Loading [a11y]/accessibility-menu.js
Continuous Online Learning-Based CSI Feedback in Massive MIMO Systems | IEEE Journals & Magazine | IEEE Xplore

Continuous Online Learning-Based CSI Feedback in Massive MIMO Systems


Abstract:

For massive multiple-input multiple-output (MIMO) systems, downlink channel state information (CSI) compression and feedback are crucial for enhancing system performance....Show More

Abstract:

For massive multiple-input multiple-output (MIMO) systems, downlink channel state information (CSI) compression and feedback are crucial for enhancing system performance. Deep learning (DL)-based methods have been designed and proven to perform well in this task. However, the distribution of CSI in real-world communication systems may differ from the one observed during model training, which can undermine the effectiveness of DL-based methods due to their limited generalization ability. Several methods have been proposed to facilitate online training and enable network adaptation to unknown scenarios. Nevertheless, the knowledge learned from previous scenarios is often forgotten, leading to performance degradation when encountering a previous scenario again. In this letter, we propose a novel continuous learning-based CSI feedback approach, which can effectively address the challenge of catastrophic forgetting and ensure consistent high performances across all historical scenarios, thereby enhancing the generalization capability of the model.
Published in: IEEE Communications Letters ( Volume: 28, Issue: 3, March 2024)
Page(s): 557 - 561
Date of Publication: 05 January 2024

ISSN Information:


Contact IEEE to Subscribe

References

References is not available for this document.