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Abstract—We investigate multiuser uplink communications
from multiple single-antenna users to a base station (BS), which
is equipped with multiple fluid antennas (FAs) and adopts zero-
forcing receivers to decode multiple signals. We aim to optimize
antennas’ positions at the BS, to minimize the total transmit
power of all users subject to the minimum rate requirement.
After applying transformations, we show that the problem is
equivalent to minimizing the sum of each eigenvalue’s reciprocal
of a matrix, which is a function of all antennas’ positions at
the BS. Subsequently, the projected gradient descent (PGD)
method is utilized to find a locally optimal solution. In particular,
different from the latest related work, we exploit the eigenvalue
decomposition to successfully derive a closed-form gradient for
the PGD, which facilitates the practical implementation greatly.
We demonstrate by simulations that via careful optimization for
all antennas’ positions in our proposed design, the total transmit
power of all users can be decreased significantly as compared to
competitive benchmarks.

Index Terms—Fluid antennas, multiuser uplink, total transmit
power minimization, projected gradient descent.

I. INTRODUCTION

Beamforming, which exploits the degree of freedom (DoF)

in the spatial domain, is a powerful technique for improving

system capacity [1]. In conventional beamforming, positions

of antennas at transceivers are fixed which may limit the gains

of beamforming depending on channel conditions.

To mitigate the above deficiency, the intelligent reflecting

surface (IRS) technique has been proposed and proven to

be capable of reconfiguring wireless channels by adjusting

passive IRS reflecting coefficients [2]. As another promising

technology, fluid antennas (FAs) [3]−[6] has emerged recently.

Although its operating principle is different from that of the

IRS, FAs can also reshape channel environments artificially,

by adaptively adjusting positions of all antennas (connected to

the radio frequency chains via flexible cables) supported by the

stepper motors or servos. Unlike antenna selection (AS) which

requires more candidate antennas, higher hardware cost and

larger overhead of channel estimation, and concurrently unlike

rotatable uniform linear array (RULA) which just mechani-

cally rotates the transmit/receive array and cannot fully exploit
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Fig. 1: Illustration of the system model.

spatial channel variation, FAs fully exploites the channel vari-

ation resulting from changes in antennas’ positions to achieve

a higher spatial diversity without causing additional hardware

or algorithm cost [7]. Driven by these potential advantages,

earlier works have applied the technology of FAs to further

enhance capacities of multiple-input multiple-output (MIMO)

systems [7]−[8], multiuser uplink/downlink communications

[9]−[10], physical-layer security systems [11] or interference

networks [12].

In this letter, as in [9], we focus on FAs-enabled classical

multiuser uplink communications. Specifically, we assume

multiple single-antenna users that intend to concurrently trans-

mit their signals to a base station (BS), which is equipped with

FAs and adopts the widely used zero-forcing (ZF) receivers to

detect multiple signals. By carefully optimizing positions of all

antennas at the BS, our goal is to minimize the total transmit

power of all users subject to the minimum rate requirement

for each user. The formulated problem is highly non-convex,

and we develop a projected gradient descent (PGD) method

to find a locally optimal solution. Unlike [9] which exploits

the original definition-based method to compute the gradient in

each iteration, the key contribution of this letter is that we suc-

cessfully derive a closed-form gradient in each iteration with

the help of the eigenvalue decomposition. This novelty greatly

accelerates the implementation of the PGD method. Numerical

results are performed to demonstrate that our proposed method

with FAs can significantly decrease the total transmit power

of all users as compared to competitive benchmarks.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider multiuser uplink com-

munications from M single-antenna users {Ui}Mi=1 to the BS

equipped with N FAs distributed along a linear dimension,

with N ≥ M . Consider the line-of-sight (LoS) propagation

environment, the channel vector between the BS and Ui is

denoted by1

hi(x) =
[
ej

2π
λ

x1 sin θi , ej
2π
λ

x2 sin θi , ..., ej
2π
λ

xN sin θi
]T

, (1)

1As shown in the follows, the simple LoS environment is considered here
since we aim to demonstrate that our proposed design of FAs’ movements just
relies on the slow-changing property of statistical channel state information
(CSI). In the simulations, we will show the effectiveness of the proposed FAs’
movement rule when facing random Rician fading channels.
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where λ is the signal wavelength, θi is the angle of arrival

(AoA) to the BS at Ui, and xn denotes the adjustable position

of the n-th antenna at the BS, with x = [x1, x2, ..., xN ]
T ∈

RN×1. For the multiuser uplink, the received signals y ∈
CM×1 at the BS can be expressed as

y = WHH(x)P1/2s+WHn, (2)

where H(x) = [h1(x),h2(x), ...,hM (x)] ∈ C
N×M , P1/2 =

diag
{[√

P1,
√
P2, ...,

√
PM

]}
, in which Pi denotes the trans-

mit power of Ui, s = [s1, s2, ..., sM ]
T ∈ CM×1, in which si

denotes the transmitted signal of Ui and E

[
|si|2

]
= 1, ∀i =

1, ...,M . In addition, W = [w1,w2, ...,wM ] ∈ CN×M is

the receive combining matrix at the BS, in which wi is the

combining vector for the signal si, and n = [n1, n2, ..., nN ]
T

,

in which ni is the additive white Gaussian noise at the i-th
BS antenna, with ni ∼ CN (0, σ2). Based on (2), the received

signal-to-interference-plus-noise ratio (SINR) of the signal si
at the BS is derived as

γi =
Pi

∣∣wH
i hi(x)

∣∣2
∑M

k=1,k 6=i Pk

∣∣wH
i hk(x)

∣∣2 + ‖wi‖22 σ2
. (3)

In this letter, we assume that the BS adopts the widely

used linear ZF detector for processing multiple signals, due to

its low implementation complexity especially when number

of antennas at the BS is large. Based on this, the receive

combining matrix W is accordingly expressed as

W = H(x)
(
H(x)

H
H(x)

)−1

. (4)

Substituting (4) into (3), the received SINR of the signal si is

given by

γi =
Pi∥∥∥∥∥

[
H(x)

(
H(x)HH(x)

)−1
]

:,i

∥∥∥∥∥

2

2

σ2

.
(5)

Our goal is to optimize the positions of FAs at the BS, i.e.,

x, to minimize the total transmit power of M users subject to

a minimum achievable rate requirement for each user. Hence,

the optimization problem is formulated as2

(P1) : min
x,P

∑M

i=1
Pi (6a)

s.t. log2(1 + γi) ≥ ri, ∀i = 1, ...,M, (6b)

x ∈ C, (6c)

where ri in the constraint (6b) denotes the minimum rate

requirement for Ui, and C in (6c) denotes the feasible moving

region for N antennas at the BS. More specifically, denote the

total span for the movement of FAs as L and without loss of

generality set 0 ≤ x1 < x2 < ... < xN ≤ L. Then, consider:

i) the minimum distance between any two FAs to avoid the

coupling effect as dmin [7], [8], i.e., |xi − xj | ≥ dmin, ∀i 6= j;

ii) the movement span should be the same for each antenna,

we can conveniently set C ∆
= {xi ∈ [Fi, Gi]}Ni=1, where

Fi =
L− (N − 1)dmin

N
(i− 1) + (i − 1)dmin,

Gi =
L− (N − 1)dmin

N
i+ (i− 1)dmin,

2In this work, only antennas’ positions are optimized for total power
minimization. Consider the case where receiving beamforming and antennas’
positions are jointly optimized, the generalized Bender’s decomposition [13]
can be exploited for obtaining the globally optimal solution.
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Fig. 2: Feasible movement region for each FA.

from which we have 0 = F1 < G1 < F2 < G2 < ... < FN <
GN = L and Gi − Fi = L−(N−1)dmin

N , ∀i = 1, ..., N . The

feasible movement region for each FA is illustrated in Fig. 2

for better understanding.

Based on (6b), it can be shown that Pi should satisfy

Pi ≥
∥∥∥∥∥

[
H(x)

(
H(x)

H
H(x)

)−1
]

:,i

∥∥∥∥∥

2

2

εiσ
2, (7)

where εi = (2ri − 1). According to (7), we can equivalently

replace the objective of (P1) as [9]

∑M

i=1

∥∥∥∥∥

[
H(x)

(
H(x)HH(x)

)−1
]

:,i

∥∥∥∥∥

2

2

εiσ
2

=

∥∥∥∥H(x)
(
H(x)

H
H(x)

)−1

Ω1/2

∥∥∥∥
2

F

=tr

{(
Ω−1H(x)

H
H(x)

)−1
}

=
∑M

i=1

1

λi

{
Ω−1H(x)

H
H(x)

} ∆
= f(x),

(8)

where Ω = diag
{[
ε1σ

2, ε2σ
2, ..., εMσ2

]}
and

λi

{
Ω−1H(x)

H
H(x)

}
denotes the i-th eigenvalue of

the matrix Ω−1H(x)HH(x)
∆
= Z ∈ CM×M . Therefore,

problem (P1) can be equivalently reformulated as

(P2) : min
x

f(x) (9a)

s.t. x ∈ C. (9b)

Remark 1: Problem (P2) is highly non-convex because

its objective is neither convex or concave, which cannot be

solved via standard convex optimization techniques. Motivated

by this, the authors in [9] try to solve (P2) by resorting to

the PGD method, which handles the simple unconstrained or

constrained problems well and is not sensitive to concavity or

convexity of the objective. However, [9] computes the gradient

based on the original definition shown in its equation (12),

which has the large implementation complexity. In the next

section, we show how to reduce the complexity significantly.

Remark 2: Considering the LoS environment, the BS can

easily estimate the CSI by just estimating the AoAs to itself at

M users based on some mature algorithms, such as MUSIC.

Based on this, the BS can directly optimize FAs’ positions

via the proposed algorithm and then feedback each user the

required transmit power based on (7) with optimized x.3

3In addition, even the general Rician fading is considered, the BS still
optimizes FAs’ positions in advance based on the estimated AoAs. Then,
in the communication process, all antennas’ positions are not changed and
each user sends pilot signals to the BS for uplink channel estimations. When
the BS successfully estimates the instantaneous CSI, it can tell each user
the required transmit power based on (7). Since no antennas’ movements are
involved, the consumed time for estimate-feedback is much smaller than the
channel coherence time (CCT), especially for the low-mobility scenario where
CCT is relatively larger [14].
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III. ALGORITHM DESIGN FOR SOLVING (P2)

In this letter, we still exploit the PGD method to find a

locally optimal solution to (P2). Specifically, using PGD, the

update rule for x in the t+ 1-th iteration is given by

xt+1 =xt − δ∇xtf(x),

xt+1 =B
{
xt+1, C

}
,

(10)

where xt+1 in the first equation is the original updated x,

and xt+1 in the second equation is the additional update

(if necessary) via the projection function B {·} as explained

later, which ensures that the solutions for FAs’ positions in

each iteration always satisfy the constraint in (9b). Further,

∇xtf(x) denotes the gradient of f(x) at xt, and δ is the step

size for the gradient descent.

A. Computing ∇xtf(x): Note that ∇xf(x) =[
∂f(x)
∂x1

, ..., ∂f(x)
∂xN

]T
. Using the chain rule,

∂f(x)
∂xn

,

∀n = 1, ..., N , can be derived as
∂f(x)

∂xn
=

∑M

i=1

−1
λ2
i {Z}

∂λi {Z}
∂xn

. (11)

Based on (11), to compute ∇xf(x), the key is to derive a

closed-form expression for
∂λi{Z}
∂xn

, ∀i = 1, ...,M and n =
1, ..., N .

To proceed, let us denote Z = VDV−1 as the eigen-

value decomposition of the matrix Z, where V ∈ CM×M

consists of linearly independent columns with unit norm, and

D = diag {[λ1 {Z} , ..., λM {Z}]}. Then, we can equivalently

express λi {Z} as

λi {Z} =
[
V−1

]
i,:
Z[V]:,i. (12)

Based on (12),
∂λi{Z}
∂xn

can be expanded as in (13), where
(a)
=

is established since Z[V]:,i = λi {Z} [V]:,i and
[
V−1

]
i,:
Z =

λi {Z}
[
V−1

]
i,:

. Then, further note that the sum of the first

and third terms in (13) equals

∂
[
V−1

]
i,:

∂xn
λi {Z} [V]:,i + λi {Z}

[
V−1

]
i,:

∂[V]:,i
∂xn

=λi {Z}
∂
[[
V−1

]
i,:
[V]:,i

]

∂xn

(b)
= 0,

(14)

where
(b)
= is established since

[
V−1

]
i,:
[V]:,i always equals the

constant one and thus is not relevant to xn in any situation.

Based on (13) and (14),
∂λi{Z}
∂xn

can be simplified as

∂λi {Z}
∂xn

=Re

[[
V−1

]
i,:

∂Z

∂xn
[V]:,i

]

(c)
=
[
V−1

]
i,:

∂Z

∂xn
[V]:,i,

(15)

where
(c)
= is established since

[
V−1

]
i,:

∂Z
∂xn

[V]:,i is a real

number. Recall that Z = Ω−1H(x)HH(x) and Ω−1 =
diag

{[
1/(ε1σ

2), 1/(ε2σ
2), ..., 1/(εMσ2)

]}
. The element in

the i-th row and j-th column of Z based on (1) can be derived

as

[Z]i,j =
1

εiσ2

∑N

k=1
ej

2π
λ

xk(sin θj−sin θi), (16)

based on which it is easy to derive the element in the i-th row

and j-th column of ∂Z
∂xn

as
[
∂Z

∂xn

]

i,j

=
∂[Z]i,j
∂xn

=
1

εiσ2

2π

λ
(sin θj − sin θi) e

j[ 2πλ xn(sin θj−sin θi)+
π
2 ].

(17)

Finally, by substituting the known ∂Z
∂xn

into (15) and then

substituting (15) into (11), the gradient ∇xf(x) at xt can be

computed as in (18).

Algorithm 1 BLS for a Feasible δ in the t-th iteration

1: Input: xt−1, δ > 0, 0 < ρ < 1.

2: Repeat:

3: xt = B
{
xt−1 − δ∇xtf(x), C

}
.

4: If f(xt) > f(xt−1)− δ ‖∇xt−1f(x)‖22, update δ ← ρδ.

5: End

6: Until: f(xt) ≤ f(xt−1)− δ ‖∇xt−1f(x)‖22.

Algorithm 2 The Overall Algorithm for Solving (P2)

1: Input: t = 1, x1 ∈ C.

2: Repeat:

3: Perform eigenvalue decomposition on [Z]
x=xt and

compute
[
{∂Z/∂xn}Nn=1

]
x=xt

to obtain ∇xtf(x).

4: Determine a feasible δ based on Algorithm 1;

5: t← t+ 1;

6: Update xt = B
{
xt−1 − δ∇xt−1f(x), C

}
.

7: End

8: Until:
∣∣f(xt)− f(xt−1)

∣∣ ≤ τ .

B. Determining the feasible step size: In the PGD method,

a correct setting for the step size in each iteration is important

for realizing convergence. Specifically, the feasible δ in each it-

eration should satisfy δ ≤ 1/Lx, where Lx is a Lipschitz con-

stant for ∇xf(x), which satisfies ‖∇xf(x)−∇x′f(x)‖2 ≤
Lx‖x− x′‖2, ∀x,x′ ∈ C [15]. Since the structure of ∇xf(x)
is much complex, generally Lx is difficult to determine. Based

on this fact, we can instead exploit the backtracking line search

∂λi {Z}
∂xn

=Re

[
∂
[
V−1

]
i,:

∂xn
Z[V]:,i +

[
V−1

]
i,:

∂Z

∂xn
[V]:,i +

[
V−1

]
i,:
Z
∂[V]:,i
∂xn

]

(a)
=Re

[
∂
[
V−1

]
i,:

∂xn
λi {Z} [V]:,i +

[
V−1

]
i,:

∂Z

∂xn
[V]:,i + λi {Z}

[
V−1

]
i,:

∂[V]:,i
∂xn

]
.

(13)

∇xtf(x) =

[
∑M

i=1

−
[
V−1

]
i,:

∂Z
∂x1

[V]:,i

λ2
i {Z}

,
∑M

i=1

−
[
V−1

]
i,:

∂Z
∂x2

[V]:,i

λ2
i {Z}

, ...,
∑M

i=1

−
[
V−1

]
i,:

∂Z
∂xN

[V]:,i

λ2
i {Z}

]T

x=xt

. (18)
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(BLS) [16] to find a feasible δ. The details are shown in

Algorithm 1, where ρ denotes the shrinking factor.

C. Determining the projection function B {·}: Recall that

the projection function mainly ensures that N FAs only move

in their respective feasible regions. Therefore, according to the

rule of nearest distance, B
{
xt+1, C

}
can be determined as

B
{
xt+1, C

}
⊲ xt+1

i = min
(
max(Fi, x

t+1
i ), Gi

)
. (19)

D. The algorithm, complexity analysis and comparison:

The overall setups for solving problem (P2) are summarized

in Algorithm 2, where τ denotes the prescribed accuracy.

Generally, the PGD based minimization may lead to sightly

different total transmit power for different initialization x1

and step-sizes δ. This is mainly because the PGD may

converge to a local minimum of the objective, which is an

unavoidable phenomenon arising in non-convex optimization

problems. Nevertheless, this phenomenon can be well solved

by randomly generating numerous different x1 and then

selecting the one which produces the minimum power.

Complexity Analysis: To simplify the analysis while still

capturing the complexity of Algorithm 2, we here focus on the

number of complex multiplications required in each iteration.

Specifically, the complexity of the eigenvalue decomposi-

tion for [Z]
x=xt is about O(M3) [9]. Further, calculating∑M

i=1−
[
V−1

]
i,:

∂Z
∂xn

[V]:,i/λ
2
i {Z}, ∀n = 1, ..., N , requires

O(M2) complex multiplications, leading to the complexity of

computing ∇xtf(x) as O(M2N). In addition, the complexity

of finding a feasible δ is about O(TinnerN), where N is the

complexity of computing δ∇xtf(x) in step 3 of Algorithm

1, and Tinner is the maximum number of iterations for BLS.

Hence, the total complexity of Algorithm 2 is about

O
(
Touter

(
M3 +M2N + TinnerN

))
,

where Touter is the maximum number of iterations for repeat-

edly implementing steps 3-5 in Algorithm 2.

Complexity Comparison: As a comparison, if the original

definition based method [9] is exploited to compute the

gradient, i.e.,

∂f(x)

∂xn
|x=xt = lim

ε→0

f(xt
1, ..., x

t
n + ε, ..., xt

N )− f(xt)

ε
, (20)

the corresponding complexity will become larger. Specifi-

cally, given xt and ε, using the eigenvalue decomposition

to obtain f(xt
1, ..., x

t
n + ε, ..., xt

N ) for all n = 1, ..., N re-

quires a complexity of O(NM3). Similarly, the complexity

of obtaining f(xt) is O(M3). Therefore, the complexity of

obtaining ∇xtf(x) is about O((N + 1)M3), and then the

total complexity of Algorithm 2 becomes

O
(
Touter

(
M3 +M3N + TinnerN

))
,

which is clearly higher than the complexity of Algorithm 2 in

this work, especially when M is large. We compare the above

two complexities versus M in Fig. 3 for better illustration,

where we set Touter = Tinner = 10 and N = 30.

IV. SIMULATION RESULTS

In this section, we present numerical results to demonstrate

the effectiveness of the proposed design over the general

Rician fading, in which the channel vector between the BS

and Ui is ĥi(x) =
√
K/(K + 1)hi(x) +

√
1/(K + 1)h̃i,

5 10 15 20 25 30
0

5

10
10

6

Proposed design

Original definition based method

Fig. 3: Computational complexity of the proposed design and the
original definition based method.

5 10 15 20

0

0.5

1

1.5

2

Fig. 4: The convergence behavior of the proposed PGD method.

where K is the Rician factor, hi(x) is given in (1), and

each element of h̃i ∈ CN×1 is i.i.d. complex Gaussian

distributed with zero mean and unit variance. Under this

setup, optimal x (denoted as xLoS) is still obtained based on

statistical AoAs, while the objective of total transmit power be-

comes E

[∑M
i=1

1

λi{Ω−1Ĥ(xLoS)HĤ(xLoS)}

]
, with Ĥ(xLoS) =

[
ĥ1(x

LoS), ..., ĥM (xLoS)
]
. For convincing comparisons, we

further consider three widely used benchmarks:

• RPA: The line segment of length L is quantized into

2L + 1 discrete locations with equal-distance 0.5λ, and

N out of these 2L + 1 locations are optimally selected

for antenna positions.

• FPA: Each antenna has a fixed position, i.e., xi = (i −
1)dmin.

• Minimum mean square error (MMSE) combining: The

BS will exploit MMSE combining to detect multiple

signals, where positions of all antennas are optimized

employing the method in [9], but base on statistical AoAs.

For the system parameters, we set the minimum distance

between any two adjacent FAs as dmin = 0.5λ, and without

prejudice to the conclusion, λ is set to 1 for simplification.

We consider M = 3 users and the AoAs are θ1 = π/16,

θ2 = π/10 and θ3 = π/2, respectively. In addition, the noise

power is set as σ2 = 1 for normalizing the large-scale channel

fading power.

Fig. 4 first illustrates the convergence behavior of our

proposed design under the LoS channels and for the case of

N = 4 and ri = 1, ∀i = 1, 2, 3. Corresponding to different

L = 2.5, 3.5, 4.5, the initial condition for the iteration is set

as x1 = [0, L/3, 2L/3, L]T . As we can observe, the total

transmit power of all users rapidly converges to a constant
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Fig. 5: Average total transmit power versus (a) N ; (b) L; (c) K .

within dozens of iterations. Therefore, the proposed design

is computationally efficient which may be suitable for the

practical implementation.

Fig. 5(a) compares the total transmit power of four schemes

with respect to (w.r.t.) number of transmit antennas at the BS

(N ) for the case of ri = 1, ∀i = 1, 2, 3 and K = 10. We can

observe that: i) as N increases, the BS can better distinguish

signals in different directions and achieve higher reception

gains, which in turn allows the users to transmit their signals

with less power; ii) compared to FPA and RPA, the proposed

design can optimally exploit the additional spatial DoF, so

that the resulting total transmit power can be minimized;

iii) as N increases, the performance gap between RPA and

the proposed design decreases. The reason is that when L
is fixed, each antenna can just move in a smaller region

when N increases, which implies that there may be not much

performance difference from discrete positions selection in

RPA or optimal FAs’ movements in the proposed design; iv)

as reported in [9], due to the more powerful detection ability,

MMSE combining outperforms the proposed design slightly.

Fig. 5(b) shows the total transmit power w.r.t. the span of

FAs’ movement (L) for the case of ri = 1, ∀i = 1, 2, 3 and

K = 10, from which it is observed that when L increases,

the total transmit power of RPA, the proposed design and

MMSE combining first becomes smaller and then converges

to a constant. This phenomenon reveals that it is not necessary

to expand L indefinitely and only a limited span is enough to

achieve the optimal performance.

Finally, Fig. 5(c) shows the total transmit power w.r.t. the

Rician factor K for the case of ri = 1, ∀i = 1, 2, 3, N =
5 and L = 5.5, from which it is observed that no matter

whether K is large (the LoS condition is dominate for each

channel between the user and the BS) or small (the random

Rayleigh fading is dominate for each channel between the

user and the BS), our proposed design with statistical AoAs

always achieves pretty good performance compared to FPA

and RPA, indicating that our proposed design is not sensitive

w.r.t. random fading components in Rician channels.

V. CONCLUSION

This letter considers multiuser uplink communication sup-

ported by the FAs-enabled base station, which exploits zero-

forcing receivers to decode multiple signals. The objective is

to optimize the FAs’ positions at the BS, to minimize the

total transmit power of all users subject to the minimum rate

requirement. We develop a projected gradient descent method

to iteratively find a locally optimal solution, at significantly

reduced complexity compared to state of the art since a

closed-form gradient is derived successfully. Results show the

performance superiority of our proposed design compared to

several benchmarks.
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