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Abstract—Battery short-term electrical impedance behaviour
varies between linear, linear time-varying or nonlinear at dif-
ferent operating conditions. Data based electrical impedance
modelling techniques often model the battery as a linear time-
invariant system at all operating conditions. In addition, these
techniques require extensive and time consuming experimenta-
tion. Often due to sensor failures during experiments, constraints
in data acquisition hardware, varying operating conditions and
the slow dynamics of the battery, it is not always possible to
acquire data in a single experiment. Hence multiple experiments
must be performed. In this paper, a local polynomial approach is
proposed to estimate nonparametrically the best linear approxi-
mation of the electrical impedance affected by varying levels of
nonlinear distortion, from a series of input current and output
voltage data sub-records of arbitrary length.

Index Terms—Identification; Estimation; Energy systems

I. INTRODUCTION

EMPIRICAL and semi-empirical models are good alter-
natives to the highly complex electro-chemical, electro-

thermal or thermo-chemical models to describe the short-term
electrical response of the battery. If an adequate amount of
training data are available which is acquired under different
operating conditions, then the data-driven methods are signif-
icantly more efficient than the model-based methods in terms
of computation, execution time, and memory requirements.
Therefore, in a large number of investigations and applications,
a good estimation of the battery’s electrical impedance is
obtained from the measured input and output data.

Electrical impedance measurements provide useful infor-
mation about the characteristics of a Li-ion battery [1], [2].
Electrochemical impedance spectroscopy (EIS) is the classical
tool to do these measurements. It consists in the application
of an electrical stimulus to the working electrode and then
monitoring of its corresponding response. These experiments
involve a stepwise change of frequency in the applied sinu-
soidal current, measuring the corresponding sinusoidal voltage
and then calculating at each frequency the electrochemical
impedance. Although robust, it is an expensive, complex,
and very time-consuming method. The authors in [3], [4]
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performed galvanic EIS and measured impedance by adding
DC current with different levels to the AC perturbation. One
of the drawbacks of testing with high current levels is that, it
distorts the impedance due to significant nonlinear distortions
(NL). To avoid significant state of charge (SoC) changes
during the test, the frequency range is also limited to a rather
small band during these experiments.

The effect of rest duration before measurement, on the
estimation of impedance was investigated by [2], while they
did not consider transient effects on the measurement during
the experiment. Furthermore, the operating conditions have a
significant impact on the performance and the capacity of the
batteries. Experimental results show an important interaction
between the electrical and thermal phenomena [5]. The re-
lationship between the input current and output voltage is a
nonlinear function of temperature [6] e.g. the amount of energy
stored inside depends largely on the temperature. Hence, the
estimation of electrical impedance at different temperatures
will result in multiple datasets.

Apart from the change in physical parameters like e.g.
temperature, humidity, pressure etc, in practice there are many
situations during an experiment which can effect the short term
electrical dynamics of the battery that can lead to a series of
sub-records of data of equal [7] or unequal lengths [8]. For
example, in a long experiment, some parts in the data can have
extremely poor quality due to a sensor failure or due to very
large disturbances coming from other processes. Eliminating
these bad parts results in a series of small sub-records of the
data. Similarly, it might be impossible to measure for a very
long time without interruption; e.g. due to inadequate technical
capabilities of data acquisition equipment and the lack of on-
board memory for storing the data. Finally, battery dynamics
vary slowly therefore, a series of sub-records under similar
conditions are acquired.

Furthermore, in order to obtain a good initialization of the
nonlinear model proposed in [9], [10] which is valid under
different operating conditions, an estimation of a common
nonparametric best linear approximation (BLA) from the data
acquired from multiple operating conditions is needed. If, for
one of these reasons, a set of shorter sub-records is available,
then it is important to develop a methodology which can
handle the data from multiple experiments.
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A. Contribution and organization of the paper

We propose a data-driven local polynomial method (LPM)
based methodology, to develop the BLA of the battery’s elec-
trical impedance from multiple input-output datasets. These
datasets are either acquired at the same or at varying operating
conditions e.g. different SoC levels, temperatures etc. with
varying level of noise and NL. The advantage of this method
over the conventional single-sine excitation methods is the
reduction in the measurement time, explicit handling of NL
and better handling of the leakage errors [11].

This paper is organized as follows: Section II describes the
problem statement very briefly and introduces multisine exci-
tation signals. Section III describes the concept of the BLA.
Nonparametric identification procedure using LPM approach
is described in Section IV. The procedure to obtain the BLA
for all datasets is explained in Section V. Section VI describes
the experimental set-up and the measurement methodology,
which is used for the acquisition of the signals. Results of
experiments are presented in Section VII, and finally, the
conclusions are given in Section VIII.

II. BROADBAND EXCITATION FOR DATA ACQUISITION

The short-term voltage response of the battery to the input
current load profile at a particular setting of SoC and tempera-
ture can be approximately described by the following nonlinear
relationship, where f is a nonlinear function which maps SoC,
current I and temperature T to the terminal voltage V at a
particular instant in time.

V (t) ≈ f(SoC(t), I(t), T (t)) (1)

Broadband signals such as multisine signals offer various
advantages over random Gaussian noise signals in extracting
information from dynamical systems [12]–[14], but during
the design process, the amplitude spectrum of the multisine
excitation should be designed such that the equivalence be-
tween the random phase multisine and the Gaussian random
noise with respect to (w.r.t.) the nonlinear behaviour is always
guaranteed [11]. Hence, the equivalence class ESu is defined,
which contains all signals that are (asymptotically) Gaussian
distributed, and have asymptotically, for N → ∞, where N
is the number of excited harmonics in a multisine, the same
power on each finite frequency interval. This is precisely stated
in the definition below [15].

Definition 1. Riemannian Equivalence Signal Class ESu :
Consider a piecewise continuous signal u with a power
spectrum SU (jω), with a finite number of discontinuities.
A random signal belongs to the Riemann equivalence class
of u, if it obeys by any of the following statements: 1) It
is a Gaussian noise excitation signal with power spectrum
SU (jω). 2) It is a random multisine or random phase
multisine excitation [15] such that:

1

N

k2∑
k=k1

E{|U(jωk)|2} =
1

2π

ωk2∫
ωk1

SU (ν)dν +O(N−1) (2)

where ωk = k 2πfs
N , k ∈ N, 0 < ωk1 < ωk2 < πfs and fs

is the sample frequency. The frequency domain representation
of the multisine signal is given by:

Ums(jω) =
1

π
√
Ne

∑
ke∈±Kexc

A(ke)δ(ω − ωke)ejϕk (3)

where δ(•) is the Dirac delta function, Kexc ⊂ ([1, T fs/2]∩N)
is the discrete set of excited frequency bins, T represents both
the period of the multisine and the length of the measured
time record, Ne the number of excited frequencies, ωke is
the excited frequency and ϕk ∼ U [0, 2π[ are the phases.
Depending on the application, the amplitudes A(k) ≥ 0
can be chosen arbitrarily. In addition, the signal at some of
the unexcited frequencies (i.e. A(kn.exc) = 0) in the output
spectrum, termed as the detection lines, contains valuable
information about the system under investigation [15] .

III. BEST LINEAR APPROXIMATION

Definition 2. Best Linear Approximation: The BLA of a non-
linear system is defined as the model G belonging to the set
of linear models G, such that [15]

GBLA(q) = arg min
G(q)∈G

Eu
(
|y(t)−G(q)u(t)|2

)
(4)

with q−1, the backward shift operator q−1x(t) = x(t−1). The
expectation Eu(•) is taken w.r.t. all signals in the considered
signal class.

Fig. 1. Time domain representation of the problem.

Set Up: For an infinite length data record t =
−∞, ..., N − 1, the input-output relationship of a discrete-
time single-input-single-output (SISO) period-in-same-period
out (PISPO) nonlinear system (see Fig. 1), which is excited
with signals belonging to Definition 1 can be written as [15]:

y(t) = GBLA(q)u0(t) + ys(t) +H0(q)e(t). (5)

with ys(t) the stochastic nonlinear contributions, u0(t) the
exogenous input. The output y0(t) is disturbed with an additive
noise v(t), hence y(t) = y0(t) + v(t). The noise v(t) is
assumed to be filtered white noise, v(t) = H0(q)e(t), where
H0(q) represents the noise model. For a finite length data
record t = 0, ..., N − 1, (5) must be extended with the initial
conditions, or in other words, the transient effects tG, tH of
the dynamic system and the noise filter, respectively:

y(t) = GBLA(q)u0(t) + ys(t) +H0(q)e(t) + tG(t) + tH(t).
(6)

Using the definition of discrete Fourier transform (DFT)

X(k) =
1√
N

N−1∑
t=0

x(t)e−j2πkt/N , (7)



an exact frequency domain formulation [15], [16] of (6) is:

Y (k) = GBLA(ωk)U0(k) + Ys(k) +H0(ωk)E(k)

+ TG(ωk) + TH(ωk) (8)

where the index k points to the frequency kfs/N , with fs
the sampling frequency, and ωk = ej2πkfs/N . The transient
terms tG(t), tH(t) are described in time domain by rational
forms in q−1, applied to a delta input, whereas the transient
terms TG(k), TH(k) in frequency domain are described by
the rational functions in z−1, hence they are smooth functions
of the frequency. Here, the LPM is utilized to estimate the
nonparametric BLA because it makes an optimal use of the
smooth behaviour of GBLA and TG to reduce the leakage er-
rors significantly [17]. As compared to the classical windowing
methods it provides a good estimation of the BLA as well as
its variance (σ2

BLA) [17]. Other alternatives to estimate the
nonparametric BLA are the Fast method, the Robust method
[15] and the recently developed TRansient Impulse response
Modelling Method (TRIMM) [18].

IV. NONPARAMETRIC BLA: LPM METHOD

In this section, we give a very brief introduction to the
LPM method, which is used to estimate nonparametrically the
FRF from the input current and the output voltage data. A
detailed description and full analysis is also given in [19],
[20], The basic idea of the LPM method is quite simple: as
stated above the transfer function GBLA, and the transient term
TG are smooth functions of the frequency, therefore they can
be easily approximated by a complex polynomial in a narrow
band of frequency, around a user specified frequency k. The
parameters of the complex polynomials are directly estimated
from the measured input-output data. Next the estimation of
GBLA(k), at any central frequency k, is retrieved from this
local polynomial model as the measurement of the FRF at
that frequency. This procedure is then repeated for all DFT
frequencies in the band of interest by shifting the sliding
window over one DFT bin. In that way, a local estimate of
the FRF is obtained at every frequency.

A. BLA using SISO LPM

From the output error expression described by (6), and an
equivalent relation for the DFT-spectra (8), applied to both
the plant GBLA(q)u0(t) as well as the noise term v(t) =
H0(q)e(t) the output spectrum can be rewritten as:

Y (k) = GBLA(ωk)U0(k) + T (ωk) + V0(k) + Ys(k) (9)

where T (ωk) = TG(ωk)+TH(ωk), is the generalized transient
term that accounts both for the leakage of the plant and noise
dynamics. The remaining noise term is V0(k) = H0(ωk)E(k).
It is shown in [15] that the contributions U , E, Y in (9)
are an O(N0), while the transient terms TG and TH are
an O(N−1/2), where X = O(Np) means that for p < 0,
limN→∞

∣∣ X
Np

∣∣ <∞ .

The smoothness of both GBLA and T can be exploited to
write the following Taylor series representation, which holds
true for the frequency lines k + r, with r = 0,±1, ...,±n.

GBLA(ωk+r) = GBLA(ωk) +

R∑
s=1

gs(k)rs +O
( r
N

)R+1

(10)

T (ωk+r) = T (ωk) +

R∑
s=1

ts(k)rs +N
−1
2 O

( r
N

)R+1

(11)

All parameters of GBLA(ωk), T (ωk) and the parameters of
the Taylor series gs(k), ts(k), s = 1, ..., R, for each frequency
line k can be collected into a 2(R + 1)-column vector θk of
unknown complex coefficients defined as

θk , [GBLA(ωk) g1(k)...gR(k);T (ωk) t1(k)...tR(k)]T ,
(12)

whereas their respective coefficients are collected in a row
vector K(k, r). This allows (9) to be rewritten (after neglecting
the higher order terms) as:

Y (k + r) = K(R, k + r)θk + V0(k + r), (13)

where K(R, k + r) is a 2(R+ 1) row-vector, which contains
both the structural information, i.e. the powers of r in the poly-
nomial expansions in (10) and (11) as well as the information
about the input signal.

Now, 2n+ 1 equations (13) obtained for r = 0,±1, ...,±n.
are then collected into one matrix equation by defining the
(2n+ 1)-vectors Ȳk,n and V̄k,n

Ȳk,n , [Yk−n Yk−n+1...Yk... Yk+n−1 Yk+n]T (14)

V̄k,n , [Vk−n Vk−n+1...Vk... Vk+n−1 Vk+n]T (15)

Ūk,n , [Uk−n Uk−n+1...Uk... Uk+n−1 Uk+n]T (16)

This finally results in the following expression

Ȳk,n = Kk,n(R, Ūk,n)θk + V̄k,n, (17)

where the matrix Kk,n(R, Ūk,n) is a 2(n + 1) × 2(R + 1)
matrix. The structure of this matrix is entirely determined by
the indices n and R and it contains the input signals Uk+r
which appear in the input vector Ūk,n defined in (16). Finally,
an estimate of the parameter θ̂k is then obtained by solving
the following linear least-squares problem:

min
θk

[Ȳk,n −Kk,n(R, Ūk,n)]H [Ȳk,n −Kk,n(R, Ūk,n)] (18)

where for any complex vector or matrix A, AH denotes its
Hermitian (conjugate) transpose [19]. From (12), it follows
that an estimate of the FRF at the frequency line k is
obtained as the first component of the parameter estimate
θ̂k : ĜBLA(ωk) = θ̂k(1).

The condition n ≥ R + 1 is required between the number
of spectral lines in the frequency window around ωk and the
order of the polynomial approximation, to ensure a full column
rank matrix Kk,n(R, Ūk,n) [15]. To reduce the variance of
the parameter estimate a larger number of frequencies in the
frequency window are taken. In this way, the noise will be



averaged over a larger amount of data. Similarly the leakage
error decreases with increasing R. On the downside, a larger
window size results in a larger bias error (or interpolation
error). This is caused by the fact that the transfer function
varies over the interval. The smallest interpolation error is
obtained for n = R + 1. A detailed error analysis and the
bias-variance trade-off of the LPM is presented in [19], [20].

V. BLA FROM MULTIPLE EXPERIMENTS

In this section, we describe two different approaches to use
the LPM method described above to estimate the BLA from
multiple datasets.

A. Averaging over individual BLAs

Once the individual estimate of GBLA of a sub-record of
data acquired either at a constant or at different operating con-
ditions is available, the estimate of a common BLA (CBLA)
and its variance can be obtained as explained below. Suppose
we carry out M independent experiments either at a sample
operating condition or at different settings of SoC, temperature
and SoH etc., then the GBLAi of each experiment can be
calculated individually using the nonparametric identification
procedures described in Section IV-A above.

The CBLA of the battery dynamics is calculated from the
set of individual BLAs by calculating the sample mean (at
each frequency line k in the set of excited frequency lines) of
all BLAs. Similarly the variance of CBLA can be obtained by
calculating the sample variance of the individual BLAs:

CBLA(k) =
1

M

M∑
i=1

GBLAi(k) (19)

σ2
CBLA(k) =

1

M − 1

M∑
i=1

|GBLAi(k)− CBLA(k)|2 (20)

B. Common BLA using Multi-Input Multi-Output LPM

Another way of estimating a common BLA of the concate-
nated data records is by utilising the multi-input multi-output
(MIMO) setting of LPM [8].

Assumption 1. Nonlinear Distortions: The level of NL are
same at different temperatures or levels of SoC w.r.t. the same
realisation of the input current load profile.

Remark 1. The NL may be different at different operating
conditions (see Section VII). Nevertheless, we introduce the
extended method without loss of generality on the concate-
nation of two records in the absence of disturbing noise and
NL; the results apply to an arbitrary number of concatenated
subrecords in the presence of disturbing noise and NL.

Here we consider two data records with lengths N1 and
N2 for pedagogical reason but the extension to more datasets
is straightforward. For example, for k = 1, 2, we can write
u[k](t) and y[k](t) with t = 0, 1, ..., Nk−1. Consequently, the
concatenated data input and output records are then expressed

as u0 = [u
[1]
0 , u

[2]
0 ] and y0 = [y

[1]
0 , y

[2]
0 ], respectively. Using (6)

and Assumption 1, we can write that,

y0(t) = [y
[1]
0 , y

[2]
0 ]

= GBLA(q)u
[1]
0 (t) + t

[1]
G (t) +GBLA(q)u

[2]
0 (t) + t

[2]
G (t)

= GBLA(q)[u
[1]
0 (t), u

[2]
0 (t)] + tG(t) + tG(t−N1)

= GBLA(q)[u0(t)] + tG(t) + tG(t−N1) (21)

For t < 0, the transient term t
[k]
G (t) = 0. Similar to (9), an

equivalent relationship between the input and the output DFTs
becomes, where now ωk = e

2jπk
N1+N2 .

Y 0(k) = GBLA(ωk)U0(k) + TG(ωk) + TG(ωk)ω−N1

k (22)

It follows from (21) and (22), that an additional transient in
the concatenation point is added to the output. Another way
to write (21) is:

y0(t) = GBLA(q)u0(t) +GTG(q)δ(t) +GTG(q)δ(t−N1)
(23)

with δ(t) being a Dirac impulse: δ(0) = 1, and δ(t) 6= 0 if
t 6= 0. In (23), the transients are modelled as the response
of a linear system to a Dirac impulse in t = 0 and in the
concatenation point t = N1. The transfer functions GTG and
GBLA have equal denominator. Consequently, we can write
(23) as the output of a multiple-input system, that is excited
with the concatenated input records at one of the inputs of
the system and with Dirac impulses at the beginning of each
record that is concatenated (t = 0 and t = N1) at the
remaining inputs. Hence, the MIMO LPM described in [19]
to measure the FRF using concatenated records can be used
without any change.

The major difference in this formulation with the SISO
formulation is that, in this particular formulation, the number
of combined frequencies 2n + 1 in (17) will grow with the
number of transients. For obtaining an interpolation of order
R, the number of complex parameters/transient terms which
need to be estimated is R + 1. Hence, at least 2n + 1 ≥
(R + 1)(1 + Nc) lines should be combined, with Nc being
the number of concatenated subrecords. If the estimation of
the variance of the disturbing noise is also required, then a
strict inequality 2n+ 1 > (R+ 1)(1 +Nc) is needed to have
residuals different from zero [8]. It follows directly from these
inequalities that the interpolation error (bias of the estimate)
will increase, while using concatenated sub-records instead
of a single data record of the same total length. The reason
being that, now the interpolation is made over a larger band
of frequency. Similarly, the variance of the estimate will grow
because a larger number of parameters are estimated. However,
if the record length grows by concatenating data records, the
leakage errors are reduced.

VI. MEASUREMENT SETUP

In this investigation, the tests are performed on a pre-
conditioned battery inside a temperature controlled chamber at
different temperatures. A high energy density Li-ion Polymer
Battery (EIG-ePLB-C020, Li(NiCoMn)) with the following
electrical characteristics: nominal voltage 3.65V , nominal



capacity 20Ah, AC impedance (1 KHz) < 3mΩ along with
the PEC battery tester with 24 channels is used for the data
acquisition.

A. Experiment Design

An odd-random phase multisine current signal is used
to excite the battery within the band of excitation between
1Hz–5Hz. The dynamic range of interest of the battery for
HEVs and EVs applications is covered well within this band
of excitation as this frequency bandwidth is corresponding to
the bandwidth of the power demand of a vehicle application
(acceleration and decelerations), when considering the high
power perturbations, as we do here [21]. The selected range
also takes into consideration the limitations of the battery tester
in terms of the highest sampling frequency. Each period of
excitation signal has 5000 samples and the sampling frequency
fs is set to 50Hz, which results in a frequency resolution
of fo = 0.01Hz. The range of excitation frequency is also
limited due to the system limitations of the PEC testers. The
input is zero mean with a Root Mean Square (RMS) value
of 10A. A random realisation of the phases of the multisine
signal with 7 periods is acquired at different levels of SoC
and temperatures. For the test, using the constant current-
constant voltage method, the battery is first charged using a
constant C3 rate, where C is the rated capacity, to the maximum
charge voltage of 4.1V. Then, after a relaxation period of 30
minutes, it is discharged to the desired SoC level Ah-based and
considering the actual discharge capacity at 25°C until the end
of discharge voltage 3.0V of the cell. After each discharge,
the battery is relaxed for 60 minutes, before the multisine
tests are performed. It is made sure that the synchronisation
is maintained between the signal generation and acquisition
side.

VII. RESULTS AND DISCUSSION

The comparison of the BLA estimation using two method-
ologies described in Section V is presented here. Two different
case studies are discussed: (a) using multiple datasets acquired
at the same operating condition (b) and using multiple datasets
at varying operating conditions of SoC and temperature .

A. BLA at the same operating condition

Fig. 2. Comparison of the BLAs using LPM averaged (green curve) approach
and LPM MIMO approach (red curve) at (6% SoC, 10A RMS, 5°C).

Figure 2 shows a comparison between the estimate of BLA
using the approaches discussed in Section V from the data
from multiple experiments performed at a fixed operating
condition of 6% SoC, 10A RMS, 5°C. It can be clearly seen
that both approaches result in the estimate of the BLA of
the same quality, although the variance of the BLA estimated
using the MIMO setting of the LPM is bit larger.

B. BLA at different operating condition

Here we present the result of the BLA estimation using the
data acquired at different settings of temperatures at a fixed
SoC level. Figures 3 to 5 show the result of nonparametric

Fig. 3. Output voltage response spectrum (blue) at (10% SoC, 10A RMS,
5°C), Magenta: odd nonlinear distortions, Green: even nonlinear distortions,
Black: noise.

Fig. 4. Output voltage response spectrum (blue) at (10% SoC, 10A RMS,
14°C), Magenta: odd nonlinear distortions, Green: even nonlinear distortions,
Black: noise.

analysis performed at 10% SoC and different settings of
temperatures using 10A RMS multisine input current profile.
The readers are referred to [5], for detailed information on
the nonparametric characterization of the battery’s short term
electrical response. It can be clearly observed from these fig-
ures that the level of nonlinear distortions (both even and odd)
changes w.r.t. the operating conditions. Hence Assumption
1, made in Section V is not satisfied. Nevertheless, it can
be clearly seen from the Fig. 6 that, despite varying levels
of nonlinear distortions between different datasets acquired
at different temperatures, the BLA estimate using the two
approaches is quite similar in magnitude but with a higher
variance in the case of LPM MIMO setting. This observation
reconfirms the claim made in Section V.



Fig. 5. Output voltage response spectrum (blue) at (10% SoC, 10A RMS,
35°C), Magenta: odd nonlinear distortions, Green: even nonlinear distortions,
Black: noise.

Fig. 6. BLA at (10% SoC, 10A RMS, [5°C, 14°C, 35°C]), Comparison
between Red: BLA with LPM MIMO settings, Green: LPM averaged, Blue:
3rd−order parametric model.

The final values of the parameters can be used to identify
a parametric BLA, which will eventually smoothen the BLA
estimate further. A 3rd−order parametric model is fitted on
the nonparametric BLA by solving the nonlinear weighted
least squares cost function [15] in frequency domain (see blue
curve in the Fig. 6, a 3rd−order discrete-time transfer function
fitted on the BLA estimated using MIMO LPM setting at dif-
ferent temperatures). The frequency domain approach allows
us to put user-defined weighting in the frequency band of
interest by exploiting the calculated noise variance during the
estimation of nonparametric BLA. A range of model orders
were evaluated and the order of the final parametric model
was determined using a signal theoretic measure such as the
minimum description length (MDL) criterion (see page no.
439 of [15]). Hence, individual BLAs estimated at varying
operating points can be used to develop black-box linear time-
varying or parameter-varying models or the CBLA can be used
as initialization for the nonlinear model structure proposed in
[10].

VIII. CONCLUSION

This paper proposed LPM based approaches to estimate
nonparametrically the BLA of the battery’s short term electri-
cal dynamics from multiple datasets. The proposed framework
paves the way for handling data records of arbitrary lengths
acquired under similar or different conditions and dealing
with nonlinear distortions efficiently. This gives a practical

advantage when performing longer experiments is either not
feasible or rather expensive and time consuming. Similarly,
the data of extremely poor quality can also be handled.
This whole process can be carried out in relatively short
measurement time due to the use of broadband excitation
signals for identification.
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