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Abstract—This letter investigates a fluid antenna system (FAS)
where multiple ports can be activated for signal combining for
enhanced receiver performance. Given M ports at the FAS, the
best K ports out of the M available ports are selected before
maximum ratio combining (MRC) is used to combine the received
signals from the selected ports. The aim of this letter is to study
the achievable performance of FAS when more than one ports
can be activated. We do so by analyzing the outage probability
of this setup in Rayleigh fading channels through the utilization
of Gauss-Chebyshev integration, lower bound estimation, and
high signal-to-noise ratio (SNR) asymptotic approximations. Our
analytical results demonstrate that FAS can harness rich spatial
diversity, which is confirmed by computer simulations.

Index Terms—Diversity, fluid antenna system (FAS), maximum
ratio combining (MRC), outage probability.

I. INTRODUCTION

Fluid antenna system (FAS) capitalizes upon the inherent
spatial diversity by dynamically adjusting the antenna elements
to optimal positions, referred to as “ports”. This new paradigm
stands in contrast to traditional communication methodologies,
in which the antenna elements remain in fixed positions, as
elucidated by Shojaeifard et al. in [1]. The realization of FAS
may come in the forms of liquid-metal-based antennas [2] or
on-off pixel-based antennas [3]. See [4] for more details.

Motivated by the great potential of FAS, recent research has
delved into the FAS channel model, deriving the probability
density function (PDF) of the received signal-to-noise ratio
(SNR) as well as the corresponding outage probability [5]–[7].
Remarkably, the outcomes of their investigation unveiled the
superiority of the FAS scheme over conventional fixed-position
antenna systems, particularly when a considerable multitude
of ports is at disposal. Machine learning techniques have also
been shown to be effective in port selection for FAS [8]. Most
recently, Wong et al. has extended the use of FAS for multiple
access by taking advantage of the ups and downs of fading
channels in the spatial domain, and illustrated the possibility
of alternative multiple access schemes using FAS [9]–[11].

(Corresponding author: Tuo Wu and Cunhua Pan.)
X. Lai is with the School of Computer Science, Guangdong University of

Education, Guangzhou, Guangdong, China (E-mail: xzlai@outlook.com).
T. Wu and M. Elkashlan are with the School of Electronic Engineering and

Computer Science at Queen Mary University of London, London E1 4NS,
U.K. (Email:{tuo.wu, maged.elkashlan}@qmul.ac.uk).

J. Yao is with the Faculty of Electrical Engineering and Com-
puter Science, Ningbo University, Ningbo 315211, China (E-mail: jun-
tengyao512@163.com).

C. Pan is with the National Mobile Communications Research Laboratory,
Southeast University, Nanjing 210096, China. (e-mail: cpan@seu.edu.cn).

K. K. Wong is with the Department of Electronic and Electrical Engineer-
ing, University College London, WC1E 6BT London, U.K., and also with the
Yonsei Frontier Laboratory and the School of Integrated Technology, Yonsei
University, Seoul 03722, South Korea (e-mail: kat-kit.wong@ucl.ac.uk).

However, research in FAS is still in an early stage and the
majority of the results so far are limited to FAS with only one
selected port exhibiting the maximum SNR [5]–[10]. The fact
that a mobile terminal can actually afford more than one radio
frequency (RF) chains, means that it is increasingly probable
that FAS can come with multiple activated ports, with better
performance [12]. Since maximum ratio combining (MRC) is
the optimal mixing scheme without interference, it is therefore
of great importance to understand the achievable performance
of FAS using MRC if more than one ports can be selected for
reception. This is the aim of this letter.

Specifically, our contributions are summarized as follows:

• First, we consider a K-port FAS which corresponds to a
FAS with K selected ports, operating in Rayleigh fading
channels. The mobile receiver selectively activates K
optimal ports from the available M ports. Then MRC
is employed to combine the K branches of signals from
the activated ports. We derive the outage probability of
the proposed K-port FAS using both Laplace transform
(LT) and Gauss-Chebyshev integration methods.

• Additionally, we present the lower bound and asymptotic
expressions for the outage probability.

• The simulation results substantiate the effectiveness of
the proposed analytical approach, thereby confirming and
validating our insights and discussions.

II. SYSTEM MODEL

Consider an end-to-end communication in Rayleigh fading
channels, where the source transmits the signal using a con-
ventional fixed-position antenna with transmit power PS but
the receiver is equipped with a FAS with K fluid antenna
elements.1 Each antenna element is connected to one RF chain.
Within this particular FAS configuration, a linear space of
Wλ encompasses a total of M ports, where λ represents the
wavelength [5]. Among these M ports, it is assumed that each
port is evenly distributed, and K ports can be activated for
signal receiving out of the total M ports.

Since each port is placed closely, the channel parameters
of each port are correlated. Building upon the channel model
developed in [7] and [10], we introduce a virtual reference
port to model the channel correlation. This virtual reference
port is characterized by a channel parameter h0 ∼ CN (0, α),
following a complex Gaussian distribution with zero mean and

1In our idealized mathematical model, a FAS with multiple single-activated-
port fluid antennas is equivalent to a FAS with multiple activated ports
although their specific implementation details will differ.
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variance α. Accordingly, the SNR of h0 can be written as

γ0 =
PS |h0|2

σ2
, (1)

where σ2 denotes the noise power level. Considering h0 as a
complex Gaussian random variable (RV), the PDF of γ0 can
be expressed as

fγ0
(x) =

1

ϕ
e−

x
ϕ , (2)

where ϕ = PSα/σ
2 represents the average received SNR.

Now, we proceed to establish the channel parameter linking
the source and the m-th port, denoted as hm, where m ∈
M = {1, 2, . . . ,M}. The expression for hm takes the form

hm = µh0 + (1− µ)em, (3)

where em ∼ CN (0, α) for m ∈ M are independently and
identically distributed (i.i.d.) RVs, α is the average channel
gain from the source to the ports. Additionally, µ denotes the
correlation factor, which is given by [7]

µ =
√
2

√
1F2

(1
2
; 1;

3

2
;−π2W 2

)
− J1(2πW )

2πW
, (4)

where aFb denotes the generalized hypergeometric function
and J1(·) is the first-order Bessel function of the first kind.

Conditioned on a fixed channel parameter h0, and in accor-
dance with γ0, the corresponding SNR of hm, expressed as

γm =
PS |hm|2

σ2
, follows a non-central chi-square distribution.

The conditional PDF can be expressed as

fγm|γ0=x0
(x) =ωe−ω(x+µx0)I0

(
2ω

√
µx0x

)
, (5)

where ω =
(
ϕ(1−µ)

)−1
. Besides, I0(u) is the modified Bessel

function of the first kind with order 0, which can be expressed
in series representation as [13]

I0(z) =

∞∑
k=0

z2k

22kk!Γ(k + 1)
. (6)

Combining (5) with (6), we further derive fγm|γ0=x0
(x) as

fγm|γ0=x0
(x) =

∞∑
k=0

ckx
k
0e

−ωµx0xke−ωx, (7)

where

ck =
ω2k+1µk

(k!)2
. (8)

In order to receive the signal transmitted from the source,
the receiver selects the K ports with the K highest received
SNR from the available total of M ports for activation. The
set of selected ports is denoted by

K = argK max
m∈M

γm, (9)

where K max
m∈M

γm denotes to select the K maximal γm out
of set M. In addition, to process the received signals from
different antenna elements, the MRC technique is utilized to
combine the K branches of signals.

Moreover, the channel state information (CSI) is assumed
to be not available at the source; hence the transmission data
rate is fixed to R. Therefore, the outage of communication
occurs when the FAS cannot sustain the data rate R, i.e.,

E =

{
log2

(
1 +

∑
m∈K

γm

)
≤ R

}
. (10)

Thus, the system’s outage probability is written as

Pout = Pr (E) . (11)

III. PERFORMANCE ANALYSIS

Here, we derive the exact outage probability of the proposed
FAS-enabled communications. Subsequently, the lower bound
and asymptotic expressions of the outage provability of system
are derived. These derivations offer valuable insights for the
proposed FAS-enabled communications system.

A. Exact Outage Probability
Consider the port with the (K + 1)-th maximal channel

gain, denoted as v. Given γ0 = x0, the outage probability is
expressed as

Λ(z) = Pr

(∑
m∈K

γm ≤ z|γ0 = x0

)
(a)
=

(
M

K

)
(T + 1)

∫ ∞

0

Φ(z)Ψ(v)fv|γ0=x0
(v)dv, (12)

where z = 2R − 1 denotes the SNR threshold of outage, T =
M −K − 1, and

Ψ(v, x0) = Pr (γm ≤ v,m ∈ T |γ0 = x0) , (13)

is the probability that T+1 ports are idle with maximal channel
gain v, and T = {1, 2, . . . , T}. Also,

Φ(z, v, x0) = Pr

(∑
m∈K

γm ≤ z, γm > v|γ0 = x0

)
, (14)

is the probability that K ports are selected and outage occurs
and K = {1, 2, . . . ,K}. Step (a) holds since γm for m ∈ M
are i.i.d. RVs, and Ψ(v, x0)Φ(z, v, x0) represents the outage
probability related to one of the port selection results.

In the following, we derive the expressions of Ψ(v, x0) and
Φ(z, v, x0). Then we obtain the outage probability by taking
the expectation of Λ(z) with respect to γ0.

First, it is important to note that ∀m, l ∈ T , γm and γl are
independent with each other given γ0 = x0. Furthermore, in
accordance with (5), the joint PDF of γm for m ∈ T can be
expressed as

fγm,m∈T |γ0=x0
(x1, . . . , xT )

=

T∏
m=1

ωe−ω(xm+µx0)I0
(
2ω

√
µx0xm

)
. (15)

Then, by utilizing (13) and (15), we evaluate Ψ(v, x0) as

Ψ(v, x0) =

∫ v

0

· · ·
∫ v

0

fγm,m∈T |γ0=x0
(x1, . . . , xT )dx1 · · · dxT

=
(
1−Q1

(√
2ωµx0,

√
2ωv

))T
, (16)
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where Q1(·, ·) is the first order Marcum-Q function [6].
Next, we proceed to derive the analytical expression of

Φ(z, v, x0) by utilizing the following theorem.
Theorem 1: The LT expressions of the following functions

g(x) = xae−bxu(x− v), (17)

p(x) = (x− a)K−1e−bxu(x− a), (18)

are, respectively,

L[g(x); s] = e−(s+b)v
a∑

l=0

a!vl

l!(s+ b)a+1−l
, (19)

L[p(x); s] =
(K − 1)!e−a(s+b)

(s+ b)K
, (20)

where Re(s) ≥ −b, Re(x) denotes the real part of x, and u(·)
is the step function.

Proof: See Appendix A.
From Theorem 1 and (7), the LT of the PDF of γm with

γm > v is given by

L
[
fγm|γ0=x0

(xm); s
]

= e−(s+ω)v−ωµx0

∞∑
m=0

m∑
l=0

dmx
m
0 v

l

l!(s+ ω)m+1−l
, (21)

where Re(s) ≥ −ω and dm = cmm!.
Then, by using the faltung theorem in [13], the LT of the

PDF of RV γ̄ =

K∑
m=1

γm conditioned on γm > v can be

derived as

L
[
fγ̄|γ0=x0

(x); s
]

=
(
L
[
fγm|γ0=x0

(xm); s
])K

= e−Kv(s+ω)−Kωµx0

∞∑
rm=0
m∈K

ρmx
ηm

0

rm∑
lm=0
m∈K

vϵmqm
(s+ ω)χm

, (22)

where 

ρm =

K∏
m=1

dm,

ηm =

K∑
m=1

rm,

ϵm =

K∑
m=1

lm,

qm =

K∏
m=1

1

lm!
,

χm = K + ηm − ϵm.

(23)

Utilizing Theorem 1, we can obtain the PDF of γ̄ condi-
tioned on γ0 = x0 as

fγ̄|γ0=x0
(x) = e−ω(x+Kµx0)

∞∑
rm=0
m∈K

ρmx
ηm

0

×
rm∑

lm=0
m∈K

vϵmqm

(
x−Kv

)χm−1

(χm − 1)!
, (24)

with x ≥ Kv. Based on (24), the computation of Φ(z, v, x0)
can be performed by

Φ(z, v, x0) =

∫ z

Kv

fγ̄|γ0=x0
(x)dx

= e−ω(Kv+Kµx0)
∞∑

rm=0
m∈K

ρmx
ηm

0

×
rm∑

lm=0
m∈K

vϵmqm
γ
(
χm, ω(z −Kv)

)
(χm − 1)!ωχm

, (25)

in which z ≥ Kv is a necessary condition; otherwise,
Φ(z, v, x0) = 0. In addition, γ(α, x) is the lower incomplete
Gamma function, which can be expressed in integral and serial
representations respectively, as

γ(κ, x) =

∫ x

0

e−ttκ−1dt = (κ− 1)!

(
1− e−x

κ−1∑
m=0

xm

m!

)
.

(26)

Calculating Λ(z) in (12) with (16) and (25), and then taking
the expectation of Λ(z) with respect to γ0, the outage proba-
bility of the system can be computed as

Pout =

∫ ∞

0

∫ z
K

0

(
M

K

)
(T + 1)Φ(z, v, x0)Ψ(v, x0)

× fγm|γ0=x0
(v)fγ0

(x0)dvdx0. (27)

Remark 1: From (16), it becomes evident that Ψ(v, x0)
becomes tiny with a large number of T , owing to the fact
that Q1(·, ·) is bounded by 1 [6]. This observation implies
that Pout in (27), i.e., the outage probability of the system
approaches zero when the total number of ports M → ∞.2

It is noticeable that the integral in (27) presents compu-
tational challenges. To address this, we initially replace the
upper limit of the integral in (27) with a sufficiently large
value denoted as H . This approximation is valid because the
integrand in (27) tends to approach zero as x0 increases.
Subsequently, we resort to the Gauss-Chebyshev integral to
derive a precise approximation of Pout in serial representation:

Pout ≈
(
M

K

)
π2Hz(T + 1)

4UpUl

Up∑
p=1

Ul∑
l=1

Φ(z, yl, yp)Ψ(yl, yp)

×
√
1− t2p

√
1− t2l fγm|γ0=yp

(yl)fγ0(yp), (28)

where Up and Ul are complexity-accuracy tradeoff parameters,
and 

tp = cos

(
(2p− 1)π

2Up

)
,

yp =
H(tp + 1)

2
,

tl = cos

(
(2l − 1)π

2Ul

)
,

yl =
z(tl + 1)

2K
.

(29)

2Note that the conclusion may vary depending on how spatial correlation
over the ports is modelled. That said, the analysis presented in this letter gives
the first-look performance of FAS using MRC.
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According to [14], it is established that the approximation
provided in (28) is tight with large numbers of Up and Ul.

B. Lower Bound and Asymptotic Analysis

For the sake of facilitating computation and analysis of
Pout, we derive a lower bound for Pout in this subsection.
Notably, this lower bound closely approximates the exact out-
age probability, particularly in the high SNR region. Moreover,
we analyze the asymptotic behavior of Pout and discuss the
performance bottleneck of the system.

First, from (7), we can readily know that fγm|γ0=x0
(x) is

lower-bounded by

f̄γm|γ0=x0
(x) = ωe−ωµx0e−ωx. (30)

Based on (30), we can accordingly obtain the lower bound of
Ψ(v, x0) and Φ(z, v, x0), respectively, as

Ψ̄(v, x0) = e−ωTµx0

T∑
t=0

(
T

t

)
(−1)te−ωtv, (31)

Φ̄(z, v, x0) = e−ω(Kv+Kµx0) − e−ω(z+Kµx0)

×
K−1∑
k=0

ωk

k!

k∑
m=0

(
k

m

)
zk−m(−Kv)k. (32)

Applying (30)–(32) into (27), we can obtain

Pout ≥ P̄out

=

(
M

K

)
T + 1

Mµωϕ+ 1

×

(
T∑

t=0

(
T

t

)
βt −

T∑
t=0

K−1∑
k=0

k∑
m=0

(
T

t

)(
k

m

)
κt,k,m

)
,

(33)

where

βt =
(−1)t

(t+K + 1)

(
1− e−zω(t+K+1)

)
, (34)

κt,k,m =
(−1)t+mKm(zω)k−mγ

(
m+ 1, zω(t+1)

K

)
k!(t+ 1)m+1

. (35)

From (7), it becomes apparent that the exact value of Pout

approaches the lower bound P̄out as the average received SNR
becomes large, i.e., the values of α or PS are large. Moreover,
when the value of M and K are large, the calculations of
outage probabilities in (27) and (28) become intricate. In
contrast, the evaluation of P̄out using the expression in (33)
remains computationally efficient, aiding in the analysis of the
performance of the proposed system.

Furthermore, by applying the expansion e−x = 1 − x for
tiny value of |x|, we can obtain the asymptotic expression of
outage probability in the high SNR region as

Pout ≃ ψ(zω)M , (36)

where

ψ =(
M

K

)
(T + 1)(1− µ)

K!(Mµ+ 1− µ)KT+1

K∑
k=0

(
K

k

)
1

k + T + 1
. (37)

Remark 2: The asymptotic outage probability in (36) indi-
cates that the diversity order of the FAS-aided communication
system is M . This means that the proposed system can
fully exploit the diversity offered by total available M ports,
regardless of the number of activated ports K. Therefore,
enhancing the system’s performance by increasing the number
of K ports is feasible; yet the improvement is less significant
than the improvement of increasing M .

IV. NUMERICAL RESULTS

In this section, we present several numerical results for the
FAS-aided communications. Following a similar approach to
the work in [9], we assume the value of W = 5, which is
a common choice for 5G networks in the context of handset
devices. Moreover, we set the data rate R to 5 bit/s/Hz, leading
to an outage SNR threshold z set at 31. Unless specified
otherwise, we refer to the outcomes of our simulations as
“Simul”. Also, we denote the results obtained from (28), (33),
and (36) as “Ana.”, “LB”, and “Asy.”, respectively.
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Fig. 1. Outage probability versus average SNR ϕ.

Fig. 1 illustrates the variations in outage probability with
the average SNR (ϕ), considering different values of M and
K. As observed from Fig. 1, it is evident that the analytical
outage probability derived from equation (28) closely aligns
with the simulation results. Additionally, the lower bound
provided by equation (33) accurately approximates the sim-
ulation outcomes, particularly in the high SNR region, which
corroborates with the asymptotic result in equation (36).

Furthermore, Fig. 1 indicates that the outage probability of
the system is predominantly influenced by the total port num-
ber M , affirming the analysis in equation (36) that the diversity
stemming from all available ports can be maximally exploited.
It is worth noting that the gain achieved by increasing K from
2 to 4 in the high SNR region is approximately 3.8, consistent
with the findings presented in equation (36). However, the
enhancement resulting from increasing the number of activated
ports K is comparatively less pronounced than the gains
derived from increasing M .

Fig. 2 provides a visualization of the relationship between
the number of activated ports (K) and the resulting outage
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Fig. 2. Outage probability versus number of antenna elements K.

probability in the context of the K-port FAS-aided commu-
nications system. The experiment is conducted with ϕ set at
10 dB, and two distinct values for the total port count (M ),
namely 10 and 20. Meanwhile, the number of activated ports
K is allowed to vary within the interval of 1 to 8.

Upon examining the results depicted in Fig. 2, it becomes
evident that increasing the count of activated ports (K) con-
tributes significantly to enhancing the overall system’s outage
performance. However, the most striking insight emerges
from the clear trend indicating that the advantages stemming
from augmenting the total port count (M ) are even more
pronounced. This noteworthy pattern is in concordance with
the analytical findings presented in the preceding sections.

V. CONCLUSION

In this letter, we proposed to analyze the FAS-aided commu-
nications system with multiple activated ports, where the MRC
technique was utilized to combine the signal from different
activated ports. The outage probability of the proposed system
has been derived in Rayleigh fading channels, in forms of
exact expression, lower bound, and asymptotic expression.
Analysis showed that the diversity order of the system equals
the number of total available ports. Simulation results corrob-
orated the effectiveness of the provided analysis.

APPENDIX A
PROOF OF THEOREM 1

According to the definition of LT, we can compute the LT
expression of g(x) in (17) as

L[g(x); s] =

∫ ∞

0

g(x)e−sxdx =

∫ ∞

v

xae−(s+b)xdx

= e−(s+b)v
a∑

l=0

a!vl

l!(s+ b)a+1−l
, (38)

where Re(s) ≥ −b, and the last step can be derived by using
the partial integral technique.

Similarly, we can compute the LT expression of p(x) as

L[p(x); s] =

∫ ∞

0

p(x)e−sxdx

=

∫ ∞

a

(x− a)K−1e−(b+s)xdx

(e1)
=

e−a(s+b)

(s+ b)K

∫ ∞

0

tK−1e−tdt

(e2)
=

(K − 1)!e−a(s+b)

(s+ b)K
, (39)

where Re(s) ≥ −b, the step (e1) can be obtained by setting
t = (x − a)(s + b), and step (e2) uses the partial integral
technique.
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