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An improved lion strategy for the lion and man problem

Marco Casini, Andrea Garulli

Abstract

In this paper, a novel lion strategy for David Gale’s lion and man problem is proposed. The devised approach

enhances a popular strategy proposed by Sgall, which relies on the computation of a suitable “center”. The key

idea of the new strategy is to update the center at each move, instead of computing it once and for all at the

beginning of the game. Convergence of the proposed lion strategy is proven and an upper bound on the game

length is derived, which dominates the existing bounds.

Index Terms

Lion and man problems, pursuit-evasion games, combinatorial games

I. INTRODUCTION

Pursuit-evasion games have attracted the interest of researchers for long time, both for the intriguing mathematics

they require (see [1] for a nice introduction), and for the variety of applications they find in different contexts,

ranging from mobile robotics to surveillance, resource harvesting, network security and many others. When the

game is played in a limited environment, problems become even more challenging. Among the huge number

of different formulations (an extensive survey is provided in [2]), two main classifications can be singled out,

concerning respectively time and space being continuous or discrete. If continuous time is assumed, it is well

known that an evader can indefinitely escape a single pursuer travelling at the same velocity, even in very simple

continuous environments, like a circle [3]. On the other hand, if time is discrete, the pursuer can capture the

evader in finite time, in many situations of interest. This has generated a rich literature, considering different

assumptions on the number of pursuers, the structure of the environment and the information available to the

players (see, e.g., [4], [5], [6], [7], [8] and references therein).

A fundamental problem at the basis of the above literature is the so-called lion and man problem, whose

formulation is ascribed to Gale (see problem 31 in [9]). A lion and a man move alternately in the positive

quadrant of the plane, travelling a distance of at most one unit at each move. It is known that the lion can

catch the man in finite time, provided that his initial coordinates are componentwise larger than those of the

man. Nevertheless, the optimal lion strategy is still an open problem. In [10], Sgall has proposed a nice strategy

for the lion, which guarantees capture in finite time. Moreover, he has given an upper bound on the capture

time which is achieved for some specific initial conditions. Sgall’s strategy is based on the definition of a fixed

center, depending on the initial lion and man positions: then, the lion always keeps on the line connecting
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the center to the man’s position, until capture occurs. This strategy has been used in several mobile robotics

application, as reported in the tutorial [11]. In particular, a slight variation of the solution proposed in [10] is

adopted iteratively in [4], where it is instrumental to devise a strategy for two pursuers to capture an evader in

simply connected polygonal environments. A similar variation is employed in [12], when dealing with pursuer

evasion games in monotone polygons with line-of-sight visibility.

In this paper, a new lion strategy is proposed for the lion and man problem, which improves the one proposed

in [10]. The main idea is to compute a new center at each move, in order to enhance the advantage gained by

the lion in a single step. This turns out to be effective also on the whole, as it allows one to derive an upper

bound on the maximum number of moves required to guarantee capture, which dominates the one given in

[10].

The paper is organized as follows. In Section II, the lion and man problem is formulated. The solution proposed

in [10] is reviewed in Section III, along with some useful properties. The new strategy is introduced in Section

IV and its convergence properties are derived in Section V. Concluding remarks are reported in Section VI.

II. PROBLEM FORMULATION

The notation adopted in the paper is standard. Let N and R
n
+ denote the set of all natural numbers and the

n-dimensional Euclidean space of non-negative numbers, respectively. Let ⌈x⌉ be the smallest integer greater

or equal to x. A row vector with elements v1, . . . , vn is denoted by V = [v1, . . . , vn], while V ′ is the transpose

of V .

In this paper, we consider the version of the lion and man problem formulated by David Gale. Two players, a

man and a lion, can move in the first quadrant of the Cartesian plane. Time is assumed discrete, while space

is continuous. At each round (hereafter called time) both players are allowed to move to any point inside the

non-negative quadrant, with distance less or equal to a given radius r from their current position. Hereafter,

it will be assumed r = 1 without loss of generality. The man moves first, after that the lion moves. Let us

denote by Mt ∈ R
2
+ and Lt ∈ R

2
+ the man and lion position at time t, respectively. Hence, ‖Mt+1−Mt‖ ≤ 1,

‖Lt+1 − Lt‖ ≤ 1. The game ends (lion wins) if the lion moves exactly to the man position. If the man can

escape indefinitely from the lion, the man wins. It is assumed that the initial man coordinates are strictly smaller

than the corresponding lion coordinates, otherwise it is straightforward to observe that the man wins the game

by moving straight up or right.

III. FIXED CENTER LION STRATEGY

Before introducing the proposed lion strategy, let us recall the one devised in [10], hereafter referred to as

Fixed Center Lion Strategy (FCLS). If the initial man coordinates are strictly smaller than the corresponding

lion coordinates, the FCLS allows the lion to capture the man in a finite number of moves, for any man strategy.

In order to state the FCLS, the following definition is needed.

Definition 1: Let M0 and L0 be the man and lion position at time 0, respectively. Let C0 = [x0, y0]
′ ∈ R

2
+ be

the point satisfying

1) C0 = L0 + η(L0 −M0), with η > 0 ;



2) ‖C0 − L0‖ = max{x0, y0} .

Then C0 is called the center of the FCLS.

Fixed Center Lion Strategy

Let C0 be the center of the FCLS. Such a center is fixed and does not change during the game. At a given

time t, let the man move from Mt to Mt+1. The lion adopts the following strategy:

• if ‖Mt+1 − Lt‖ ≤ 1, then the lion moves to Mt+1 and catches the man;

• otherwise, the lion moves to a point on the line connecting Mt+1 to C0 with unitary distance from Lt.

Between the two points satisfying such a condition, he chooses the one farther from C0.

Let C0 = [x0, y0]
′ and denote by r0 and m0 the greatest and smallest element of C0, respectively, i.e.,

r0 = max{x0, y0} and m0 = min{x0, y0}. Let us denote by NFCLS
max the upper bound derived in [10] on the

maximum number of moves needed by the lion to catch the man by using FCLS. Let us recall some results

proved in [10] which will be useful in the following.

Proposition 1: Let the lion play the FCLS. At every t, one has

i) ‖Lt − C0‖2 + 1 ≤ ‖Lt+1 − C0‖2 ≤ ‖C0‖2 ;

ii) both elements of C0 − Lt are strictly positive.

Proposition 2: Let the lion play the FCLS. Then, the lion captures the man in a number of moves equal at

most to

NFCLS
max =

⌈
‖C0‖2 − ‖C0−L0‖2

⌉
=
⌈
r20 +m2

0 − r20
⌉
=
⌈
m2

0

⌉
(1)

The bound in (1) has been proved to be tight whenever the lion and the man start sufficiently close to each

other. In this case, the optimal strategy for the man is to move orthogonally w.r.t. the line connecting him to

C0.

IV. NOVEL LION STRATEGY

In this section, the proposed lion strategy, hereafter referred to as Moving Center Lion Strategy (MCLS), is

introduced. The main difference between MCLS and FCLN regards the computation of the center. While in

FCLS the center in computed once and for all at the beginning of the game, in the proposed strategy it is

updated at each move, and then it is used to compute the lion move.

Before describing the devised lion strategy, let us introduce the following definitions which will be used

throughout the paper.

Definition 2: Let Mt and Lt be the man and lion position at time t, respectively. Let Ct = [xt, yt]
′ ∈ R

2
+ be

the point satisfying

1) Ct = Lt + η(Lt −Mt), with η > 0

2) ‖Ct − Lt‖ = max{xt, yt} .

Then Ct is called the center of the MCLS at time t.

Definition 3: At a given time t, let us define the following quantities:

1) rt = max{xt, yt} = ‖Ct − Lt‖
2) mt = min{xt, yt}



3) r̃t+1 = ‖Lt+1 − Ct‖ .

Moving Center Lion Strategy

At a given time t, let the man move from Mt to Mt+1. The lion moves according to the following strategy:

• compute the center Ct, based on man and lion position at time t, according to Definition 2;

• if ‖Mt+1 − Lt‖ ≤ 1, then the lion moves to Mt+1 and catches the man;

• otherwise, the lion moves to a point on the line connecting Mt+1 to Ct with unitary distance from Lt.

Between the two points satisfying such a condition, he chooses the one farther from Ct.

The following propositions hold.

Proposition 3: Let the lion play the MCLS. At every time t, one has

i) ‖Lt − Ct‖2 + 1 ≤ ‖Lt+1 − Ct‖2 ≤ ‖Ct‖2 ;

ii) both elements of Ct − Lt+1 are strictly positive ;

iii) the following inequalities hold

r2t + 1 ≤ r̃2t+1 ≤ r2t +m2
t . (2)

Proof: Items i)− ii) follow directly from Proposition 1, because at each time t, the center Ct is defined

in the same way as C0 in Definition 1; item iii) stems from Definition 3 and item i).

Proposition 4: At a given time t, let mt ≤ 1 and let the lion play the MCLS. Then, the lion captures the man

in one move.

Proof: The proof is a direct consequence of Proposition 2, with C0 = Ct and L0 = Lt.

V. CONVERGENCE ANALYSIS

In this section, an upper bound to the maximum number of moves needed by the lion to catch the man, when

using the MCLS, is derived. Moreover, it is shown that such an upper bound is always smaller than the upper

bound NFCLS
max provided by the FCLS.

Before stating the main result, the following lemmas are needed.

Lemma 1: Let rt = ‖Ct − Lt‖ and r̃t+1 = ‖Ct − Lt+1‖. Then, xt+1 < xt and yt+1 < yt.

Proof: According to the MCLS, Lt+1 lies on the line connecting Ct and Mt+1. On the other hand, by

Definition 2, Ct+1 lies on the line joining Lt+1 and Mt+1. Hence, Ct, Lt+1 and Ct+1 belong to the same line,

i.e.

Ct+1 = Ct + (Ct − Lt+1)α , Ct +


dx
dy


 , α, dx, dy ∈ R.

By Proposition 3, Ct − Lt+1 has both coordinates strictly positive, i.e., sign(dx) = sign(dy) = sign(α).

Hence, it is sufficient to show that α < 0.

By contradiction, assume α ≥ 0 and let us define d =
√
d2x + d2y ≥ 0, see Fig. 1. Then, being dx ≥ 0 and

dy ≥ 0, one has

‖Ct+1 − Lt+1‖ = r̃t+1 + d > rt + d ≥ rt +max{dx, dy}

≥ max{xt + dx, yt + dy} = max{xt+1, yt+1}



where the strict inequality comes from (2). Since ‖Ct+1−Lt+1‖ > max{xt+1, yt+1}, Ct+1 cannot be a center,

according to Definition 2.
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Fig. 1. Sketch of proof of Lemma 1.

Lemma 2: Let Ct and r̃t+1 > rt be given. Let Lt+1 satisfy ‖Ct − Lt+1‖ = r̃t+1. Then,

m̂t+1 , sup
Lt+1:‖Ct−Lt+1‖=r̃t+1

mt+1

= max



mt

rt−
√
r̃2t+1 −m2

t

r̃t+1−
√
r̃2t+1 −m2

t

, rt
mt−

√
r̃2t+1 − r2t

r̃t+1−
√
r̃2t+1 − r2t



 .

(3)

Proof: Let us consider the case rt = xt (the case rt = yt is analogous).

Let Ct+1 = [xt+1, yt+1] be the center at time t + 1, and θ be the angle between the x axis and the vector

Ct −Lt+1. Notice that, since Ct+1 lies on the line connecting Lt+1 and Ct, θ is also the angle between the x

axis and the vector Ct+1 − Lt+1 (see Fig. 2). It follows that θ ∈ [θ, θ] where

θ = arccos

(
rt

r̃t+1

)
and θ = arcsin

(
mt

r̃t+1

)
.

Let us define δ = r̃t+1 − rt+1. By Definition 2 and Lemma 1, it turns out δ > 0. Moreover, one has

xt+1 = rt − δ cos θ , fx(θ) (4)

yt+1 = mt − δ sin θ , fy(θ) . (5)



Ctmt
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r̃t+1

O

θ

θ
θ

Lt+1

Ct+1

rt+1

xt+1

yt+1

Fig. 2. Sketch of proof of Lemma 2.

Let us define

M(θ) = min{fx(θ), fy(θ)}

and

R(θ) = max{fx(θ), fy(θ)}.

Then, finding m̂t+1 defined in (3), boils down to

m̂t+1 = sup
θ∈[θ, θ]

min{xt+1, yt+1}

= sup
θ∈[θ, θ]

min{fx(θ), fy(θ)} = sup
θ∈[θ, θ]

M(θ) . (6)

Let us analyze the case M(θ) = fx(θ), R(θ) = fy(θ). Notice that there exists at least one value of θ such

that this condition is satisfied. In fact, for θ = θ one has

M(θ) = fx(θ) = rt − (r̃t+1 − rt+1) cos(θ)

=
rt+1 rt
r̃t+1

< rt+1 = fy(θ) = R(θ) .

Since R(θ) = fy(θ) = rt+1, by (5), one has

rt+1 = mt − (r̃t+1 − rt+1) sin(θ)

which leads to

rt+1 =
mt − r̃t+1 sin(θ)

1− sin(θ)
. (7)



By substituting (7) into (4), after some algebra one gets

M(θ) = fx(θ) = rt − (r̃t+1 − rt+1) cos(θ)

= rt −
(r̃t+1 −mt) cos(θ)

1− sin(θ)
. (8)

By deriving (8) w.r.t. θ one obtains
∂M(θ)

∂θ
=

mt − r̃t+1

1− sin(θ)
< 0

since r̃t+1 > rt ≥ mt. Because the minimum feasible value of θ is θ and by (7), one has, under the hypothesis

M(θ) = fx(θ),

sup
θ:M(θ)=fx(θ)

M(θ) = M(θ) =
rt+1 rt
r̃t+1

=
rt

r̃t+1

mt − r̃t+1 sin(θ)

1− sin(θ)
= rt

mt −
√
r̃2t+1 − r2t

r̃t+1 −
√
r̃2t+1 − r2t

. (9)

Let us now repeat the same reasoning for the case in which M(θ) = fy(θ). Notice that θ = θ satisfies such a

condition, yielding

M(θ) = fy(θ) = mt − (r̃t+1 − rt+1) sin(θ) =
rt+1 mt

r̃t+1

< rt+1 = fx(θ) = R(θ) .

Since R(θ) = fx(θ) = rt+1, by (4), one has

rt+1 = rt − (r̃t+1 − rt+1) cos(θ)

which leads to

rt+1 =
rt − r̃t+1 cos(θ)

1− cos(θ)
. (10)

Substituting (10) into (5), after some algebra one gets

M(θ) = fy(θ) = rt − (r̃t+1 − rt+1) sin(θ)

= mt −
(r̃t+1 − rt) sin(θ)

1− cos(θ)
. (11)

By deriving (11) w.r.t. θ one obtains

∂M(θ)

∂θ
=

r̃t+1 − rt
1− cos(θ)

> 0 .

Thus,

sup
θ:M(θ)=fy(θ)

M(θ) = M(θ) =
rt+1 mt

r̃t+1

=
mt

r̃t+1

rt − r̃t+1 cos(θ)

1− cos(θ)

= mt

rt −
√
r̃2t+1 −m2

t

r̃t+1 −
√
r̃2t+1 −m2

t

. (12)



The result follows directly by (9) and (12).

In order to show that the MCLS leads to capture of the man in a finite number of moves, it is sufficient to prove

that the strategy leads to mt ≤ 1 for some finite t (recall Proposition 4). In this respect, the worst situation for

the lion is the one in which mt is maximized. Lemma 2 states that for given Ct and r̃t+1, the lion location

Lt+1 which maximizes the smallest element of Ct+1, is one of the two points on the coordinate axes with

distance r̃t+1 from Ct. These points correspond to the extreme angles θ and θ for the direction of Ct − Lt+1

in Fig. 2.

Lemma 3: At a given time t, let m̂t+1 be defined as in (3). Then,

r∗t , arg sup
rt≥mt

m̂t+1 = mt

and

m∗
t+1 , sup

rt≥mt

m̂t+1 = mt

mt −
√
r̃2t+1 −m2

t

r̃t+1 −
√
r̃2t+1 −m2

t

(13)

Proof: Recalling (2), let rt , βmt with β ≥ 1. We want to find

β∗ = arg sup
β≥1

m̂t+1 .

Let r̃t+1 , γrt, γ > 1 and define p =
√
r̃2t+1 −m2

t = mt

√
β2γ2 − 1, and q =

√
r̃2t+1 − r2t = βmt

√
γ2 − 1.

For given rt, mt and r̃t+1, Lemma 2 states that

m̂t+1 = sup
Lt+1:‖Ct−Lt+1‖=r̃t+1

mt+1

= max

{
mt

β −
√
β2γ2 − 1

βγ −
√
β2γ2 − 1

, mt

1− β
√
γ2 − 1

γ −
√
γ2 − 1

}
.

(14)

Let us consider the case

m̂t+1 = mt

β −
√
β2γ2 − 1

βγ −
√
β2γ2 − 1

. (15)

By deriving (15) w.r.t. β one obtains

∂m̂t+1

∂β
= mt

(
1− βγ2√

β2γ2−1

)(
βγ −

√
β2γ2 − 1

)

(
βγ −

√
β2γ2 − 1

)2

−mt

(
β −

√
β2γ2 − 1

)(
γ − βγ2√

β2γ2−1

)

(
βγ −

√
β2γ2 − 1

)2

= mt

(γ − 1)

(√
β2γ2 − 1− β2γ2√

β2γ2−1

)

(
βγ −

√
β2γ2 − 1

)2

=
mt(1− γ)

√
β2γ2 − 1

(
βγ −

√
β2γ2 − 1

)2 < 0 .



Since
∂m̂t+1

∂β
< 0, β∗ corresponds to its minimum feasible value, i.e., β∗ = 1, leading to r∗t = mt.

By following the same reasoning, for the case in which

m̂t+1 = mt

1− β
√

γ2 − 1

γ −
√
γ2 − 1

. (16)

one gets again
∂m̂t+1

∂β
< 0, and then r∗t = mt. Expression (13) is obtained by direct substitution into (3).

Lemma 3 states that, for a given mt, the center Ct which (potentially) leads to the maximum mt+1 at the

subsequent step is Ct = [mt,mt]
′. This is instrumental to define a bound to the evolution of mt.

Theorem 1: Let mt > 1 and let the lion play the MCLS. Then, for any possible man strategy, one has

mt+1 ≤ mt(mt − 1)√
1 +m2

t − 1
.

Proof: By Lemma 2 and Lemma 3, one has

m∗
t+1 = sup

rt≥mt

sup
Lt+1:‖Ct−Lt+1‖=r̃t+1

mt+1

= sup
rt≥mt

m̂t+1 = mt

mt −
√
r̃2t+1 −m2

t

r̃t+1 −
√
r̃2t+1 −m2

t

. (17)

Let us define r̂ = r̃t+1/mt. By substituting into (17), one has

m∗
t+1 = mt

1−
√
r̂2 − 1

r̂ −
√
r̂2 − 1

. (18)

By deriving m∗
t+1 w.r.t. r̂, one has

∂m∗
t+1

∂r̂
= mt

r̂ − 1−
√
r̂2 − 1

(
r̂ −

√
r̂2 − 1

)2

which vanishes for r̂ = 1. It can be easily checked that r̂ = 1 corresponds to a maximum and
∂m∗

t+1

∂r̂
< 0,

∀r̂ > 1, i.e. ∀r̃t+1 > mt. Since by (2) one has that r̃2t+1 ≥ r2t + 1 = m2
t + 1, the maximum value for m∗

t+1 is

achieved for r̃t+1 =
√
m2

t + 1. By substituting in (18) one has

m∗
t+1 = mt

mt −
√
m2

t + 1−m2
t√

m2
t + 1−

√
m2

t + 1−m2
t

= mt

mt − 1√
m2

t + 1− 1

which concludes the proof.

A direct consequence of Theorem 1 is that MCLS leads to capture of the man in a finite number of moves.

An upper bound to such a number is now derived.

Let us consider the recursion

bt+1 =
bt(bt − 1)√
1 + b2t − 1

, g(bt) . (19)

Let us fix b0 = m0 > 1. Since the function g(bt) is monotone increasing for bt > 1, by Theorem 1 one has

that, if mt ≤ bt, then

mt+1 ≤ g(mt) ≤ g(bt) = bt+1 .



Therefore, recursion (19) returns an upper bound of mt, for all t. By Proposition 4, if mt ≤ 1 then the game

ends at the next move. Since g(bt) < 0 when bt < 1, an upper bound to the maximum number of moves before

the game ends can be computed as follows

NMCLS
max = min{t ∈ N : bt < 0} .

Notice that NMCLS
max is a function of m0, although it seems difficult to express this dependence explicitly.

Clearly, NMCLS
max can be numerically computed by recursively evaluating bt in (19). In Fig. 3, NMCLS

max and

NFCLS
max = ⌈m2

0⌉ are compared for m0 ∈ [1, 10].
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From Fig. 3 it is apparent that NMCLS
max ≤ NFCLS

max , where equality holds only for small values of m0 (due to

the discretization introduced by the fact that the number of moves must be integer). This fact is proved in the

following theorem for every m0 > 1.

Theorem 2: Let m0 > 1. Then, NMCLS
max ≤ NFCLS

max = ⌈m2
0⌉.

Proof: System (19) can be rewritten as

bt+1 =
(bt − 1)(

√
1 + b2t + 1)

bt



which leads to

b2t+1 =
(bt − 1)2(b2t + 2 + 2

√
1 + b2t )

b2t

= b2t −
2b3t − 3b2t + 4bt − 2− 2(bt − 1)2

√
1 + b2t

b2t
.

(20)

For a given m0, let us consider the system

m2
t+1 = m2

t − 1 . (21)

Clearly, min{t ∈ N : mt < 0} = ⌈m2
0⌉ = NFCLS

max . Therefore, to prove the theorem it is sufficient to show

that system (20) decays to zero always faster than (21), which amounts to show that

2b3t − 3b2t + 4bt − 2− 2(bt − 1)2
√
1 + b2t

b2t
> 1

for all bt > 1. This easily follows from standard calculus arguments.

VI. CONCLUSIONS

A new lion strategy has been devised for the discrete-time version of the lion and man problem. This solution

dominates the one proposed by Sgall in [10] in terms of maximum number of moves required to guarantee

man capture.

An interesting feature of the proposed approach is that the upper bound on the number of moves does not seem

to be tight. Indeed, for randomly chosen initial conditions of lion and man, numerical simulations show that the

actual number of steps in which the lion reaches the man turns out to be much smaller than that predicted by

the bound. Unfortunately, the optimal man strategy for counteracting the proposed lion algorithm, for generic

initial conditions, is still an open problem. It is expected that such a result would allow one to significantly

improve the upper bound on the number of moves.

We believe that the proposed result is helpful in all the contexts in which the lion and man problem solution is

used as a building block within more complex strategies for pursuit-evasion games, like in [4]. The application

of the new lion algorithm in these problems and the evaluation of its benefits is the subject of ongoing research.
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