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Preserving Privacy of Finite Impulse Response Systems

Giulio Bottegal, Farhad Farokhi, and Iman Shames

Abstract— Adding input and output noises for increasing
model identification error of finite impulse response (FIR)
systems is considered. This is motivated by the desire to protect
the model of the system as a trade secret by rendering model
identification techniques ineffective. Optimal filters for con-
structing additive noises that maximizes the identification error
subject to maintaining the closed-loop performance degradation
below a limit are constructed. Furthermore, differential privacy
is used for designing output noises that preserve the privacy of
the model.

I. INTRODUCTION

Innovative industries invest resources (e.g., money and

time for research and development) to construct new systems

and to improve the performance of the previously-deployed

ones. To generate revenue and offset the cost of research,

they ideally want to capitalize on their achievements. This is

sometimes done by restricting the use of their ideas through

patents or by hiding the features of their systems as trade

secrets. When opting for trade secrets, reverse engineering

techniques can be used by competitors to unravel their se-

crets. For instance, model identification tools can be utilized

to identify a black-box system or to extract the parameters

of a gray-box system. The gained information can be then

used to reverse the financial gains. This motivates the use

of methods that can render reverse-engineering techniques

ineffective. Such methods, however, most often degrade the

performance of the system. Therefore, a framework for

balancing the need for preserving the trade secrets against

maintaining the performance of the systems is required.

In this paper, linear time-invariant discrete-time finite im-

pulse response (FIR) system are considered. Specifically, the

idea of adding noises to the input and output for increasing

the error of model identification is explored. A bound on

closed-loop performance degradation caused by the additive

noise is enforced. An optimal filter for constructing the addi-

tive input and output noises that maximizes the identification

error subject to maintaining the performance degradation

below a threshold is constructed. This is done for both

known and unknown input sequences. The former is useful

to make the identification difficult for given inputs, such as

the optimal experimental design in the model identification

literature [1]. The latter, which requires statistics of the

input, can accommodate the belief of the designer on the

reverse engineering techniques, e.g., a frequently used input
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for model identification purposes is a sequence of i.i.d.1

Gaussian noise [2]. Finally, differential privacy framework

is used for designing output additive noises that make the

system identification difficult without any assumptions on

the utilized inputs.

In differential privacy literature, noises are added to the

outcome of statistical queries from databases to preserve the

privacy of individuals in the database [3]. This framework

was more recently used in dynamical systems [4], [5]. In

differential privacy literature, most often, additive Laplace

noises are used and the parameters of the noise are selected

according to the sensitivity of the outcome to variations in the

data (that should be kept private). However, weaker variants

of differential privacy can be achieved by additive Gaussian

noises. This is advantageous as adding Laplace noise can

make the designer’s task considerably more difficult (in terms

of utilizing the outputs of the system), e.g., optimal state

estimation when measurements are corrupted by Laplace

noise results in non-linearities and memory issues [6].

To the best of our knowledge, the differential privacy has

not been explored in the context of preserving the privacy of

dynamical systems with the aim of protecting the model as a

trade secret. This has been explored thoroughly in one of the

sections of the paper. In addition, in this paper, the problem

of preserving the privacy of the systems is cast as a concrete

optimization problem that balances the need for keeping the

privacy with that of the maintaining the performance. This

provides a different approach to that of differential privacy in

which constraints on the performance degradation cannot be

enforced directly to optimally balance between privacy and

performance. Finally, note that the problem of releasing the

dynamical model of a system under privacy constraints was

considered in [7]. In this paper, we take a different approach,

i.e., we do not release the model of the system. We want

to ensure that inferring an exact model relating inputs and

outputs is made difficult.

The rest of the paper is organized as follows. The design

of optimal additive input and output noise to hinder system

identification is studied in Section II. Section III uses the

differential privacy for constructing additive output noises.

A numerical example is provided in Section IV. Some

concluding remarks are presented in Section V.

II. OPTIMAL ADDITIVE NOISE

Here, we investigate the use of additive noise to preserve

the privacy of the model information assuming that the

eavesdropper uses the best linear unbiased estimate. These

1i.i.d. stands for independently and identically distributed.
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results are subsequently generalized (to the case where the

model of the eavesdropper is not known) when using the

differential privacy framework.

A. Problem Formulation

In this paper, for sake of simplicity of presentation, lin-

ear single-input single-output (SISO) time-invariant discrete-

time systems are considered. All the derivations can be

extended to multi-input multi-output (MIMO) systems. The

system is described by the following equation

yt = H(q−1)rt + et, (1)

where H(q−1) represents the transfer function of the system,

which is driven by the reference input rt. The output yt is

corrupted by additive white Gaussian noise with variance

σ2, which is represented by et. Assume that H(q−1) can be

well-represented by a finite-impulse response (FIR) system

of order nh, i.e., H(q−1) =
∑nh−1

k=0 hkq
−k. Hence, the

dynamics of the system is completely characterized by the

vector of coefficients h := [h0 . . . hnh−1]
⊤. In this paper,

we assume null initial conditions (that is rt = 0 for t ≤ 0),

though extension to any initial condition is straightforward

due to the linearity of the underlying system.

Assume that an adversary is interested in inferring on the

process relating rt to yt by attempting to estimate h from

a set of N input/output measurements {rt, yt}Nt=1. To com-

plicate the identification process, an additional component

(which is not accessible to the adversary) can be added

to the input or to the output of the system to lower the

identification accuracy. Let wt capture such an additional

component, which changes the model of the system as

yt = H(q−1)rt + et + wt. (2)

This term can capture both the additive input and output

noise as discussed, in detail, in what follows.

Assumption 2.1: The malicious entity is unaware of the

presence of the additive input or output noise.

This assumption is rather conservative. When using the

differential privacy framework in the next section, we can

avoid such assumptions. Considering a FIR model for the

system and in light of Assumption 2.1, the best linear unbi-

ased estimate (BLUE) of h from perspective of the malicious

entity is given by the standard least-squares estimate [8,

Ch. 4]. Let us introduce the vectors y := [y1 . . . yN ]⊤,

e := [e1 . . . eN ]⊤, and w := [w1 . . . wN ]⊤. Assuming that

the system is at rest prior to the data collection (i.e., rt = 0
for all t ≤ 0) and defining the matrix

R :=





















r1 0 0 . . . 0
r2 r1 0 . . . 0
...

...
...

. . .
...

rnh
rnh−1 rnh−2 . . . r1

...
...

...
. . .

...

rN rN−1 . . . . . . rN−nh+1





















,

it is evident that y = Rh+w+e. The least-squares estimate

of h is then given by

ĥ = (R⊤R)−1R⊤y. (3)

Note that this estimator is not the true BLUE, which would

require the knowledge of the second order statistics of wt.

However, it is the best that the malicious entity can do

without the knowledge that wt exists. This estimator is still

unbiased because E{ĥ} = E{(R⊤R)−1R⊤(Rh+w+ e)} =
h + (R⊤R)−1R⊤

E{w + e} = h. Then, a measure of the

accuracy of the estimation of the impulse response is the

covariance matrix of ĥ [8, Ch. 4], namely

Ph := E{(ĥ− h)(ĥ− h)⊤}. (4)

The additional input wt determines the quality of the esti-

mated system ĥ by entering into the expression of the param-

eter covariance matrix Ph. Intuitively, the higher the power

of wt, the higher Ph (and thus the lower the identification

accuracy). On the other hand, wt has an undesired effect on

the output power. Therefore, the additive noise is designed

to increase the total variance of ĥ (expressed through the

trace of Ph) while keeping low the contribution of wt to

the variance of yt. Let λy := E
[

y2t |rt = 0, t ∈ Z
]

be such

contribution. Note that, if rt = 0, the output is driven only

by the stationary noise processes et and wt and so λy is

constant in t.
Problem 2.2: For a given input r, find an appropriate

additive noise wt to maximize the identification error tr(Ph)
while keeping the performance degradation small by guar-

anteeing λy ≤ γ1.

In Problem 2.2, γ1 is a pre-selected constant that reflects

the maximum tolerable output variance, which is a measure

of the performance degradation caused by the additive input

and output noises. If γ1 is very small, the optimal solution

is add no noise. In this case, the closed-loop performance is

far superior to protecting the model. However, if γ1 is too

large, the output of the system is drowned in noise and thus

the system becomes practically useless.

Here, the additive noise is designed for a given sequence

of inputs captured by r. This might not be generally feasible

as, when dealing with causal systems, the additive noise

should be designed and employed prior to receiving the entire

sequence of inputs. This design methodology is however very

useful to make the identification difficult for a given input,

such as those in optimal experimental design in the model

identification literature [1]. Alternatively, a distribution for

the input signal can be considered. Furthermore, the length

of the experiment N that the malicious entity is collecting

to identify the system is also unknown a priori, and shall be

treated as a random quantity.

Assumption 2.3: Let N ∈ N be a random number dis-

tributed according to P{N = ℓ} = p(ℓ) for some p : N →
[0, 1] such that

∑

ℓ∈N
p(ℓ) = 1. For a given N , assume

that r ∈ R
N is distributed according to the conditional

probability density function p(·|N) such that P{r ∈ R|N} =
∫

r′∈R
p(r′|N)dr′ for all Lebesgue-measurable sets R ⊆ R

N .
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+

+

+

+
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H(q−1)
+

+

+

+

rt yt

etxt vt
L(q−1)

(b)

Fig. 1. The schematic diagram of the closed-loop system with additive
output (a) and input (b) noises. The eavesdropper only has access to the
signals outside of the dashed box.

Remark 2.4: In general, the probability density function

of the input signals might not be known in advance. In

that case, an online or adaptive approach can be used to

estimate the statistical properties of the input as more inputs

are revealed over time and design (or update the design of)

privacy-preserving filters based on the additional gathered

information. The result of this paper can serve as a first step

in that direction. This is because if rigorous treatment of the

problem for known deterministic inputs or random inputs

with known probability distributions is not well understood,

the analysis of the online approach would not be possible

(or straightforward to say the least).

In this case, the identification error Ph which is used as

a measure of privacy should be replaced with E{Ph} with

the expectation being taken over random variables r and N .

This allows us to generalize the problem of the interest as

follows.

Problem 2.5: For given distributions of random variables

N and r following Assumption 2.3, find an appropriate addi-

tive noise wt to maximize the identification error tr(E{Ph})
while keeping the performance degradation small by guar-

anteeing λy ≤ γ1.

In this paper, two families of additive noise are considered,

namely, additive output noise and additive input noise. In the

remainder of this section, these two families are described.

1) Additive Output Noise: Figure 1 (a) illustrates the

schematic diagram of the closed-loop system with additive

output noise. The additive noise wt is modelled by a zero-

mean moving-average (MA) stochastic process of the form

wt = L(q−1)vt, (5)

where vt is a sequence of i.i.d. zero-mean noise (which is

not necessarily Gaussian) of unit variance and L(q−1) :=
∑nl

k=0 lkq
−k is a FIR filter of prescribed order nl. Then,

wt is a stationary process with zero-mean and well-defined

autocovariance function [9]. The additive noise w :=
[w1 . . . wN ]⊤ can be expressed as w = Lv, where v :=

[v−nl+2 . . . v0 v1 . . . vN ]⊤ and

L :=















lnl−1 . . . l0 0 0 . . . 0
0 lnl−1 . . . l0 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 lnl−1 . . . l0 0
0 0 . . . 0 lnl−1 . . . l0















. (6)

The identification error covariance, in this case, is

Ph = (R⊤R)−1R⊤Var[w + e]R(R⊤R)−1

= (R⊤R)−1R⊤(LL⊤ + σ2IN )R(R⊤R)−1. (7)

Further, the output variance can be determined by

λy := E{y2t |rt = 0} = E{(wt + et)
2} = ‖l‖2 + σ2, (8)

where l = [l0 . . . lnl−1]
⊤.

Remark 2.6: It should be noted that by increasing the

order of the noise generation filter nl, the performance

can only be improved while maintaining the same privacy

guarantee. This is because the optimal solution from the

lower order is always feasible in the optimization problem

relating to the higher order noise filters. The order of the

system is thus only dictated by the available resources for

preserving the privacy of the model.

2) Additive Input Noise: Figure 1 (b) shows the schematic

diagram of the closed-loop system with additive input noise.

In this case, the additive input noise is denoted by xt and is

modeled by a zero-mean MA stochastic process of the form

xt = L(q−1)vt, (9)

where, similarly, vt is a sequence of i.i.d. zero-mean noise of

unit variance and L(q−1) is a FIR filter of prescribed order nl

determining the autocorrelation of xt. Then, the new system

is described by

yt = H(q−1)(rt + xt) + et

= H(q−1)(rt + L(q−1)vt) + et. (10)

The additive noise wt, in this case, is the contribution of xt

to the output, i.e., wt = H(q−1)L(q−1)vt. Define

F (q−1) := H(q−1)L(q−1), (11)

which can be expressed as

F (q−1) =

nf−1
∑

k=0

fkq
−k, nf=nh+nl−1. (12)

Note that x:=[x1 . . . xN ]⊤ can be expressed as x=Fv with

v := [v−nf+2 . . . v0v1 . . . vN ]⊤ and F is defined similarly

to L in (6). The identification error covariance becomes

Ph = (R⊤R)−1R⊤Var[w + e]R(R⊤R)−1

= (R⊤R)−1R⊤(FF⊤ + σ2IN )R(R⊤R)−1. (13)

Finally, it can be shown that λy = ‖f‖2 + σ2, where f =
[f0 . . . fnf−1]

⊤.



B. Deterministic Input

This part is dedicated to solving Problem 2.2. The results

are first presented for the output noise case.

1) Additive Output Noise: For additive output noise, Prob-

lem 2.2 can be rewritten as

argmaxl∈R
nl tr(Ph), (14a)

s.t. λy ≤ γ1, (14b)

where γ1 denotes the maximum tolerated output variance.

Define the performance degradation ratio

ρ :=
E{y2t |rt = 0}

E{y2t |rt = 0, wt = 0} =
λy

σ2
.

If the goal of the designer is to keep the performance

degradation ratio below ǫ, the constant γ1 can be selected

to be smaller than σ2ǫ. The following lemma is instrumental

to obtain an analytic solution of (14).

Lemma 2.7: Let

E := R(R⊤R)−1(R⊤R)−1R⊤ , (15a)

c := tr(σ2(R⊤R)−1) , (15b)

and denote by Ql a selection matrix such that vec(L) = Qll,
where vec(L) is a vector composed of all the columns of

the matrix L. Then, for the additive noise model, tr(Ph) =
l⊤Q⊤

l (IN+nl−1 ⊗ E)Qll + c.
Proof: See Appendix A,

Defining M := Q⊤
l (IN+nl−1 ⊗E)Ql and noting that the

term c is independent of l (and thus can be discarded from

the optimization problem), we transform (14) into

argmaxl∈R
nl l

⊤Ml (16a)

s.t. l⊤l ≤ γ1 − σ2. (16b)

The following result can be immediately proved.

Theorem 2.8: The solution of (16) is l∗ =
√

γ1 − σ2η∗,

where η∗ is the normalized eigenvector corresponding to the

largest eigenvalue of M .

Proof: The change of variable η = l/
√

γ1 − σ2

transforms the optimization problem in (16) to

η∗ ∈ argmaxη∈Rnl η
⊤Mη

s.t. η⊤η ≤ 1.

Note that M ≥ 0 has at least one positive eigenvalue

(as otherwise M = 0). Therefore, Courant–Fischer–Weyl

min-max principle [10, p. 58] shows η∗ is the normalized

eigenvector corresponding to the largest eigenvalue of M .

It can be seen that the quality of the model identification

drops linearly with increasing γ1. At the same time, the

performance degradation ratio increases linearly with γ1.

This capture the trade-off between these two objectives. Note

that, for instance, simply increasing the noise variance σ2 to

the upper bound γ1 would determine a linear increase of the

identification error, as Ph is proportional to σ2. However,

this strategy is non-optimal, and Theorem 2.8 shows how to

obtain the best trade-off between performance degradation

and model quality degradation, namely how to get highest

linear gain. A comparison between these two strategies is

given in Section IV.

If, for a given application, the linear dependency between

model quality degradation and system performance degra-

dation is not suitable, one can use the following alternative

formulation of the problem:

argminl∈R
nl (tr(Ph))

−1
+ γ2λy , (17)

where γ2 determines weight on the performance versus the

privacy. This formulation is useful when the constraint on

the performance is not hard (i.e., the degradation does not

need to be maintained under a given level but large output

variations are not pleasant). This problem is rewritten as

argminl∈R
nl (l

⊤Ml + c)−1 + γ2‖l‖2 , (18)

where c is defined in (15).

Theorem 2.9: Let λ1 ≥ λ2 ≥ . . . ≥ λnl
≥ 0 be the eigen-

values of M and v1, v2, . . . , vnl
denote the corresponding

eigenvectors. The solution of (18) is

l∗ =

{

0, λ1 ≤ γ2c
2,

√

1/
√
γλ1 − c/λ1v1, otherwise.

Proof: See Appendix B.

2) Additive Input Noise: Similarly, Problem 2.2 can be

expressed as

argmaxl∈R
nl tr(Ph), (19a)

s.t. λy ≤ γ1. (19b)

Using the same line of reasoning as in Lemma 2.7, we

introduce the following instrumental result.

Lemma 2.10: Let Qf be a selection matrix such that

vec(F ) = Qff . Then, for the additive input noise model,

tr(Ph) = f⊤Q⊤
f (IN+nf−1 ⊗ E)Qff + c , (20)

where E and c are defined in (15).

Proof: The proof follows the same line of reasoning as

in Lemma 2.7.

Now, note that the coefficients of the filter L(q−1) and

filter F (q−1) = H(q−1)L(q−1) are related according to

f = Hl, (21)

where H ∈ R
nf×nl is a Toeplitz matrix formed by the

coefficients of h. Substituting (21) in (20) gives tr(Ph) =
l⊤H⊤Q⊤

f (IN+nf−1⊗E)QfHl+c. Therefore, the optimiza-

tion problem in (19) can be transformed into

argmaxl∈R
nl l

⊤M ′l, (22a)

s.t. l⊤H⊤Hl ≤ γ1 − σ2, (22b)

where M ′ = H⊤Q⊤
f (IN+nf−1 ⊗ E)QfH . The following

result can be immediately proved.

Theorem 2.11: Assume H⊤H > 0. The solution of (22)

is l∗ =
√

γ1 − σ2(H⊤H)1/2η∗, where η∗ is the normal-

ized eigenvector corresponding to the largest eigenvalue of

(H⊤H)−1/2M ′(H⊤H)−1/2.



Proof: Introducing η = (H⊤H)−1/2l/
√

γ1 − σ2 trans-

forms the optimization problem in (16) to

η∗ ∈ argmaxη∈Rnl η
⊤(H⊤H)−1/2M ′(H⊤H)−1/2η

s.t. η⊤η ≤ 1.

The rest of the proof follows the same line of reasoning as

in the proof of Theorem 2.8.

The condition H⊤H > 0 is satisfied so long as H has full

column rank. This is guaranteed if hnh
6= 0, i.e., no fewer

than nh parameters are required for describing filter H(q−1).
Remark 2.12: The derivations of this section hold for

arbitrary noise distributions as only the first and the second

moments of the noise were considered. However, the choice

of the Gaussian noise is highly preferred as it makes the

integration of the closed-loop system with other control loops

much easier. This is an important feature as, most often,

off-the-shelf systems are interconnected to achieve complex

tasks. Other noise distributions do not lend themselves that

easily to integration as they might violate assumptions in the

design of the control loops (e.g., Laplace noise results in an

increased false alarm rate for fault detection schemes).

C. Extension to regularized least-squares

We now modify the proposed privacy-preserving technique

to cope with regularized least-squares estimators. The cost

function associated with this type of estimators is

JRLS(h) = ‖y −Rh‖22 + η‖h‖2K−1 , (23)

where K is a positive semidefinite matrix (usually called

a kernel) inducing desired properties in the estimates ĥ,

see [11] for details on regularized methods for system

identification. The solution to (23) is

ĥ = (R⊤R+ ηK−1)−1R⊤y = Cy , (24)

with obvious defintion of C. This solution is biased. Further,

it can be verified (see, e.g., [11]) that the mean square error

(MSE) of the estimate is given by

MSE =E{(h− ĥ)(h− ĥ)⊤} (25)

=(Inh
− CR)hh⊤(Inh

− CR)⊤

+ CLL⊤C⊤ + σ2CC⊤,

the first term on the right hand side corresponding to the

bias induced by the regularization penalty. Then, the results

of Theorems 2.8 and 2.9 hold by redefining

E := C⊤C , (26a)

c := tr((Inh
− CR)hh⊤(Inh

− CR)⊤ + σ2CC⊤) , (26b)

and, accordingly, updating the definition of matrix M . Note

that the identification performance depends on the parameter

η, regulating the bias-variance trade off, and on the kernel

matrix K . These are user choices, which are not accessible to

privacy-preserving device. One possible way to circumvent

this issue is to consider the best possible choice of kernel,

which is given by K = hh⊤ [11].

D. Random Inputs

The problem of designing an additive output noise is only

considered in this section. The results can be easily extended

to the design of input noises following the same line of

reasoning. Problem 2.5 can be cast as

argmaxl∈R
nl tr(E{Ph}) (27a)

s.t. λy ≤ γ1. (27b)

Note that tr(Ph) = E{c(r,N)}+ l⊤E{Ql(N)⊤(IN+nf−1 ⊗
E(r,N))Ql(N)}l. Although having the same definition,

Ql(N), E(r,N), c(r,N) are used instead of Ql, E, and c
to emphasize they are functions of random variables N and

r. Define M ′′ := E{Ql(N)⊤(IN+nf−1 ⊗ E(r,N))Ql(N)}.

The optimization problem in (27) can be rewritten as

argmaxl∈R
nl l

⊤M ′′l, (28a)

s.t. l⊤l ≤ γ1 − σ2. (28b)

Theorem 2.13: The solution of (28) is l∗ =
√

γ1 − σ2η∗,

where η∗ is the normalized eigenvector corresponding to the

largest eigenvalue of M ′′.

Proof: The proof follows the same line of reasoning as

in Theorem 2.8.

Unfortunately, calculating M ′′ in an explicit from as a

function of the distributions of N and r is generally difficult.

The following remark provides a numerical algorithm for

constructing an approximation of this matrix.

Remark 2.14 (Monte Carlo Simulation): Samples of pos-

sible input length N i, i ∈ {1, . . . , θ}, are selected ran-

domly. For each N i, ϑ samples of the inputs of length

N i can be selected. Let these samples be denoted by rij .

Define M̂ ′′ = (1/(θϑ))
∑θ

i=1

∑ϑ
j=1 Ql(N

i)⊤(INi+nf−1 ⊗
E(rij , N i))Ql(N

i). Evidently, P{‖M̂ ′′ − M ′′‖ ≥ ǫ} → 0
as both θ and ϑ tend to infinity for all ǫ > 0. Therefore, by

selecting enough samples, an arbitrarily close approximation

of M ′′ with a high probability can be constructed.

III. RELATIONSHIP TO DIFFERENTIAL PRIVACY

Throughout this section, the design of an additive output

noise is only considered. The results for the additive input

noise can be constructed similarly. Furthermore, h is assumed

to belong to a compact set H ⊆ R
nh .

Definition 3.1: The system is ǫ-differential private if

P{y ∈ Y|h} ≤ exp(ǫ)P{y ∈ Y|h′} for all Lebesgue-

measurable sets Y ⊆ R and h, h′ ∈ H that differ in at most

only one entry, i.e., ‖h − h′‖0 ≤ 1. The system is (ǫ, δ)-
differential private if P{y ∈ Y|h} ≤ exp(ǫ)P{y ∈ Y|h′}+δ.

Note that a random variable w is said to follow the Laplace

distribution with mean µ and (scaling) parameter b > 0
if P{w ∈ W} =

∫

w∈W(2b)−1 exp(−|w − µ|/b)dw for all

Lebesgue-measurable sets W ⊆ R.

Theorem 3.2: Assume wt is i.i.d. Laplace random vari-

ables with b ≥ suph,h′∈H:‖h−h′‖0≤1 ‖Rh− Rh′‖1/ǫ. Then,

the system is ǫ-differential private.

Proof: See Appendix C.

Note that suph,h′∈H:‖h−h′‖0≤1 ‖Rh−Rh′‖1 exists and is

finite because H is assumed to be a compact set.



Theorem 3.3: Assume wt is i.i.d. Laplace random vari-

ables with scaling parameter b. Then, λy = 2b2 + σ2.

Proof: The proof follows from that λy := E{y2t |rt =
0} = E{w2

t }+ E{e2t} = 2b2 + σ2.
Combination of Theorems 3.2 and 3.3 illustrates the trade-

off between preserving privacy and closed-loop performance

because as ǫ tends to zero (to achieve a higher level of

privacy), the performance degrades (i.e., λy goes to infinity).

Proposition 3.4: Let H := {h ∈ R
nh |h ≤ hi ≤ h, ∀i}.

Then, suph,h′∈H:‖h−h′‖0≤1 ‖Rh−Rh′‖1=(h−h)
∑N

k=1 |rk|.
Proof: See Appendix D.

Proposition 3.4 illustrates that the parameter of the Laplace

noise b should be increased upon admitting larger input

sequences. This is because, with larger N , there are more

data to extract the system parameters and, thus, the employed

mechanism needs to be more conservative to avoid leaking

the private information. Some relaxations of the differential

privacy, e.g., (ǫ, δ)-differential privacy, that lend themselves

to using a Gaussian noise, e.g., [4]. Let for any ǫ and δ define

κ(ǫ, δ) = (Q−1(δ)+
√

Q−1(δ)2 + 2ǫ)/2 with Q−1 denoting

the inverse of Q : x 7→
∫∞

x 1/
√
2π exp(−u2/2)du.

Theorem 3.5: Assume wt is i.i.d. zero-mean Gaussian

noise with σ ≥ κ(ǫ, δ) suph,h′∈H:‖h−h′‖0≤1 ‖Rh−Rh′‖2/ǫ.
Then, the system is (ǫ, δ)-differential private.

Proof: The proof is similar to that of Theorem 3.2 and

can be found in [4].

IV. NUMERICAL EXAMPLES

Consider the discrete-time system yt = G(q−1)rt + et,
where G(q−1) = (q−1 − 0.2q−2)/(1 − 0.9q−1 + 0.17q−2).
Clearly, G(q−1) is not a FIR system. This system can be

approximated by the FIR filter H(q−1) = q−1 + 0.7q−2 +
0.46q−3+0.295q−4+0.1873q−5+0.1184q−6+0.0747q−7+
0.0471q−8+0.0297q−9. The quality of the approximation is

‖H(q−1)−G(q−1)‖ = 0.0507. In the following, we consider

the deterministic input and the random input cases.

1) Deterministic inputs: We assume that a sequence of

N = 200 input samples is injected by the malicious entity.

The sequence is generated by filtering a white noise process

through the low-pass filter W (q−1) = 1/(1− 0.95q−1). We

set σ2 = 1 and γ1 = 2, so that we are allow to double the

variance of the output. First, we consider the least-squares

estimator (3). We compute the identification error, given by

tr(Ph), of least-squares equipped with the proposed privacy

preserving technique using output additive noise case with

nl = 10, and the identification error of least-squares without

any privacy preserving device. To get a fair comparison, in

the latter case the noise variance is equal to the total noise

variance of the former case, that is tr(FF ′)/N + σ2. The

noise filter designed by the privacy preserving device yields

tr(Ph) = 0.25, while the variance obtained using standard

least-squares is tr(Ph) = 0.17; we have thus obtained an

error increase of approximately 50%.

We now consider regularized least-squares estimators, as

described in Subsection II-C. We employ as regularization

kernel the stable spline kernel Ki,j = βmax(i,j) (see [11]),

with β = 0.7. The trade off parameter η is set as η =

0.1. Using the proposed privacy preserving technique the

obtained MSE of the estimated system is 0.17, while without

privacy preservation (and with the same noise variance) we

get a MSE equal to 0.13. Increasing η, the privacy preserving

device tends to have a milder effect on the MSE, because

the regularized least-squares estimator gives higher weight

to the prior knowledge, penalizing the information acquired

from data.

2) Random inputs: Assume that the malicious entity in-

jects a sequence of i.i.d. zero-mean unit-variance Gaussian

variables of length N chosen with equal probability from

{10, . . . , 20}. The approach of Subsection II-D is considered

for constructing an optimal additive output noise with nl = 5.

In this example, M ′′ is approximated using the method of

Remark 2.14 with θ = 100 and ϑ = 1000. Set σ2 = 0.1 and

γ1 = 0.2. Therefore, the performance degradation ratio is

upper-bounded as ρ ≤ 2 (indeed the upper bound is tight due

to the nature of the optimal solution). The optimal additive

input noise, in this case, is driven by the FIR filter L(q−1) =
0.1450+0.0799q−1+0.2125q−2+0.0799q−3+0.1450q−4.

Using the Monte Carlo simulation, it can be shown that

tr(E{Ph})/tr(E{Ph|wt = 0}) ≈ 1.9639. Therefore, the

system identification error has been approximately doubled

at the expense of doubling the output variance. From The-

orem 2.13, it can be inferred that tr(E{Ph})/tr(E{Ph|wt =
0}) = 1 + (η∗⊤M ′′η∗)/E{c(r,N)}(γ1 − σ2).

V. CONCLUSIONS

Adding input and output noises for increasing the model

identification error was considered. Optimal filters for con-

structing additive coloured noises were designed to maxi-

mize the identification error while maintaining the closed-

performance degradation below a threshold. Differential pri-

vacy was also explored for designing output noises that

preserve the privacy of the model.
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[8] T. Söderström and P. Stoica, System identification. Prentice-Hall, 1988.
[9] A. Lindquist and G. Picci, Linear Stochastic Systems. Springer, 2015.

[10] R. Bhatia, Matrix Analysis. Graduate Texts in Mathematics, New York,
US: Springer, 1997.



[11] G. Pillonetto, F. Dinuzzo, T. Chen, G. De Nicolao, and L. Ljung, “Ker-
nel methods in system identification, machine learning and function
estimation: A survey,” Automatica, vol. 50, no. 3, pp. 657–682, 2014.

[12] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university
press, 2012.

APPENDIX

A. Proof of Lemma 2.7

We have tr(Ph) = tr((R⊤R)−1R⊤(LL⊤ +
σ2IN )R(R⊤R)−1) = tr(L⊤EL) + c Now, note that

tr(L⊤EL) = vec(L)⊤ vec(EL) = vec(L)⊤(IN+nl−1 ⊗
E) vec(L) = l⊤Q⊤

l (IN+nl−1 ⊗ E)Qll, where the second

step follows from [12, Lemma 4.3.1].

B. Proof of Theorem 2.9

Taking the derivative of the cost function with re-

spect to l results in ∂/∂l
[

(l⊤Ml + c)−1 + γ2‖l‖2
]

=
−2Ml/(l⊤Ml + c)2 + γ2l. Setting this derivative equal to

zero gives
(

M − γ2(l
⊤Ml + c)2Inl

)

l = 0. The candidate

solutions for this equation are either l = 0 (referred to as the

type-1 solution) or vectors l that are parallel to vi with the

condition that ‖l‖2 = 1/
√
γλi − c/λi for all i = 1, . . . , nl

(referred to as the type-2 solutions). An eigenvalue λi may

generate a type-2 solution only if λi ≥ γ2c
2 (since otherwise

l would have a negative norm, which is not possible).

Therefore, if λ1 < γ2c
2, the only solution to (18) can be

the type-1 solution l = 0 (as the condition λi ≥ γ2c
2 cannot

be satisfied for any i if it cannot be satisfied for the largest

eigenvalue λ1). This is the case if the penalty on the variance

of y is too large and no variations can be tolerated.

If λi = γ2c
2, the two types of solution coincide.

We now verify whether type-1 and type-2 solutions corre-

spond to global minima of the cost function in (18). Let us

define k := (l⊤Ml+ c), and also denote the i-th row of M
by m⊤

i . Computing the Hessian of the cost function in (18)

at l yields J(l) = − 2
k2M + 8

k3 V (l) + 2γ2Inl
, where V (l)

is a matrix such that its entry (h, k) is Vhk(l) = l⊤mhm
⊤
k l.

Then J(0) = − 2
c2M+2γ2Inl

, which is positive definite only

if λ1 < γ2c
2. This observation shows that the type-1 solution

l = 0 is only a minimum when λ1 < γ2c
2. Noting that for

the case where λ1 < γ2c
2, l = 0 is the only stationary point

of the cost function, then it is a global minimum.

We now study type-2 solutions. Let us define α2
i :=

1/
√
γ2λi − c/λi, so that a candidate type-2 solution can

be written l∗ = αivi, i = 1, . . . , nl. In what follows,

we first assume that λ1 > λ2 ≥ λi. We then relax this

assumption at the end of the proof. For any k = 1, . . . , nl,

we have m⊤
k l

∗ = m⊤
k αivi = λiαivi,k, where vi,k is the

k-th entry of vi. Consequently Vhk(l
∗) = l∗Tmhm

⊤
k l

∗ =
λ2
iα

2
i vi,hvi,k, and, in matrix notation, V (l∗) = λ2

iα
2
i viv

⊤
i .

Hence, for any of these solutions, we have J(l∗) =
−2/(α2

iλi + c)2M + (8α2
i λ

2
i )/(α

2
iλi + c)3viv

⊤
i + 2γ2Inl

=
−2γ2/λiM+8γ2viv

⊤
i −c

√

γ3
2/

√
λiviv

⊤
i +2γ2Inl

. Since M
is positive semidefinite, its eigenvectors form an orthonormal

basis [12, p. 229]. Hence, M admits the decomposition

M =
∑nl

j=1 λjvjv
⊤
j . Consequently, we can write J(l∗) =

∑nl

j=1 ηjvjv
⊤
j + 2γ2Inl

, where

ηj =

{ −2γ2λj/λi j 6= i

−2γ2λj/λi + 8γ2 − c
√

γ3
2/

√
λi j = i .

Due to the orthonormality of the vj , the eigenvalues of J(l∗)
are then ηj + 2γ2, j = 1, . . . , nl.

Consider now a candidate type-2 solution corresponding to

an eigenvalue λi, i ≥ 2. In this case, one of the eigenvalues

of J(l∗) is 2γ2 (1− λ1/λi), which is negative under the

assumption λ1 > λ2 ≥ λi. Therefore, all the candidate type-

2 solution corresponding to an eigenvalue λi, i ≥ 2, are not

minimums so we must discard them. As for λ1, the set of

eigenvalues ρj of J(l∗) are

ρj = 2γ2 (1− λj/λ1)+

{

8γ2(1 − c
√

γ2/λ1), if j = 1,
0, otherwise

which are all positive for λ1 > c2γ2. Therefore, J(l∗) is

positive definite for l∗ =
√

1/
√
γ2λ1 − c/λ1v1 and, since

there are no other minimums, this corresponds to a global

minimum.

Now, assume that λ1 = λ2 = · · · = λj > λj−1. Following

the same steps as the proof above, we can show that none

of the type-2 solutions corresponding to λi with j − 1 ≤
i ≤ nl can be a minimizer (because the Hessian is indefinite

for them). Similarly, we can also show that all the type-2

solutions corresponding to λi with 1 ≤ i ≤ j are at least

local minimums (because the Hessian is positive definite).

To show that these points are also a global minimizer, we

need to prove that they have the same cost. Let l∗i1 =
√

1/
√

γ2λi1 − c/λi1vi1 and l∗i2 =
√

1/
√

γ2λi2 − c/λi2vi2

for any 1 ≤ i1, i2 ≤ j. We have (l∗i1
⊤Ml∗i1 + c)−1 +

γ2‖l∗i1‖2 = (λi1 + c)−1 + γ2(1/
√

γ2λi1 − c/λi1) = (λi2 +

c)−1+γ2(1/
√

γ2λi2−c/λi2) = (l∗i2
⊤Ml∗i2+c)−1+γ2‖l∗i2‖2,

where the first equality follows from that λi1 = λi2 .

C. Proof of Theorem 3.2

It can be proved that

P{y ∈ Y|h, e}

=

(

1

2b

)N∫

RN

χ(Rh+ w + e ∈ Y) exp(−‖w‖1/b)dw

=

(

1

2b

)N∫

RN

χ(u ∈ Y) exp(−‖u−Rh− e‖1/b)du

≤ exp(‖Rh′ −Rh‖1/b)

×
(

1

2b

)N∫

RN

χ(u ∈ Y) exp(−‖u−Rh′ − e‖1/b)du

=exp(‖Rh′−Rh‖1/b)P{y∈Y|h′, e}, (29)

where χ(·) is a characteristic function, i.e., χ(y ∈ Y) = 1
if y ∈ Y and χ(y ∈ Y) = 0 if y /∈ Y , and the inequality

follows from ‖u − Rh′ − e‖1 = ‖u − Rh′ − e − Rh +
Rh‖1 ≤ ‖u − Rh − e‖1 + ‖Rh′ − Rh‖1. Integrating (29)

over e gives P{y ∈ Y|h} ≤ exp(‖Rh′ − Rh‖1/b)P{y ∈
Y|h′} = exp(ǫ)P{y ∈ Y|h′}.



D. Proof of Proposition 3.4

If h, h′ only differ in entry j, ‖Rh − Rh′‖1 = |hj −
h′
j |
∑N−j

k=1 |rk|, 1 ≤ j ≤ nh. Thus, suph≤hj ,h′

j
≤h ‖Rh −

Rh′‖1 = (h−h)
∑N−j

k=1 |rk|. The rest of the proof follows

from that all the terms in the sum are positive (and setting

j = 1 keeps the most terms).
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