can be expressed
as

ỹl[kp] =
√
ρpW̃

H
RF,lH[kp]F̃RF,l s̃l + W̃H

RF,l ñl[kp],

∀l ∈ L, kp ∈ Kp, (1)
where ỹl[kp] denotes the l-th column of the received pilot
matrix Ỹ[kp], H[kp] ∈ CNr×Nt denotes the frequency-domain
channel matrix at the kp-th subchannel, ρp is the power for
pilot transmission, ñl[kp] ∼ CN (0, σ2

nINr) indicates the kp-
th subchannel noise vectors at the l-th pilot transmission.
F̃RF,l ∈ CNt×NRF,t and W̃RF,l ∈ CNr×NRF,r represent the
analog beamformer and combiner in the l-th pilot transmission,
respectively, which follow the constant modulus constraints
|[F̃RF,l ]i,j |2 = 1

Nt
and |[W̃RF,l ]i,j |2 = 1

Nr
.

After the pilot transmission, the received pilot signals R =
{Ỹ[kp]}kp∈Kp are encoded into a bit stream of length B by
a feedback encoder, denoted as q = ve(R) ∈ {0, 1}B×1. This
bit stream is then assumed to be fed back to the BS error free.
With the feedback q, the BS recovers the received signals
by a feedback decoder as R̂ = vd(q), and then designs the
hybrid beamformer F = {FRF, {FBB[k]}k∈K} with R̂. Here,
we denote the recovered signals as R̂ = {Ŷ[kp]}kp∈Kp . For
the UE, the hybrid combiner W = {WRF, {WBB[k]}k∈K}
can be designed based on its received pilot signals R. Here,
FRF ∈ CNt×NRF,t and WRF ∈ CNr×NRF,r represent the
analog beamformer and combiner at the BS and the UE,
respectively, which also follow the constant modulus con-
straints |[FRF]i,j |2 = 1

Nt
and |[WRF]i,j |2 = 1

Nr
; FBB[k] ∈

CNRF,t×Ns and WBB[k] ∈ CNRF,r×Ns represent the digital
beamformer and combiner at the k-th subchannel, respectively.
We also consider the power constraint for the hybrid analog
and digital beamformers, i.e.,

∑K
k=1 ||FRFFBB[k]||2F = KNs.

Note that we propose to directly process R without explicitly

reconstructing the channel matrix throughout the process (i.e.,
implicit channel estimation), which is potential to greatly
reduce the signaling overhead and thus further improve the
system performance. The hybrid beamformer and combiner
design can be modeled as:

F = f(R̂), (2)
W = g(R). (3)

Finally, we adopt the fully-connected hybrid beamforming
architecture at both the BS and UE for downlink data trans-
mission, where all the subchannels share the common analog
beamformer FRF at the BS (and the common analog combiner
WRF at the UE), while each subchannel has its own individual
digital beamformer FBB[k] (and digital combiner WBB[k])
for k ∈ K. Then the received signal of the k-th subchannel is
given by

y[k] =
√
ρWH

BB[k]W
H
RFH[k]FRFFBB[k]s[k]

+WH
BB[k]W

H
RFn[k], ∀k ∈ K. (4)

where ρ and n[k] ∼ CN (0, σ2
nINr

) denote the transmit
power and noise vector, s[k] ∈ CNs×1 is the information
symbol which satisfies the constraint E{s[k]sH [k]} = INs

.
The spectral efficiency of the system can be computed as

R =
1

K

∑
k∈K

log det

(
INs

+
ρ

Ns
Ω−1[k]Λ[k]ΛH [k]

)
, (5)

where Ω[k] = σ2
nW

H
BB[k]W

H
RFWRFWBB[k] ∈ CNs×Ns and

Λ[k] = WH
BB[k]W

H
RFH[k]FRFFBB[k] ∈ CNs×Ns .

Based upon the above signal processing procedure, we
jointly design the pilot parameter P = {W̃RF,l, F̃RF,l, s̃l}Ll=1,
the feedback, and the hybrid beamforming to maximize the
spectral efficiency in the massive MIMO-OFDM system. The
optimization problem can be formulated as

max
P,ve(·),vd(·),
F,W,f(·),g(·)

R in (5) (6a)

s.t. |[FRF]i,j |2 = |[F̃RF,l ]i,j |2 =
1

Nt
,∀i, j, (6b)

|[WRF]i,j |2 = |[W̃RF,l ]i,j |2 =
1

Nr
,∀i, j, (6c)

K∑
k=1

||FRFFBB[k]||2F = KNs, (6d)

||s̃l||22 ≤ NRF,t,∀l, (6e)

q = ve(R), R̂ = vd(q), (6f)
(1), (2), (3). (6g)

The above optimization problem contains both variable opti-
mization and function optimization. To tackle this challenging
problem, we propose a DL-based approach to learn the pilot
parameter P and to parameterize the mapping functions ve(·),
vd(·), f(·) and g(·) by deep neural networks, whose details
will be given in the next section.

III. PROPOSED DL-BASED METHOD

In this section, we propose a DL-based method to acquire
the hybrid beamformer in the FDD massive MIMO-OFDM
system. As illustrated in Fig. 1, the proposed DL architecture
consists of a pilot network (PN), a feedback network (FN),
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Pilot 
Network

Encoder
𝑣𝑣e(·)

Decoder
𝑣𝑣d(·)

HB-GNN 
𝑓𝑓(·)

HC-GNN 
𝑔𝑔(·)

Feedback Network HBC-GNN

Encoder
𝑣𝑣e(·)

Decoder
𝑣𝑣d(·)

HB-GNN 
𝑓𝑓(·)

HC-GNN 
𝑔𝑔(·)

Trained Feedback Network Trained HBC-GNN

Training Phase

Deployment Phase

Fig. 1. The diagram of the proposed DL-based method.

and an HBC-GNN. The parameters in these DNNs are jointly
optimized during the training phase before deployment.

A. Pilot Network

The PN is trained to obtain the pilot parameter P for channel
estimation. Due to the constant-modulus constraint on each
element in F̃RF,l and W̃RF,l (6b)(6c), the PN obtains the
phase shifts of them, which satisfy the equation:

F̃RF,l =
1√
Nt

[
cos(Θ̃ΘΘl) + j · sin(Θ̃ΘΘl)

]
, (7a)

W̃RF,l =
1√
Nr

[
cos(Φ̃ΦΦl) + j · sin(Φ̃ΦΦl)

]
, (7b)

where ΘΘΘl ∈ RNt×NRF,t and ΦΦΦl ∈ RNr×NRF,r represent the
matrices of phase shifts at the BS and the UE, respectively.
Thus we consider {ΘΘΘl,ΦΦΦl, s̃l}Ll=1 as the trainable variables and
(1) can be regarded as a forward-pass computation of H[kp]
through a two-layer network. Once the training of the PN is
completed, we will directly use the trained P to acquire the
channel information in the deployment phase.

B. Feedback Network

Based on the signal processing procedure in Section III,
we can follow the auto-encoder neural network architecture
to design the FN. In this work, we adopt the VQ-VAE
neural network [12] for feedback by exploiting its high-
quality compression ability. The key idea of VQ-VAE is to
train a codebook that can accurately characterize the discrete
representation of the input signal space. The pilot signal R
is first split to several vectors, then VQ-VAE utilizes the
codeword closest to each vector from the trained codebook
as its output. In our work, the trained codebook is pre-stored
at both the UE and the BS, while the binary vector q in the
feedback link in fact represents the indices of the selected
codewords by the encoder. For illustration, we denote the loss
function of VQ-VAE as LV, which can be regarded as the
mean squared error (MSE) between the received pilot signals
and the selected codewords by the encoder.

C. Hybrid Beamforming and Combining Graph Neural Net-
work

To better exploit the interactions between the analog beam-
former and digital beamformers, we utilize the GNN for hybrid

beamforming design. In the MIMO-OFDM system, there is
a particular digital beamformer for each subchannel, while
the analog beamformer is shared among all the subchannels.
Compared with the fully-connected neural network, GNN
can naturally embed the topological relations in its network
architecture and thus enjoys permutation invariance and per-
mutation equivariance of the optimization problem (6). Here,
permutation invariance means that the analog beamformer
FRF is independent of the ordering of the subchannels, while
permutation equivariance means that the {FBB[k]}k∈K will be
permuted in the same way if the subchannels are permuted.
Furthermore, the reduced model complexity and improved
generalization performance also make the GNN more favor-
able.

Before the GNN design, we build the graphical represen-
tation of FRF and {FBB[k]}k∈K at the BS. As shown in
Fig. 2(a), the analog beamformer FRF is represented by the
circular node and the digital beamformers {FBB[k]}k∈K are
presented by square nodes. There is an associated state vector
ck ∈ R2NRF,tNs×1 and v ∈ R2NRF,tNt×1 for each digital
beamformer node and analog beamformer node, respectively.
These vectors will be updated layer by layer in the GNN
to collect sufficient useful information, and finally yield the
beamformers of their corresponding nodes. Note that the
graphical representation of WRF and {WBB[k]}k∈K at the
UE can be established in a similar way.

Based on the graphical representation, we propose a HBC-
GNN which contains a hybrid beamforming GNN (HB-GNN)
and a hybrid combining GNN (HC-GNN) to obtain F and
W , respectively. The HB-GNN and HC-GNN have similar
network structures, thus we only provide the details of the
HB-GNN below. The architecture of the proposed HB-GNN
architecture is shown in Fig.2(b), which consists of the fol-
lowing three parts.

1) Initialization Layer: This layer consists of two DNNs to
obtain the initialization for all nodes. Considering the corre-
lation between adjacent subchannels, we initialize the digital
beamformer node for each subchannel based on the collected
channel information from its nearby pilot-bearing subchannels.
Specifically, all digital beamformer nodes are divided into
Kp groups and the multilayer perceptron (MLP) IBB(·) is
designed for all groups to generate initial state vectors as
{c0kp

, c0kp+1, . . . , c
0
kp+M−1} = IBB(Ŷ[kp]), kp ∈ Kp. For the

analog beamformer node, the state vector is initialized by the
MLP IRF(·) as v0 = IRF(Ȳ), where Ȳ = ψ({Ŷ[kp]}kp∈Kp)
and ψ(·) adopts the element-wise mean function due to the
fact that each digital beamformer node has equal contribution
to the analog beamformer node. Note that such a property is
also utilized in the design of the following aggregation and
combination layers.

2) G Layers of Aggregation and Combination: In the g-th
aggregation and combination layer, the state vector of each
node is updated by combining its own state vector and the
aggregation of state vectors from its neighbor nodes.

Specifically, in the g-th aggregation and combination layer,
the state vector of the analog beamformer node is updated as

vg = fg1 (v
g−1) + fg2

(
c̄g−1

)
, (8)
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Fig. 2. (a) Graphical representation of the hybrid beamformer at the BS; (b) The network architecture of the proposed HB-GNN.

where c̄g−1 = ψ({cg−1
k }k∈K), f

g
1 (·) and fg2 (·) are realized

by MLPs. For digital beamformer nodes, the state vector of
digital beamformer node k in the g-th layer can be given by

cgk = fg3 (c
g−1
k ) + fg4 (v

g−1), ∀k ∈ K, (9)
where fg3 (·) and fg4 (·) also employ MLPs and they are reused
in Kp groups just like IBB(·).

3) Normalization Layer: After G-layer aggregation and
combination, we obtain the hybrid beamformers from the state
vectors {cGk }Kk=1 and vG. Here, each state vector exactly con-
sists of the real and imaginary components of its corresponding
beamformer and can be represented as

vG = vec(
[
ℜ{FRF},ℑ{FRF}

]
), (10)

cGk = vec(
[
ℜ{FBB[k]},ℑ{FBB[k]}

]
),∀k ∈ K, (11)

Then, a normalization layer is utilized to scale {FBB[k]}k∈K
and each element in FRF, which ensures that the constraints
(6b), (6c), and (6d) are satisfied.

In practice, each MLP in the proposed HB-GNN and HC-
GNN is modeled as only one fully-connected layer with an
activation function, and the input/output dimension is deter-
mined based on the input/output vector.

D. Network Training

We adopt the end-to-end training strategy to train the
proposed pilot network, VQ-VAE, HB-GNN, and HC-GNN
jointly. The loss function is defined as

L = αLV −R (12)
where α is the weight factor keeping fixed during the training
phase and the optimal value of α can be obtained by empirical
results. The first term of (12) corresponds to supervised
learning for implicit CSI transmission, which ensures that
the received pilot signals and the codewords in the VQ-VAE
have similar distributions. The second term of (12) pertains to
unsupervised learning for maximizing the transmission rate.
In the training phase, we only need to collect channel samples
in a targeted environment which serve as the input to the
proposed neural network, without the need of creating labels.
Note that the proposed DNN is site-specific and needs to be
retrained if the channel statistics vary. In practice, the channel
statistics usually evolve slowly and remain almost unchanged
in a long period, indicating that there is no need to execute
the retraining operation frequently.

TABLE I
PARAMETER CONFIGURATIONS OF VQ-VAE

B 32 64 96 128 192 256 512 768 1024
D 2 4 8 4 8 16 16 8 16
V 32 32 32 16 16 16 8 4 4

Note: Since the feedback vector q is actually a set of indices of codewords
and R consists of the real and imaginary components, the parameters satisfy
the equation B =

2KpNsL

V
log2 D.

TABLE II
COMPLEXITY COMPARISON

Hybrid beamforming technique Complexity
HB-GNN / HC-GNN O(GN2

RF(KN2
s +NsN +N2))

MLP O(GN2
RF(K

2N2
s +KNsN +N2))

MO O(IK2NRFN
2
s N

3)
Method proposed in [7] O(DKN2M̄2C̄2)

Note: N and NRF represent the numbers of antennas and RF chains at the
BS or the UE, respectively. I represents the number of iterations. D is the
number of convolutional layers. M̄ and C̄ represent the average kernel size
and the number of channels in the convolutional network, respectively.

IV. NUMERICAL RESULTS

A. Dataset Description and Simulation Settings

We perform extensive simulations based on the public
datasets of DeepMIMO I3 [13]. The data associated with the
BS #2 is adopted in the experiment. The downlink carrier
frequency and the bandwidth are the 60 GHz band 1 and 100
MHz, respectively. We set Nt = 64, NRF,t = 4 for the BS and
Nr = 4, NRF,r = 2 for the UE. The number of subchannels
K is 128 and there are Ns = 2 data streams. The noise power
spectral density (PSD) and pilot transmission power are set to
be -161 dBm/Hz and 10 dBm, respectively, if not specified
otherwise. For pilot transmission, we only use Kp = 16
subchannels with M = 8, thus Kp = {1, 9, . . . , 121}. The
pilot length is set to be L = 16. The parameter configurations
of the proposed VQ-VAE for different feedback overhead
B are shown in Table I, where the codebook size and the
codeword length are denoted as D and V , respectively. Based
on simulation trials, the number of layers of aggregation and
combination is set to be G = 4 for both HB-GNN and HC-
GNN, and the weight factor α is set to be 0.2. We use 60%
samples for training, 20% for validation, and 20% for testing.

1The proposed approach is applicable to a wide range of frequency bands
including the centimeter-wave and millimeter-wave bands.
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B. Performance Evaluation of the Proposed Method

To verify the effectiveness of our proposed method, several
benchmarks are selected for comparison, including manifold
optimization (MO) with perfect CSI (PCSI), MO with or-
thogonal matching pursuit (OMP)-based channel estimation,
DL method proposed in [7], and the MLP method whose
structure has been utilized in many existing works [5], [6],
[9]. The fully digital beamforming with PCSI is also consid-
ered as a performance upper bound. Here, the MLP method
consists of the same structure as the proposed method, but
the initialization layer and G aggregation and combination
layers in the beamforming network are replaced by G + 1
fully-connected layers with an activation function. The DL
architecture proposed in [7] primarily comprises convolutional
layers and assumes the availability of PCSI at the receiver.
An overview of the complexities of different beamforming
schemes is presented in Table II.

Fig. 3 shows the average spectral efficiency of proposed
method and benchmarks with respect to the transmit power.
In the simulation, the feedback overhead is fixed to 512 bits
for both the proposed method and MLP method, whereas
the other schemes consider infinite-capacity feedback links.
It is observed that our method can significantly outperform
other methods that require channel estimation, and achieve
performance close to the fully digital beamforming (upper
bound). The small performance gap between our method and

PCSI-MO may come from the imperfect CSI caused by the
limited pilot length, noise to pilot signals, and quantization
error in the feedback.

Next, we evaluate the performance of the DL-based methods
with different feedback overheads in Fig. 4, where the transmit
power is fixed to 10 dBm. It is seen that 256 bits per pilot-
bearing subchannel are already sufficient for the proposed
method to achieve satisfactory performance. We also observe
that the proposed method can outperform MO with OMP-
based channel estimation with a feedback overhead of only
64 bits per pilot-bearing subchannel.

V. CONCLUSION

In this paper, we investigate the joint design of pilot,
CSI feedback, and hybrid beamforming for the FDD MIMO-
OFDM system. A novel DL-based method is proposed, which
consists of a PN, an FN, and an HBC-GNN. Therein, the PN
uses learned pilot for better CSI acquisition, and the FN via
VQ-VAE is designed to improve the feedback efficiency in
the limited feedback scenario. Then the HBC-GNN outputs
the hybrid beamformer and combiner based on the processed
signals at the PN and FN. Simulation results demonstrate the
superior performance of our method compared with represen-
tative conventional counterparts.
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