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Distributed Economic MPC with Separable Control
Contraction Metrics

Ruigang Wang, Ian R. Manchester, Member, IEEE, and Jie Bao

Abstract—In this paper, a flexible and scalable distributed
economic model predictive control (DEMPC) scheme is proposed
for large-scale networked systems consisting of nodes with local
self-interest economic objectives but a shared responsibility for
stability of the interconnected network. In this paper, subsystems
are controlled to track reference trajectories while optimizing
their own economic costs during the transitions. A reference-
independent stability constraint is introduced using a sum-
separable control contraction metric (CCM). The proposed
control design approach is thereby independent of both reference
trajectories and the economic cost functions and as such suit-
able for flexible manufacturing. We observe that self-interested
distributed optimization with shared responsibility for stability
results in the same general problem formulation as network
utility maximization (NUM), and make use of the alternating
direction method of multipliers (ADMM) to coordinate the
optimization. The proposed approach is illustrated with an
example of distributed control of a network with 120 nodes,
each of which is a three-state nonlinear system.

Index Terms—Distributed control, control of networks, predic-
tive control for nonlinear systems

I. INTRODUCTION

ADVANCES in information and network technology en-
able the development of large scale “smart infrastructure”

(e.g. power, transport) and “smart manufacturing” systems,
which are more agile, cost-effective and continuously operated
close to the market. For example, in the process industry,
in response to the continuously changing feedstock supply
and product market demand, the process operation strategy,
including operating conditions and targets (e.g., setpoints of
production rates and specifications) need to be frequently
updated to improve the process economy. The new paradigm
requires: (1) a flexible and reference-independent control de-
sign method, which does not need exact information on the
reference trajectories ([1]); (2) an optimization-based online
control approach that achieves optimal operational economy
during the transitions ([2]); (3) a scalable distributed control
framework for large-scale interacted networked systems.

One solution is economic model predictive control (EMPC),
which integrates feedback strategy with dynamic plant eco-
nomic optimization. Due to the use of the general cost func-
tions (not necessarily positive-definite), the closed-loop system
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is not necessarily convergent [3]. In addition, the reference
trajectories are often determined (and regularly changed) based
on considerations other than the operational costs. In general,
EMPCs without additional stability conditions do not converge
to the reference trajectories. Several approaches have been
proposed to address this issue. In [4], an additional terminal
equality or terminal region constraint was added to the EMPC.
Stability analysis of EMPC without terminal constraints are
presented in [3], [5]. Alternatively, a Lyapunov-based stability
constraint on the first step control action was proposed in
[6]. The stability condition or constraint in most existing
approaches are only valid at the equilibria/reference trajec-
tories which are the prior knowledge in the stage of off-line
control design. As such, they do not suit EMPCs for flexible
manufacturing.

Another important issue is the scalability of EMPC for
networked systems. In [7], a sequential distributed Lyapunov-
based EMPC was proposed for nonlinear chemical process
operation. In this approach, each controller optimizes a central-
ized economic cost to determine its own control action while
inputs of other subsystems are either provided by the cor-
responding controllers or generated by a backup control law.
The scalability of such an approach could be an issue when the
system size increases. For many applications, e.g. geographi-
cally distributed energy storage systems, individual subsystems
(which belong to different owners) optimize their own eco-
nomic costs. In these situations, referred to as self-interested
networked systems, controller coordination for network-wide
stability can be achieved by using additional constraints for
individual subsystems [8]. Similarly, a distributed EMPC
(DEMPC) approach based on dissipation inequality constraints
for subsystems was developed in [9]. These approaches are
scalable as each agent exchanges trajectory information once
and solves a small-scale EMPC problem in a distributed
way. However, the predetermined stability constraints (e.g.,
dissipativity conditions) for individual subsystems in the above
approaches can be very conservative.

In this work, a flexible and scalable DEMPC scheme based
on control contraction metrics (CCM) [10] is proposed for self-
interested large-scale networked systems. Unlike a Lyapunov
function, a CCM defines a distance between trajectories, and
hence provides a reference-independent stability constraint.
Furthermore, the reference signals can be arbitrary admissible
trajectories (including time varying setpoints), which is useful
for flexible manufacturing. The use of separable CCMs [11],
[12] ensures stability computations can be done with local
node information.

Secondly, individual DEMPC controllers at each node op-



timize a self-interest cost function, but are coordinated to
share responsibility for the overall system stability. The co-
ordination we propose is based on the alternating direction
method of multipliers (ADMM) [13], which is motivated by
the observation that DEMPC with a shared stability condition
has the same general formulation as the well-studied Network
Utility Maximization (NUM) problem. Unlike approaches
based on stability constraints for individual subsystems ([8],
[9]), the network contraction constraint is ensured by real-time
negotiation between DEMPC controllers, which leads to less
conservative stability conditions.

The proposed approach is scalable as it (1) allows individual
DEMPC controllers to optimize their local cost functions
subject to subsystem models in parallel, (2) requires only very
limited information exchange among nodes as only the local
stability constraints, not the input and state trajectories, are
negotiated.

The remainder of this paper is organized as follows. In
Section II, the problem of DEMPC for self-interested network
systems is formulated and the preliminaries on CCM are
introduced. The proposed CCM-based EMPC is presented
in Section III and the distributed version with the ADMM
framework is developed in Section IV. An illustrative example
is presented in Section V.

II. PROBLEM FORMULATION

Notations. Given a matrix A ∈ Rn×n, denote Â := A+AT .
The notion M � 0 stands for M being positive semidefinite.
Let Sn+ denote the set of positive semidefinite n×n symmetric
matrices. Given differentiable functions P : Rn → Rn×n and
f : Rn → Rn the notation ∂fP stands for an n × n matrix
with (i, j) element given by ∂Pij(x)

∂x f(x).
For given i, j ∈ N and i < j, the notation N[i,j] stands for

the set {k ∈ N : i ≤ k ≤ j}. A graph G = (VG , EG) is a
pair of node set VG := N[1,N ] and edge set EG ⊂ VG × VG .
A node i ∈ VG is said to be adjacent to node j ∈ VG if
(i, j) ∈ EG . The set of nodes that are adjacent to j is defined
as N (j) := {i ∈ VG : i 6= j, (i, j) ∈ EG}. Given two nodes
i, j ∈ VG , an ordered sequence of edges {(vk, vk+1) ∈ E}Lk=0

with v0 = i and vL = j is said to be a path from node i to
node j. A graph is said to be strongly connected if, for every
two nodes i, j ∈ VG , there exists a path connecting them.

Consider the network described by a strongly connected
graph G with N nodes. The system evolving on each node
i ∈ VG is described by

ẋi =fi(xi, x̆i) +Bi(xi)ui (1)

where state xi and input ui are constrained by bounded closed
sets Xi ⊂ Rni and Ui ⊂ Rmi , respectively. Consider the
subsystems indexed by j1, . . . , jk ∈ N (i) that are adjacent
to i, the vector x̆i := col(xj1 , xj2 , . . . , xjk) ∈ Rn̆i is the
interconnecting input, where n̆i := nj1 + nj2 · · ·+ njk . Each
subsystem (1) is given by the smooth vector fields fi and
Bi. By employing a more compact notation, the networked
dynamics can be represented by

ẋ = f(x) +B(x)u (2)

where x = col(x1, x2 . . . , xN ) ∈ X ⊂ Rn with n =
n1 + · · · + nN and X = X1 × X2 × · · · × XN , u =
col(u1, u2, . . . , uN ) ∈ U ⊂ Rm with m = m1+m2+· · ·+mN

and U = U1 × U2 × · · · × UN , f = col(f1, f2, . . . , fN ) and
B = diag(B1, B2, . . . , BN ). A function u(·) is said to be an
input signal or control for (2) if it is locally essential bounded.
Denote X(·, x0, u) as the trajectory of (solution to) (2) under
the input signal u with initial condition x0.

The control objective is to design a distributed EMPC law
µ such that for any initial state x0, closed-loop trajectories
X(·, x0, µ) exponentially converge to the admissible reference
x∗(·). Meanwhile, economic criteria for individual subsystems
are optimized during the transitions from initial states to the
neighborhood of the reference trajectory.

Problem 1. Consider the networked system described by (2)
with self-interested stage economic costs `i(xi, ui) for each
subsystem i ∈ N[1,N ]. For any initial state x0 and admissible
reference trajectory x∗(·), design a distributed EMPC law µ :
X→ U, such that

P1. The closed-loop trajectory X(·, x0, µ) exponentially con-
verges to the neighborhood of x∗(·).

P2. Each subsystem i optimizes its own stage cost function
`i(xi, ui) based on its own model (1) and state trajectory
information of its neighbors N (i).

Since the reference trajectory x∗(·) could be any feasible
solution, we need to develop a reference-independent stability
analysis and control design method. Contraction theory [10]
can be used to solve P1 of Problem 1. Some mathematical
background on Riemannian geometry is presented here before
the introduction of contraction theory.

Throughout the paper, the state and input manifolds X ,U
are assumed to be Euclidean manifolds Rn and Rm, respec-
tively. For two points x0, x1 ∈ X , there exists a smooth curve
γ : [0, 1] → X connecting x0 and x1, i.e., γ(0) = x0 and
γ(1) = x1. TxX denotes the tangent space at x ∈ X and
TX :=

⋃
x∈X {x} × TxX denotes the tangent bundle. The

Riemannian metric is a uniformly bounded matrix function
M : X → Sn+ (i.e., there exist constants 0 < α1 < α2

such that α2In � M(x) � α1In). The inner product of
v, w ∈ TxX induced by Riemannian metric can be defined
as 〈v, w〉x := vTM(x)w. The geodesic connecting two points
x0, x1 ∈ X with respect to Riemann metric M(x) can be
defined as follows:

Γ(·) := arg min
γ

∫ 1

0

〈γs, γs〉γ(s) ds

s.t. γ(·) ∈ C1, γ(0) = x0, γ(1) = x1

(3)

where γ(·) ∈ C1 means γs(·) := ∂γ/∂s(·) is a piecewise
continuous vector function. Note that if the Riemann metric
is a constant matrix, then the geodesic Γ(·) is the straight line
connecting x0 to x1. For state-dependent M(x), the geodesic
Γ(·) is in general a curve, and methods for computing it
were proposed in [14]. We can define the Riemannian distance



d(x0, x1) and energy ε(x0, x1) as follows:

d(x0, x1) :=

∫ 1

0

√
〈Γs,Γs〉Γ(s) ds (4)

ε(x0, x1) :=

∫ 1

0

〈Γs,Γs〉Γ(s) ds. (5)

Now we can define a framework to deal with the exponential
convergence of any pair of solutions.

Definition 1. System (2) is said to be metric exponentially
stabilizable with rate λ if, for every solution X(·, x∗, u∗) to
(2), there exist a Riemannian distance function d(·, ·) and a
feedback control law µ such that, for every initial condition
x ∈ X , the corresponding solution X(·, x, µ) to (2) satisfies
the inequality

d(X(t, x∗, u∗), X(t, x, µ)) ≤ e−λtd(x∗, x), ∀t > 0. (6)

Consider the unconstrained dynamical system of (2) and
assume that the state and input involve on manifolds X and
U , respectively. Then the contraction property between any
pair of solutions is analyzed by investigating the stability of
its associated differential dynamics [15], [16]:

δ̇x = A(x, u)δx +B(x)δu, (7)

where (δx, δu) ∈ T (X×U), A(x, u) = ∂f(x)
∂x +

∑m
j=1 uj

∂bj(x)
∂x

and bj(x) is the jth column of B(x). It can be understood as
a linear time-varying system (continuous linearization) along
any given trajectory X(·, x, u) of (2). The CCM, which is
similar to control Lyapunov functions, can be defined as
follows.

Definition 2 ([10]). A Riemann metric M(x) is said to be
a contraction metric for system (2) and (7) if there exists a
constant λ > 0 such that the inequality

d

dt
V (x, δx) ≤ −2λV (x, δx) (8)

where V (x, δx) := δTxM(x)δx is denoted as the differential
Lyapunov function, holds for every trajectory to system (2)
and (7). Furthermore, if following two conditions

∂bjM(x) +

∧

M(x)
∂bj(x)
∂x

= 0, j = 1, . . . ,m (9a)

δTx

∂fM(x) +

∧

M(x)∂f(x)
∂x

 δx < −2δTxM(x)δx (9b)

hold for all δx 6= 0 and δTxM(x)B(x) = 0, then M(x) is said
to be a control contraction metric.

III. CCM BASED EMPC

Condition (9) can be transformed into following state-
dependent LMI [10]

∂fW −
∧
∂f
∂xW + γ(x)BBT − 2λW � 0 (10)

where W (x) = M(x)−1 and γ(x) > 0. If system (2) can be
modeled as, transformed into or approximated by polynomial
systems, then (10) can be solved by the sum-of-squares (SOS)
programming [17]. We can then obtain a differential feedback
law for system (7)

δu = −K(x)δx = −1

2
γ(x)BTM(x)δx (11)

and a reference-independent feedback law for system (2)

u = u∗ −
∫ 1

0

K(Γ(s))Γs ds (12)

where Γ(s) is a geodesic connecting x∗(·) and x(·) with
respect to contraction metric M(x), u∗(·) is the corresponding
nominal input for x∗(·). By integrating (8) along the geodesic
Γ(x∗, x), we have following contraction inequality [10]:

1

2

d

dt
ε(x∗, x) = 〈Γs(1), ẋ〉x − 〈Γs(0), ẋ∗〉x∗

≤ −λε(x∗, x)
(13)

which can be rewritten as follows:

g(x, u, x∗, λ) := 〈Γs(1), f(x) +B(x)u〉x−
〈Γs(0), ẋ∗〉x∗ + λε(x∗, x) ≤ 0.

(14)

It is a linear inequality constraint on u since Γ(x∗, x) and
ε(x∗, x) can be calculated at the beginning of each sampling
period. It can also be understood as a implicit incremental
Lyapunov constraint since inequality (14) implies that the
length of the minimal path (geodesic) between x and x∗

decreases exponentially. The contraction constraint (14) may
not be feasible because the synthesis problem (10) does not
take the state/input constraints into account. A possible way
to resolve this issue is to search for a uniform feasible
convergence rate λm for a given CCM M(x) as follows:

g(x, u, x∗, λm) ≤ 0, 0 < λm < λ,

x, x∗ ∈ X, u ∈ U, ‖ẋ∗‖ ≤ vm
(15)

where vm is the maximum velocity of the reference trajectory.
The above feasibility problem can be solved off-line by
implementing a line search on λm and a sampling method for
constraints verification. For non-uniform convergence rates, it
can be obtained by constructing a family of subsets covering
X and searching for an individual λm on each subset. Here
we assume that there exists a feasible λm for (15).

A CCM-based EMPC, which guarantees closed-loop stabil-
ity to any admissible reference trajectories, can be formulated
as follows:

min
ũ∈S(τ)

H−1∑
j=0

`(x̃(j), ũ(j))

s.t. x̃(j + 1) = fτ (x̃(j), ũ(j)), x̃(0) = x(tk) (16a)
ũ(j) ∈ U, x̃(j + 1) ∈ X, 0 ≤ j ≤ H − 1 (16b)
g(x̃(0), ũ(0), x∗, λm) ≤ 0 (16c)

where `(x̃, ũ) =
∑N
i=1 `i(x̃i, ũi) is the stage economic cost

function, H is the prediction horizon, and S(τ) is the family
of piece-wise constant functions with sampling period τ .
Eq. (16a) is the sampled-data representation of (2). The state



measurements x(tk) at time step tk = kτ, k = 0, 1, . . . are as-
sumed to be available. The optimal state and input trajectories
to (16) are denoted by xopt(N[1,H]) and uopt(N[0,H−1]). The
EMPC is implemented in a receding horizon fashion, that is,
solve (16) and apply the control action µ(x(tk)) := uopt(0)
to system (2) for t ∈ [tk, tk+1).

The discrete-time model in (16a) is only used for MPC
optimization and the contraction constraint (16c), which is
derived from the continuous time model, needs to be satisfied
only by the actual control action µ(x(tk)). The convergence
property of x(t), t ∈ [tk, tk+1) needs to be addressed. Denote
the left hand side of (13) as L(x∗, x, u)(t). For t ∈ [tk, tk+1),
the constant control action µk = µ(x(tk)) satisfying

1

2

d

dt
ε(x∗, x)(tk) ≤ −λmε(x∗, x)(tk) (17)

is applied to system (2). Since function f(·), B(·) are contin-
uous and X,U are bounded closed sets, then one can find, for
all t ∈ [tk, tk+1), a positive constant K, such that

‖L(x∗, x, µk)(t)− L(x∗, x, µk)(tk)‖ ≤ Kτ. (18)

Due to the stability margin provided by convergence rate λm,
we have following metric exponentially stability property.

Theorem 1. Assume that system (2) is controlled by EMPC
(16) with CCM M(x) and contraction rate λm. For any given
initial state x0 and continuous admissible reference trajectory
x∗(t), the closed-loop trajectory x(t) will metric exponentially
converge to the tube

Bρm(x∗(t)) := {x : d(x∗(t), x) ≤ ρm} (19)

where ρm =
√
Kτ/λm. More specifically, the convergence

rate at x ∈ X\Bρ(x∗(t)) (with ρ > ρm) is no less than cλm,
where c = 1− (ρm/ρ)2.

Proof. Using inequalities (13), (17) and (18), for any x ∈
X\Bρ(x∗(t)), we have

1

2

d

dt
ε(x∗, x)(t)

=L(x∗, x, µk)(tk) + [L(x∗, x, µk)(t)− L(x∗, x, µk)(tk)]

≤− λmε(x∗, x)(tk) +Kτ

=− cλmε(x∗, x)(tk) +Kτ − (1− c)λmε(x∗, x)(tk)

≤− cλmε(x∗, x)(tk) +Kτ − (1− c)λmρ2

=− cλmε(x∗, x)(tk) < 0,

which implies ε(x∗, x)(t) < ε(x∗, x)(tk). Then we can
conclude that

1

2

d

dt
ε(x∗, x)(t) ≤ −cλmε(x∗, x)(t). (20)

Remark 1. The admissible reference trajectory x∗(t) in EMPC
problem (16) only represents user-specified control tasks,
which may not be optimal with respect to the economic cost
function. For example, a robotic arm needs to track different
trajectories while minimizing the energy cost. Clearly, the
economical optimal trajectory for the robotic arm is to remain
at a certain position. These applications require that the

stability property of EMPC is independent of the cost function,
which cannot be achieved by EMPC schemes without stability
constraints [3], [5], [18]. The proposed CCM-based EMPC
optimizes the system economy while controlling the state to be
within a certain exponential shrinking tube. The convergence
rate λm becomes a tuning parameter for the trade-off between
the economic cost and the stability requirement. Larger λm
implies fast convergence to x∗(t) and better robustness with
respect to disturbances but the economy during the transition
period may be sacrificed as the feasible region shrinks.

IV. DISTRIBUTED EMPC WITH SEPARABLE CCM

As the scale of networked systems increases, the imple-
mentation of centralized control becomes very difficult and
often infeasible. In [1], [11], distributed state feedback control
based on separable CCM and differential dissipativity were
developed respectively.

Definition 3 (Sum-separable CCM [11]). A CCM M(x) for
system (2) is said to be sum-separable if, for each subsystem
i, there exists a contraction metric Mi(xi) satisfying M(x) =
diag(M1(x1),M2(x2), . . . ,MN (xN )).

With the block diagonal structure, we can have V (x, δx) =∑N
i=1 δ

T
xi
Mi(xi)δxi

and ε(x, x∗) =
∑N
i=1 ε(xi, x

∗
i ). The

geodesic computation (3) can be decentralized [11]. Moreover,
the contraction constraint for the networked system can be
rewritten in the following sum-separable form

g(x, u, x∗, λm) =

N∑
i=1

gi(xi, ui, x
∗
i , λm) ≤ 0 (21)

where gi is the contraction representation corresponding to the
i-th subsystem in (1). The study on the existence of separable
CCM for monotone nonlinear system is presented in [12].

The DEMPC for self-interested systems can be represented
as follows:

Ji(φi) := min

H−1∑
j=0

`i(x̃i(j), ũi(j))

s.t. x̃i(j + 1) = fτi (x̃i(j), x̆i(j), ũi(j)) (22a)
x̃i(0) = xi(tk), ũi(j) ∈ Ui, x̃i(j + 1) ∈ Xi,

0 ≤ j ≤ H − 1 (22b)
g(x̃i(0), ũi(0), x∗i , λm) ≤ φi (22c)

where (22a) is the discrete-time model of the i-th subsystem
with sampling period τ , X and U are state and input constraint
sets respectively, and (22c) is the contraction constraint for the
i-th subsystem. The external inputs are defined by

x̆i(N[0,H−1]) :=
[
x̆i(tk) x̆opt

i

(
N[2,H]

)]
(23)

where x̆i(tk) and x̆opt
i are current state measurements of

neighborhood subsystems and their predicted state trajectories
at previous step, respectively. At the beginning of each time
step, only the current statement xi(tk) and predicted optimal
state trajectory xopt

i of the i-th subsystems are transmitted to
its neighborhoods, which satisfies the item of P2 in Problem 1.
The self-interest of the systems is reflected by an individual



local cost function each agent is trying to minimize [8]. The
coordination between individual DEMPC controllers is needed
to ensure the network stability constraints:

N∑
i=1

g(x̃i(0), ũi(0), x∗i , λm) ≤
N∑
i=1

φi ≤ 0. (24)

The coordination problem can be reformulated as follows:

min
φ

N∑
i=1

Ji(φi), s.t. 1Tφ ≤ 0 (25)

where 1 = [1, 1, . . . , 1]T and φ = col(φ1, . . . , φN ). It is clear
from the construction (22) that each Ji(φi) is a monotonically
decreasing function of φi. We note that in the special case of
linear dynamics and linear or quadratic costs li, the Ji(φi) are
also convex.

It is interesting to note that the problem (25) has the same
general formulation as the well-studied network utility max-
imization problem (e.g. [19] and references therein), which
allocates communication channels to different nodes subject to
limited link capacities and time-varying transmission rates. In
this case, φi and Ji(φi) can be understood as the transmission
rate and (negative) utility function at node i, respectively. The
constraint 1Tφ ≤ 0 corresponds to the link capacity.

In this work, we apply an ADMM framework similar to
[19], [20] to solve the problem in (25). Unlike the use of
ADMM in DMPC proposed in [20], in our approach the
controllers only negotiate the stability constraints (φi), rather
than the state and input trajectories of each subsystem.

In general, the ADMM algorithm solves the following
problem [13]:

min
θ,φ

f(φ) + g(ψ) s.t Aφ+Bψ = c, (26)

by iteratively updating the primal variables φ, ψ and dual
variable ν as follows:

φp+1 = arg min
φ

Lβ(φ, ψp, νp)

ψp+1 = arg min
ψ

Lβ(φp+1, ψ, νp)

νp+1 = νk + (Aφp+1 +Bψp+1 − c)

(27)

where p is the iteration step, ν is a scaled dual variable and
the augmented Lagrangian is

Lβ = f(φ) + g(ψ) + νT (Aφ+Bψ− c) +
β

2
‖Aφ+Bψ− c‖2

with a constant β > 0. We can rewrite (25) in an ADMM
amenable form:

min
φ,ψ

N∑
i=1

Ji(φi), s.t. φ− ψ = 0, 1Tψ ≤ 0. (28)

Then the iterative primal-dual subproblems become:

φp+1
i = arg min

φi

Ji(φi) + νpi φi +
β

2
(φi − ψpi )2 (29a)

ψp+1 = arg min
1Tψ≤0

(
−νpψ +

β

2

∥∥φp+1 − ψ
∥∥2
)

(29b)

νp+1
i = νk + β(φk+1

i − ψp+1
i ). (29c)

The φi-update in (29a) can be rewritten as follows:

min
ũi,φi

vpi φi + β(φi − ψpi )2 +

H−1∑
j=0

`i(x̃i(j), ũi(j))

s.t. (22a)− (22c).

(30)

This is a decentralized optimization problem which optimizes
a local cost function subject to a local model of the i-th node.

Due to the network contraction constraint (24), the ψ-update
(29b) needs to be performed in a centralized fashion. However,
in many large-scale system, strong interactions are often within
certain clusters of subsystems while the clusters are sparsely
connected with other clusters. Thus we can divide the entire
network into clusters and impose individual constraint on each
cluster. Here we define a cluster C to be a strongly connected
subgraph of G. A family set of clusters {Cs}1≤s≤M is said to
be a partition of G if

⋃M
s=1 VCs = VG and Cr ∩ Cs = ∅, 1 ≤

r < s ≤M are satisfied. Let Cs = {ik1 , . . . , iks}, 1 ≤ s ≤M
be a cluster partition of the network G. We can replace the
network constraint with

1Tψs ≤ 0, 1 ≤ s ≤M (31)

where ψs = col(ψik1
, . . . , ψiks

). Note that the above con-
straint is a sufficient condition for network stability. The ψ-
update (29b) can be rewritten as follows:

ψp+1
s = arg min

1Tψs≤0

(
−νpsψs +

β

2

∥∥φp+1
s − ψs

∥∥2
)

(32)

where φs = col(φik1
, . . . , φiks

). From [19], the analytical
solution to the above problem can be expressed as follows:

ψp+1
s = φp+1

s − (θp+1
s 1− νps )/β (33)

where

θp+1
s =

1

|VCs |
max

{
0,1T (βφp+1

s + νps )
}

(34)

with |VCs | denoting the number of nodes in the cluster Cs.
In order to reduce the iteration steps of ADMM, the

following stopping criteria can be adopted:

1T (φp+1
s − ψp+1

s ) ≤ max
(
λe1

T ε(xs, x
∗
s), |VCs |ε

)
(35)

where ε(xs, x
∗
s) = col

(
ε(xik1

, x∗k1), . . . , ε(xiks
, x∗ks)

)
and

λe, ε > 0 are chosen to be sufficiently small. The basic idea
is to terminate the ADMM algorithm once a certain converge
rate is achieved. When the current state is far away from the
reference point, i.e., ε(x, x∗) is very large, the converge rate
for closed-loop system becomes λm − λe since

g(x, u, x∗, λm − λe) = g(x, u, x∗, λm)− λeε(x, x∗)

≤
N∑
i=1

φp+1
i − λeε(x, x∗) ≤

N∑
i=1

(φp+1
i − ψp+1

i )− λeε(x, x∗)

=

M∑
s=1

1T (φp+1
s − ψp+1

s − λeε(xs, x∗s)) ≤ 0.

In the proposed ADMM scheme, φ-update in (29a) can be
formulated as relative small-scale optimization problems. Only
small amount of information on φ, ψ, ν is exchanged among



Cs

Figure 1. Network topology of the illustrative example
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Figure 2. Closed-loop trajectories of Cluster 1 (dashed – references, solid –
state trajectories) and Riemannian energy (RE) of the entire network.

the members of each cluster during iterations. Moreover, the
iteration steps can be reduced by using a state-dependent
tolerance level, as shown in (35). The above features make
the proposed approach scalable.

V. ILLUSTRATIVE EXAMPLE

We consider a network consisting of 20 clusters, each of
which contains six color-coded nodes, as depicted in Figure 1.
The clusters are connected through red and green nodes. The
dynamics of node i ∈ N[1,120] is represented by

ẋi = −xi + zi − 0.1(xi −
∑
j∈N (i) xj)

ẏi = x2
i − y3

i − 2xizi + zi

żi = −yi + ui

(36)

where xi, yi, zi ∈ [−2, 2] and ui ∈ [−4, 4]. The stage eco-
nomic cost function for node i is given by `i(qi, ui) = 2xi−yi,
where qi := [xi, yi, zi]

T . The main parameters are listed as
follows: λm = 0.3, β = 1, λe = ε = 0.01, Ts = 0.01,
H = 10. Note that in total, this system has 360 states and
unstable nonlinear dynamics. The simulation results are shown
in Figure 2 (where the state trajectories of the nodes are plotted
in the colors of the nodes), from which it can be seen that
the proposed approach can drive the networked system to
admissible reference trajectories.

VI. CONCLUSION

In this work, we develop a flexible DEMPC approach for
networked systems. Individual subsystems are controlled to

optimize their own economic costs while being coordinated to
reach arbitrary admissible network-wide reference trajectories
with a shared responsibility for overall network stability. The
latter is ensured by using sum-separable control contraction
metrics and an ADMM framework for online iterative negoti-
ations among the distributed controllers.
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“Distributed optimization with local domains: Applications in MPC and
network flows,” IEEE Trans. Automat. Control, vol. 60, no. 7, pp. 2004–
2009, 2015.


