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A Fast Method for Real-Time Chance-Constrained
Decision with Application to Power Systems

Saverio Bolognani, Elena Arcari, and Florian Dörfler, Member, IEEE,

Abstract—In this paper, we consider chance-constrained deci-
sion problems with a specific structure: on one hand, we assume
that some prior information about the unknown parameters
of the decision problem is known, in the form of samples;
on the other hand, we assume that it is possible to gather
further information regarding the true value of these parameters
via measurements. We specialize the scenario approach so that
the apriori samples can be efficiently used, together with the
available measurement, to generate the feasible region where
chance constraints are satisfied. This results in a two-phase
algorithm, composed of an offline pre-processing of the samples,
followed by an online part that needs to be performed as soon as
the measurement is available. This online part is computationally
extremely lightweight, both in terms of computation time and of
memory footprint, and is therefore suited for implementation in
embedded systems. As an application of choice, we consider the
control of microgenerators in a power distribution grid.

Index Terms—Stochastic optimization, computational methods,
uncertain systems, scenario approach, power systems.

I. INTRODUCTION

MANY engineering problems can be reformulated as
instances of decision under uncertainty, that is, the

problem of taking a cost-effective decision that satisfies some
given constraints, when the problem parameters are uncertain.

One natural approach consists in taking a decision which
is guaranteed to be feasible for any possible admissible value
of the unknown parameters, therefore adopting a worst-case
paradigm. In some applications, this robust approach yields
tractable programs, for which an optimal solution can be
found. Such a solution can be very conservative in terms
of achievable performance: the decision may be affected by
extreme values of the parameters that are very unlikely but
have severe effects on the feasible region in which the optimal
decision is sought for.

A second approach consists in formulating what is called a
chance-constrained decision problem. In these problems, it is
tolerated that the constraints of the problem can be violated
for a set of parameter values that has minimal probabilistic
measure in the parameter space, and is therefore very unlikely
to realize. This approach allows to trade off security (intended
as the probability of violating the constraints) for performance
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(the cost of the decision). Chance-constrained problems are in
general non-convex and hard to solve, even if the original
problem with known parameter values is convex.

However, they can be effectively tackled by adopting the so-
called scenario approach, in which the stochastic constraints
are replaced by deterministic constraints, obtained by sampling
the parameter uncertainty. If the number of constraints is
sufficiently large, feasibility in the chance-constrained sense
can be guaranteed with high confidence [1]–[3]. Conversely, it
is also possible to derive guarantees on the cost of the solution
obtained via this approach [4].

In this paper, we consider a variation of the scenario ap-
proach which arises when (i) the chance-constrained decision
problem needs to be solved in a very limited amount of
time or even online (ii) new information on the uncertain
parameters can be obtained at the time of decision. This is
the case, for example, when the chance-constrained decision
is used to actuate a plant subject to disturbances, and on which
some measurements are available in real time. In such an
online setup, the scenario approach is not directly applicable,
as samples from the conditional distribution of the unknown
parameters are not readily available. We show how the scenario
approach can be modified into a two-phase algorithm: in an
offline phase, the samples of the uncertain parameters are pre-
processed and encoded in an efficient polytopic representation;
the online phase, to be executed when the measurement
becomes available, is computationally extremely lightweight,
and returns an approximation of the exact feasibility region in
the decision space. The approximation is shown to be exact
in the case of Gaussian distribution of the parameters. The
effectiveness of the proposed method in the case of non-
Gaussian distributions is illustrated in simulations.

As an application of choice, we consider the real-time
operation of power distribution grids, and in particular the
problem of curtailment of renewable generation. The expen-
sive nature of these decisions (e.g., curtailing carbon-free
energy) motivates the need of precise assessment of risk, in
order to avoid unnecessarily conservative decisions. We show
that it is possible to use, in a systematic way, both histori-
cal data and real-time measurements, in order to take cost-
effective decisions with security guarantees. Related examples
of chance-constrained decision in power system can be found
for example in [5]–[9]. Preliminary work in this direction has
been presented in [10], where however no measurements were
considered.

The paper is organized as follows. In Section II we briefly
review the scenario approach, and we formulate the chance-
constrained decision problem with measurements. Our main
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contribution is presented in Section III, where we show how
the posterior distribution of the unknown parameters can be
approximated, and we propose a fast algorithm for the solution
of the chance-constrained decision problem. In Section IV we
illustrate the effectiveness of the proposed algorithm for real-
time operation of power distribution grids.

A. Mathematical preliminaries

We briefly review some definitions that will be useful for
the technical derivation of the proposed strategy.

A set P ⊂ Rn is called a polyhedron if it is the intersection
of m closed half-spaces

P = {x ∈ Rn | Ax ≤ b} , A ∈ Rm×n, b ∈ Rm. (1)

Here and in the rest of the paper, the ≤ relation is to be
intended element-wise. A bounded polyhedron is called a
polytope. We say that the representation (1) for P is redundant
if there exists a smaller set of m′ < m closed half-spaces
whose intersection is equal to P . We call it minimal otherwise.
Finally, we recall that the intersection of a finite number of
polytopes is a polytope.

We refer the interested reader to [11], [12] for a presentation
of the efficient numerical algorithms that allow manipulating
polytopes, and in particular to compute minimal representa-
tions and intersections.

II. PROBLEM STATEMENT

A. The scenario approach for chance-constrained decision

We consider the chance-constrained decision problem

minimize f(x)

subject to P [Ax+Bw ≤ z] ≥ 1− ε
(2)

where x ∈ Rn is the decision variable, f(x) is a convex cost,
w ∈ Ω ⊆ Rm is an unknown disturbance modeled as a random
variable, z ∈ Rl is a constant term. We assume that the support
Ω of the random variable w is endowed with a σ-algebra D
and that P is defined over D. Finally, ε ∈ (0, 1) is the desired
constraint violation probability.

General chance-constrained decision problems are noncon-
vex and often computationally intractable. Notice that we have
assumed linear constraints affine in the random variable. In this
case and whenever the underlying distribution of w is known,
analytical results are available providing conditions for the
chance-constrained problem to be reformulated as a convex
problem [13, Ch. 8.3] [14]. In any other case, the scenario
approach is an effective tool to convert stochastic programs of
this kind into deterministic problems of the form

minimize f(x)

subject to Ax+Bw(i) ≤ z i = 1, . . . , N
(3)

where {w(i)} are N samples of the stochastic disturbance. If
N is large enough, then (3) is equivalent to (2) in the sense of
the following result, that descends directly from [3, Theorem
1] (an extension of [2, Theorem 1]).

Theorem 1. Let us define the positive constants

ε violation probability ∈ (0, 1)
β confidence level ∈ (0, 1)

and consider the optimization problems (3). Let N satisfy
n−1∑
i=0

(
N
i

)
εi(1− ε)N−i ≤ β,

where n is the dimension of the decision variable x. If the
solution x∗ to (3) exists, then with probability larger than
1− β, it satisfies

P [Ax∗ +Bw ≤ z] ≥ 1− ε.

The optimization problem (3) inherits the convexity of
the individual deterministic constraints Ax + Bw(i) ≤ z,
i = 1, . . . , N . These half-spaces define a polyhedron with a
typically very large number of redundant constraints. In the
rest of the paper we assume that this polyhedron is bounded
(and therefore a polytope) and non-empty, so that the solution
x∗ exists and Theorem 1 applies.

The scenario approach is remarkably distribution-free,
meaning that no assumptions are made on the probability
distribution of the disturbance w. The information about the
distribution of w is still implicitly present, via the quantities
{w(i)}, that need to be sampled according to such distribution.
This feature of the scenario approach makes it very attractive
for those applications in which a reliable first-principle model
of the disturbance is not available, but historical data can be
used instead.

B. Scenario approach with measurements

In certain applications, online information about the dis-
turbance w may be available. For example, although a prior
information on the distribution of w may be available before-
hand, some direct measurement may be possible at the time of
the decision. We formalize the problem of chance constrained
decision with measurements as

minimize f(x)

subject to P [Ax+Bw ≤ z | Hw = y] ≥ 1− ε,
(4)

where y = Hw is a linear measurement of the disturbance, in
which H is full row-rank, and P[ · | · ] means conditional prob-
ability. A straightforward application of the scenario approach,
as in (3), would yield a deterministic optimization program of
the form

minimize f(x)

subject to Ax+Bw(i)
y ≤ z i = 1, . . . , N

(5)

where w(i)
y are samples of the conditional probability distri-

bution determined by the measurement y = Hw.
This last setup seems to nullify the effectiveness of the

scenario approach for real-time operations, as the samples
{w(i)

y } need to be generated only after the measurement y is
available. The use of historical samples makes the integration
of this kind of new information difficult. Moreover, the result-
ing optimization problem (5) still presents a large number of
typically redundant constraints, which poses a computational
challenge to the direct use of the scenario approach for fast
real-time decisions.



In the next section, we will show how both these issues can
be successfully resolved by means of an offline pre-processing
phase of the samples, followed by an online measurement-
driven decision step.

III. A FAST METHOD FOR CHANCE CONSTRAINED
DECISION

A. Approximate conditioning via affine transformation

Let µ and Σ be the mean and covariance, respectively, of
the random variable w, i.e.,

µ = E[w], Σ = cov[w].

Consider the following affine transformation of the random
variable w, induced by the measurement y = Hw:

ŵy = w +K(y −Hw) (6)

where
K = ΣHT

(
HΣHT

)−1
.

Remark. We assume H to be full row-rank in order to ensure
non-singularity of the term HΣHT . If the linear measurement
is noisy, y = Hw + η, then the assumption on H can be
relaxed, as the constraint in (4) becomes

P

[
Ax+

[
B 0

] [w
η

]
≤ z |

[
H I

] [w
η

]
= y

]
≥ 1− ε.

We have the following result, in the case of Gaussian w.

Proposition 1. Let w be a normally distributed random
variable, and let ŵy be defined as in (6). Then the distribution
of ŵy is equal to the conditional distribution of w given the
measurement y = Hw.

Proof. Let us first consider two jointly Gaussian random
variables w and y, with moments

µ̃ =

[
µw

µy

]
, Σ̃ =

[
Σww Σwy

Σyw Σyy

]
.

The conditional probability distribution p(w|y) is Gaussian
with moments (see [15])

Σw|y = Σww − ΣwyΣ−1yy Σyw (7)

µw|y = µw − ΣwyΣ−1yy (y − µy). (8)

To prove the statement of the proposition, we evaluate (7)
and (8) for the deterministic relation y = Hw, and therefore
Σww = Σ, Σwy = ΣHT = ΣT

yw, Σyy = HΣHT , µw = µ.
Simple substitution yields

Σw|y = Σ−KHΣ

µw|y = µ+K(y −Hµ).

These are the same moments as variable ŵy . As ŵy is also
Gaussian (affine transformation of a Gaussian variable), the
two random variables have the same distribution.

The interpretation of Proposition 1 is given in Figure 1,
where the transformation (6) is applied to samples of the
distribution w. The transformed samples of a Gaussian dis-
tribution w provide an exact sampling of the conditional
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Fig. 1. The figure compares the transformation (6) applied on the left to
normally distributed samples and on the right to uniformly distributed samples
(the empty circles are samples of w). The thin lines are level curves of the
probability distribution of w. The black circles represent the outcome of the
transformation and are therefore samples of the distribution ŵy . The thick
line is the subspace defined by the measurement y = Hw.

distribution. On the other hand, transformed samples of non-
Gaussian distribution (such as the uniform distribution in the
right panel) can be considered as an approximate sampling of
the conditional distribution.

The quality of this approximation is illustrated in Figure 2
for two examples of non-Gaussian prior distributions. In the
first case, we obtained a bimodal distribution by applying a
discrete random offset to a Gaussian distribution. By applying
transformation (6), we obtain an approximate posterior dis-
tribution that features the same bimodal nature as the true
posterior distribution. In the second case, we considered a
uniform distribution on an annulus. The resulting approximate
posterior distribution features a compact support (as the true
posterior distribution), although the approximation error is
larger in this case. Both the multi-modality of a distribution
and its compact support would have been lost if we followed
a conventional and often-used engineering approach [15],
namely to approximate (or assume) the prior distribution by a
Gaussian one.

B. Affine transformation of the feasible region

The major computational complexity of the scenario ap-
proach (5) lies in the computation of the feasible polytope

Py =
{
x ∈ Rn

∣∣∣ Ax+Bw(i)
y ≤ z, i = 1, . . . , N

}
, (9)

as {w(i)
y } are samples of the conditional distribution. Based on

the findings that we just presented in Section III-A, we adopt
ŵy as an approximation of wy (exact, in the case of Gaussian
w). Each half-plane in (9) becomes, using (6),

Ax+B
(
w(i) +K(y −Hw(i))

)
≤ z, i = 1, . . . , N.

This allows us to define the following augmented polytope

P̂ =
{

[ xy ] ∈ Rn+p
∣∣∣

Ax+BKy +B(I −KH)w(i) ≤ z, i = 1, . . . , N
}
, (10)

where {w(i)} are samples of the unconditional distribution.



Bimodal distribution Mean Variance Skewness Kurtosis

True posterior 3.35 4.23 -0.74 2.00
Gaussian approximation 3.20 3.57 0 3
Affine transformation 3.20 3.57 -0.54 2.35
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Annular distribution Mean Variance Skewness Kurtosis

True posterior -0.6 32.9 0 1.08
Gaussian approximation -0.6 17.8 0 3
Affine transformation -0.6 17.8 0 1.60
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Fig. 2. The quality of the approximate conditioning proposed in Section III-A
is assessed for two non-Gaussian random variables. For both distributions,
in the left panel, we plotted some samples and the subspace spanned by
the available measurement y = Hw (thick line). The thin lines represent
the direction of the projection (6). The right panel shows the true posterior
distribution (solid black line), together with the sampling obtained by applying
(6) to the original (apriori) samples. The dashed red line represents the
posterior distribution that one would obtain by approximating the prior with
a Gaussian distribution.

The polytope P̂ can be constructed before the measurement
y is available and all redundant constraints can be eliminated
in this offline phase. The dimension of the reduced object is
the sum of the number of decision variables and the number
of measurements, hence computationally tractable.

To obtain an approximation P̂y of the feasible polytope Py

for the decision variable x, as defined in (9), it suffices to
slice P̂ at the measured value ymeas, as soon as it is available.
This online operation corresponds to just adding the linear
equalities y = ymeas and eliminating the corresponding p
coordinates, with minimal computational effort.

C. A two-phase decision algorithm
We propose an algorithm made of an offline phase, which

can be performed before the measurement y becomes avail-
able, based on historical samples of the disturbance, and an
online phase, which has to be performed in real-time, as soon
as the measurement is available. This two-phase architecture
is represented by the flowchart in Figure 3, where the central
role of the augmented polytope P̂ is evident (being the piece
of information that needs to be stored and retrieved).

The two core procedures of the offline and online phase
of the decision process are described in Algorithm 1 and
Algorithm 2, respectively.

It needs to be pointed out that computing a minimal
representation of the feasible region in Algorithm 1 is compu-

Disturbance
samples

{w(i)}

Algorithm 1

Augmented
polytope

P̂

Real-time
operation

Measurement
ymeas

Algorithm 2 Decision x∗

Offline phase
Online phase

Fig. 3. Flowchart representing the proposed two-phase algorithm.

Algorithm 1: Construct augmented feasible polytope
Input
• Set of samples w(i), i = 1, . . . , N
• Measurement matrix H

Output
• Augmented feasible polytope P̂

Compute sample covariance matrix Σ ;
Compute K = ΣHT

(
HΣHT

)−1
;

for i = 1, . . . , N do
Construct

P̂(i) =
{

[ xy ]
∣∣∣ Ax+BKy +B(I −KH)w(i) ≤ z

}
end
Compute minimal representation of P̂ =

⋂
i P(i);

Algorithm 2: Online chance constrained decision
Input
• Augmented feasible polytope P̂
• Measurement ymeas

Output
• Solution x∗ of the decision problem (4)

Slice P̂ at y = ymeas to obtain P̂y =
{
x
∣∣∣[ x

ymeas
]
∈ P̂

}
;

x∗ ← arg min f(x) subject to x ∈ P̂y;

tationally much more expensive than solving an optimization
program subject to all the constraints, even including the
redundant ones [16]. Removing redundant constraints has,
however, the added benefit of greatly reducing the size of
the representation, with obvious benefits both for memory
use and for communication requirements in case of embedded
systems. Moreover, in some cases, a tractable representation
of the feasible reasons is needed, rather than just the solution
to the optimization program. Examples of such cases in power
systems applications are discussed in [17, Section IV].

IV. APPLICATION: POWER DISTRIBUTION GRIDS

A. Active power curtailment for overvoltage prevention

The increasing presence of microgeneration poses unprece-
dented challenges to the operation of power distribution grids



[18]. Distribution network operators (DNOs) are increasingly
required to perform a real-time assessment of the state of
the network, to make proactive decisions by controlling the
available actuation devices, and to take remedial actions. Such
a decision process cannot be effectively tackled by specializing
the traditional tools available for deterministic Optimal Power
Flow programming, primarily because the DNO does not have
access to the real-time state of the distribution grid, which
is mostly unmonitored. Instead, this problem can be cast
as a chance-constrained decision which directly encodes the
uncertainty on the state.

We consider the problem of voltage violations caused by
distributed generation. To prevent overvoltage, the DNO can
decide to limit the power injection of some generators – an
expensive decision, given the extremely low marginal produc-
tion cost of renewable power sources. This decision needs to
be updated repeatedly, based on the latest field measurements
coming from the grid.

We introduce the notation:
B set of all grid buses
G subset of buses where a generator is connected
vi voltage magnitude at bus i ∈ B
pdi power demand at bus i ∈ B
qdi reactive power demand at bus i ∈ B
pgi power generation at bus i ∈ G.

To model the relationship between the grid voltages and
the power injections/demands, we linearize the power flow
equations around the flat voltage profile (vi = 1,∀i ∈ B),
corresponding to the Linear Coupled power flow model (we
refer to [19, Section V] for its derivation). Based on this
approximation, voltage magnitudes can be expressed as

v = 1 +Rp+Xq, (11)

where R and X are the bus resistance and reactance matrices
and where elements of the active power injection vector p are
defined as pi = pgi − pdi (the terms pgi being present only for
buses in G). Similarly, qi = −qdi .

The DNO wants to maximize the generated power from
renewable sources, and therefore aims at solving the following
chance-constrained decision problem.

max
∑

i∈G
pgi

subject to P
[
v ≤ vmax and v ≥ vmin] ≥ 1− ε

(11).

This problem has the form of (2), and therefore we can apply
the solution proposed in Section III.

B. Numerical simulations

As a test case, we adopted the one proposed in [19],
consisting of the three-phase backbone of the standard IEEE
123-bus distribution test feeder (see Figure 4).

To model the uncertainty of the power demands, we con-
sider the dataset available in the DiSC simulation framework
[20], which has been obtained as anonymized data from the
Danish DSO NRGi. It represents the power consumption
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Fig. 4. The three-phase backbone of the IEEE 123-bus test feeder, with the
distributed microgenerators added for this example. The right plots represent
some typical distributions of the power demand of small aggregates of
consumers (same time of the day, for 180 days).

of about 1200 individual households from the Danish city
Horsens.

The power demand at each bus is obtained by aggregating
the power demands of 20 different households on 2011-06-29
at 15:00:00. We assume that the DNO has access to historical
power demands of the same households in the previous six
months, and can use those past measurements as samples for
a scenario-based approach. Some examples of the distribution
of these demands are reported in Figure 4. Interestingly, it
can be seen that the typical demand is not exactly normally
distributed: it is not symmetric, it shows longer tails for large
power demands, and it has compact support (in particular, the
demand is always positive).

The DNO has to guarantee that bus voltages across the entire
grid remain between vmax = 0.95 p.u. and vmax = 1.05 p.u.,
with probability larger than 1 − ε = 95%. It also has access
to one scalar measurement, the total power demand, obtained
at the point of coupling to utility grid:

y =
∑

i∈B
pdi .

To gain some insight on the problem, we first consider the
case in which only two generators are present, namely G =
{30, 38}, as this allows graphical representation of the results.
In Figure 5 we plot the feasible region for the decision variable
x =

[
pg30 pg38

]T
, in the case in which the measurement y

is not used, and in the case in which y is used and takes
the values 0 MW (no load) and 3 MW (typical load). Some
comments are due.
• The feasible region without measurements is smaller than

any other feasible region based on measurements. This is
consistent with the intuition that more uncertainty implies
more conservativeness in the decision.

• The case with y = 0 MW, corresponding to the unusual
condition of zero load, results in a feasible region which
does not include the solution of the chance-constrained
problem without measurements. In fact, this example
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Fig. 5. Representation of the feasible polytopes and of the solutions (dots) of
the chance-constrained problem solved via the proposed method, for different
values of the measurement y, and without measurement.

Computation time (dual-core, 2.6 GHz processor, 64-bit OS)

Offline Construct augmented polytope P̂
Compute minimal representation of P̂

Total offline computation time 55 min

Online Slice P̂ at y = ymeas to obtain P̂y

Solve LP defined on P̂y

Total online computation time 1.8 ms

Memory footprint

Offline Augmented polytope P̂ 48620 constraints
Online Minimal representation of P̂ 12 constraints

TABLE I
COMPUTATIONAL COMPLEXITY OF THE PROPOSED ALGORITHM

illustrates that violation is possible, with low probability,
when a chance-constrained approach is adopted. It also
shows how the incorporation of real-time measurements
can be useful for security.

• For increasing values of the total demand y, larger
amounts of generation can be tolerated by the grid. In
fact, already when y = 3 MW (a typical demand for this
grid), using this information in the chance-constrained
decision allows achieving better performance, i.e., inject
more power from the renewable sources.

We finally assess the computational complexity of the
proposed method in the case of six generators, i.e., G =
{9, 20, 30, 38, 44, 52}. As the dimension of the decision vari-
able is n = 6, we obtain from Theorem 1 that N = 442
samples of the power demands are needed. The resulting
computation times and memory footprint of the proposed two-
phase algorithm are reported in Table I. The complexity of the
offline phase is significant. However, no stringent time and
memory constraints should be expected there, as this phase
can be completed on the historical samples. The online phase,
on the other hand, requires minimal computational resources
and can be easily executed by a microcontroller.

V. CONCLUSIONS

We considered the possibility of using the scenario approach
to solve real-time chance-constrained decision problems in
which new information on the unknown parameters of the
problem becomes available via measurements. The affine na-
ture of the constraints has been exploited to derive a variation
of the scenario approach which does not require to re-sample
the parameter space according to the conditional distribution.
By pre-processing the samples, the chance constrained deci-
sion problem can be solved with extremely limited compu-
tational resources, making this approach attractive for large-
scale systems with real-time control specifications. Finally,
the proposed approach could be extended to setups in which
control actions span a receding time horizon, as in Model
Predictive Control of discrete-time systems.
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