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A time series distance measure for efficient clustering of input/output

signals by their underlying dynamics*

Oliver Lauwers1 and Bart De Moor1

Abstract— Starting from a dataset with input/output time
series generated by multiple deterministic linear dynamical sys-
tems, this paper tackles the problem of automatically clustering
these time series. We propose an extension to the so-called
Martin cepstral distance, that allows to efficiently cluster these
time series, and apply it to simulated electrical circuits data.

Traditionally, two ways of handling the problem are used.
The first class of methods employs a distance measure on time
series (e.g. Euclidean, Dynamic Time Warping) and a clustering
technique (e.g. k-means, k-medoids, hierarchical clustering) to
find natural groups in the dataset. It is, however, often not clear
whether these distance measures effectively take into account
the specific temporal correlations in these time series. The
second class of methods uses the input/output data to identify a
dynamic system using an identification scheme, and then applies
a model norm-based distance (e.g. H2, H∞) to find out which
systems are similar. This, however, can be very time consuming
for large amounts of long time series data.

We show that the new distance measure presented in this
paper performs as good as when every input/output pair is
modelled explicitly, but remains computationally much less
complex. The complexity of calculating this distance between
two time series of length N is O(N logN).

I. INTRODUCTION

Time series clustering is an important topic in mod-

ern research. State-of-the-art clustering methods of other

data types are often not suited for this high-dimensional,

temporally correlated data structure. Clustering is the task

of finding groups with similar elements in a dataset and

consists of three components: a similarity measure based

on relevant data features, a clustering algorithm and an

evaluation criterion. While the latter two components might

carry over, defining a good distance measure is a difficult

problem, especially if one is interested in the dynamics of

the generating dynamical system of the time series.

Representing the time series as single-input single-output

(SISO) linear time invariant (LTI) deterministic dynamical

systems further generates problems of its own, as the con-

tributions of the input signal and the impulse response of

the system are convolved in the time domain. It is thus
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not intuitively clear how these two contributions can be

separated, for example when one is interested only in the

dynamics of the system and not in the specific input signal.

This problem grows ever more relevant as large scale big

data time series problems grow more prevalent in areas like

finance, medicine, or the industrial internet of things, where

clustering is important in tasks like anomaly detection [7],

[12]. A typical industrial problem contains several hundred

sensors per machine, tens of machines per plant, and sev-

eral plants per industrial player, collecting data every few

seconds, for months or even years of operation time. This

results in datasets of several million time points for thousands

of series. Clustering techniques should thus scale well.

In Section II we look at state-of-the-art clustering methods

for time series from two perspectives, starting from a dataset

containing input/output time series pairs, generated by differ-

ent SISO LTI dynamical systems. From a machine learning

point of view, we use an automated clustering method with

an off-the-shelf time series distance such as the Euclidean

distance or Dynamic Time Warping (DTW). From a system

identification point of view, we apply norms such as the H2

or H∞ norm to compare systems estimated from the data. We

find that these techniques either are very fast, but give poor

results, or perform well, but are computationally expensive.

Next, in Section III, we look at the Martin cepstral distance

[3], [8], which combines insights from systems theory into

a distance measure that can be computed on the raw data.

This metric was defined for SISO ARMA models (i.e. LTI

models that use white noise as an input signal).

The main contribution of this paper is an extension of

the cepstral distance measure, that incorporates deterministic

input signals, and allows to calculate distances between a

broader class of SISO LTI dynamical systems. It thus allows

to cluster time series by dynamics, but remains computation-

ally much simpler than explicitly estimating models.

Subsequently, we apply this new distance measure in

Section IV to an application on electrical circuits, where we

generate a dataset consisting of input/output signal pairs, and

the problem is to identify which data belong to which gen-

erating system. Finally, we conclude the paper and provide

some paths for future research in Section V.

II. EXISTING METHODS

Existing methods to cluster time series employ a clustering

technique, together with some distance measure. The author

of [6] discerns three types of distance measures: measures

based on raw data, measures based on features of the time

series and measures based on models. For the scope of this
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paper, we will focus on the first and the latter (as the distance

measure we propose combines elements of these two broad

classes). We present two raw data distance measures, the

Euclidean metric and the Dynamic Time Warping metric [5],

and two model-based distance measures, connected to the

H2-norm and the H∞-norm. In the next section, we will

introduce and extend the cepstral distance [3], [8], which

combines the efficiency of the raw data distance measures

with the insight in generative dynamics of the model norms,

and thus has representations both as a raw data distance and

as a model-based one.

A. Raw Data Distance Measures

In what follows we will define um to be the input signal

of the m-th element of a dataset, ym is the corresponding

output signal and um(k) or ym(k) is the value at timepoint

k of respectively the input and output of the m-th element

of the input/output dataset. Time series from element m start

at k = 0 and end at k = Nm. The system that generated

an output from a given input will be called the generating

(dynamical) system.

1) Euclidean Distance:

Definition 1. The Euclidean distance, dE(·, ·) treats the time

series as a vector, and applies the element-wise Euclidean

vector distance between two time series of same length Nm,

defined as

dE(ym, yn) =

√

√

√

√

Nm
∑

k=0

(ym(k)− yn(k))
2
. (1)

Advantages

• The Euclidean distance is easy to calculate, allowing for

very efficient computation and clustering.

• No system identification step is needed.

Disadvantages

• There is no clear link between this distance measure and

the generating system.

• This measure treats the time series as a vector, and ignores

the temporal correlations in the data.

• This measure does not allow to compute distances between

time series of different length.

• This measure does not take the input into account.

2) Dynamic Time Warping:

Dynamic Time Warping (DTW) [5], [11] is an algorithm

that tries to locally align time series, by warping them such

that the Euclidean distance between the warped time series

is minimal. Mathematically, this warping, and the measure

that is found in this way, can be described as follows.

Given two output signals, y1 and y2, of length N1 and N2

respectively, a matrix M is constructed, where the (l,m)-th
element of M is defined as M(l,m) = (y1(l) − y2(m))2. A

warping path, W = w1, w2, . . . , wk, . . . , wK is then defined,

with each wk =
(

M(l,m)

)

k
an element of matrix M and

max(N1, N2) ≤ K < N1 +N2 − 1.

The path is subject to the boundary conditions w1 = M1,1

and wK = MN1,N2
(i.e. the path starts in one corner of the

matrix and ends in the opposite one), has to be continuous,

in such a way that two consecutive elements wk and wk+1

are maximally one column and one row apart, and has to

be monotonously increasing in its indices, i.e., that in going

from wk to wk+1, column nor row number can decrease.

Definition 2. We are now interested in the warping path

WDTW that minimizes the cost function

dDTW (y1, y2) = min







√

√

√

√

K
∑

k=1

wk







. (2)

The sum over this path is then the DTW distance between

the time series.

Though this algorithm is computationally expensive

due to the combinatorial nature of the problem, several

lower bounds have been devised that can be implemented

efficiently. In what follows, we use the Keogh Lower Bound

[5] as an efficient approximation to the DTW distance.

Advantages

• The DTW distance takes into account (part of) the local

temporal correlations.

• No system identification step is needed.

• Lower bounds on the distance are reasonably efficient.

• This measure allows to calculate distances between time

series of different length.

Disadvantages

• There is no clear link between this distance measure and

the generating system.

• The DTW distance as such is expensive to calculate.

• This measure does not take the input into account.

B. Model-based Distance Measures

We use the same notation as in subsection II-A. The

generating system of the input/output pair (um, ym) will be

denoted by Mm, and its corresponding transfer function will

be written Hm. Based on a model norm || · ||, the distance

between two models Mi and Mj is defined as ||Hi −Hj ||.
1) H2-norm:

Definition 3. The H2-norm, ||H||2, of a discrete-time system

M with transfer function H is defined as

||H||2 =

√

1

2π

∫ π

−π

Tr {HH(eiω)H(eiω)} dω, (3)

where Tr{} denotes the trace, the superscript ·H denotes

the Hermitian conjugate and i denotes the imaginary unit.

The H2-norm can be seen as the root-mean-square of the

system response to a normalized white noise input. It is

thus a measure of the power, or steady-state variance of this

response. The H2-norm will be infinite for unstable systems.



Advantages

• The H2-norm provides a physically interpretable way to

characterize underlying dynamics of time series.

• This norm allows to calculate distances between time

series of different length.

• This norm takes the input data into account.

Disadvantages

• A system identification procedure is needed, which is both

difficult to automate and often computationally expensive

(at least more expensive than the raw data measures).

2) H∞-norm:

Definition 4. The H∞-norm, ||H||∞, of a discrete-time

system M with transfer function H is calculated as

||H||∞ = max
ω∈[0,π[

|H(eiω)|. (4)

This norm thus measures the maximal gain of the

frequency response and is called the gain of the system.

It becomes infinite for systems with poles on the unit circle.

Advantages

• The H∞-norm provides a physically interpretable way to

characterize underlying dynamics of time series.

• This norm allows to calculate distances between time

series of different length.

• This norm takes the input data into account.

Disadvantages

• A system identification procedure is needed, which is both

difficult to automate and often computationally expensive

(at least more expensive than the raw data measures).

III. CEPSTRAL DISTANCE

In this section we take a closer look at an insightful

distance measure on ARMA models, which can be inter-

preted both as a raw data distance measure and as a model

norm: the Martin cepstral norm [3], [8]. We first give a very

concise review of the cepstral norm in the stochastic case,

then proceed with an extension that allows us to incorporate

information about the deterministic input signal.

A. Original Cepstral Norm

Based on the power spectral density, Φy, of a signal y, we

can define its power cepstrum, cy as

cy = F−1(log(Φy)), (5)

where F−1 denotes the inverse Fourier transform. This

produces a series of coefficients, cy(k), with integer k ∈
[0, N ], where N denotes the length of time series y.

Definition 5. The cepstral norm, ||H||C , of model M with

transfer function H, and output y is defined as

||H||C =
N
∑

k=0

k (cy(k))
2
. (6)

For ARMA models it was proven in [3] that there are

multiple methods to calculate this norm: it can be derived

from the subspace angles of the output Hankel matrices of

the generating system, from the mutual information of the

output space of a system, and from a combination of poles

and zeros of the transfer function of the model. Moreover,

equation (6) allows us to calculate the norm straight from

raw data, without the need to identify the underlying systems.

We can thus connect the cepstral norm to a raw data distance

measure in the following sense:

Definition 6. The cepstral distance, dC(yi, yj), between two

time series, yi and yj , is defined as

dC(yi, yj) =

max{Ni,Nj}
∑

k=0

k
(

cyi
(k)− cyj

(k)
)2

, (7)

where max{Ni, Nj} −min{Ni, Nj} zeros are added at the

end of the cepstrum of length min{Ni, Nj}.

Advantages

• The cepstral distance has an interpretation in terms of the

generating model of the time series.

• The cepstral distance is easy to calculate, allowing for very

efficient computation and clustering.

• No system identification step is needed.

• This measure allows to calculate distances between time

series of different length.

Disadvantages

• This distance measure can only take information coming

from a stochastic input into account.

B. Extended Cepstral Distance

The cepstrum, defined in the previous section, finds its

roots in homomorphic signal processing [9, Chapter 10]. In

this type of processing, the original time series data, which

often involves complex multiplicative operators like convolu-

tions, is mapped, through a non-linear mapping, to a different

domain, that allows for linear filtering. The cepstrum, as

in equation (5), is a good example. The convolution in the

time domain changes into a multiplication by calculating the

power spectral density. Applying a logarithmic transforma-

tion then turns the multiplication in frequency domain into

an addition. Finally, the inverse Fourier transform takes the

problem back to (a transformed version of) the time domain.

Equation (5) is thus effectively a method to transform the

convolution into an addition.

This allows us to take the output, and separate the

contributions from the input signal (which was the main

disadvantage left in the cepstral distance, see subsection

III-A) and the impulse responses of the system. Indeed,

defining the cepstrum coefficients of the input signal u as

cu(k), and the contribution to the cepstrum coefficients of

the transfer function H as ch(k), we can write

cy(k) = cu(k) + ch(k). (8)

Based on input/output signal pairs, we now have a measure

of the underlying generating system dynamics by looking at

ch(k) = cy(k)− cu(k).



Definition 7. The extended cepstral distance,

dCe
((yi, ui), (yj , uj)), between two input/output pairs

of time series, (yi, ui) and (yj , uj), with respective transfer

functions Hi and Hj , is defined as

dCe
((yi, ui), (yj , uj)) =

min{Ni,Nj}
∑

k=0

k
(

chi
(k)− chj

(k)
)2

.
(9)

Note that, for now, this distance measure does not have the

whole theoretic framework with connections to subspace an-

gles, mutual information and generating system parameters.1

However, it is clear that the ch(k) can only come from the

generating system dynamics, and thus the distance measure

tells us something about these systems, even if it is still

unclear what exactly is measured.

We propose this extended cepstral distance as a way

to efficiently cluster input/output data by their generating

dynamics.

Advantages

• The extended cepstral distance is linked to the generating

model of the time series.

• The extended cepstral distance is easy to calculate, allow-

ing for very efficient computation and clustering.

• No system identification step is needed.

• This measure allows to calculate distances between time

series of different length.

• This measure takes the input into account.

Disadvantages

• The interpretation of the measure in terms of system

parameters and properties is not immediately clear, thus

the theoretical framework of the original cepstral distance

does not carry over trivially.

IV. APPLICATION ON ELECTRICAL CIRCUITS

A. Simulation Set-Up

To test the proposed techniques, we simulate data coming

from electrical circuits. We start out by modelling two

circuits with the same topology, but different values for the

R, L, and C components. The topology was taken from a

course on linear physical systems analysis [2]. The network

topology and the values of the components are shown in

Figure 1. The input of the system is the current iu, the output

is the voltage over L2, ey. State-space models of order 3 are

then written down for these networks.

We provide both systems with 200 different input signals

(100 outputs of LTI models of order 15, 50 multisine waves

corrupted by Gaussian white noise with standard deviation

of 0.1 and 50 white noise signals), and measure the output

signals. This generates a dataset of 400 input/output signal

pairs (200 inputs times 2 models). The question at hand is

whether we can use this input/output data, and only this

1These theoretical equivalences will be researched and most of them
proven to carry over in a forthcoming paper, where we will also try to
connect the extended cepstral distance to an extended cepstral model norm.

iu L1 C

R

L2

+

−

ey

Fig. 1. Electric circuit that was used for the experiments. Two sets, S1

and S2, of values were chosen for the components, namely S1 = {R =
100Ω, L1 = 60H, L2 = 20H, C = 50F} and S2 = {R = 100Ω, L1 =
160H, L2 = 200H, C = 75F}. These two electrical circuits were used to
perform the simulations in Section IV.

data, to determine which pairs were generated by the same

system, i.e. cluster the dataset in two groups, defined by the

generative dynamics.

We will do this using the distance measures defined in

section II and subsection III-A, keeping in mind that we use

the Keogh Lower Bound [5] as an efficient approximation

to DTW. We then compare to the technique developed

in subsection III-B. There, the power spectral density is

estimated by using Welch’s method [13], which provides a

stable approximation2 of the Fourier transform for short time

series. In the Appendix, we give a pseudo-code overview of

how the distance measure is calculated, as well as a link to a

minimal working example of the simulations discussed and

a complexity analysis of the algorithm.

The performance of these simulations will be measured

by the Adjusted Rand Index (ARI) [4], [10], which is a

similarity measure between partitions. The ARI compares

two partitions, S1 and S2, by calculating the ratio of pairs

that have the same partitioning status (i.e. belonging to the

same partition or not) in both S1 and S2 to the total amount

of data pairs, then adjusting the resulting ratio by subtracting

the expected value, to account for guessing (i.e. a partitioning

that is the result of random guessing is assigned an ARI of

0). An ARI of 1 corresponds to perfectly similar partitions.

We compare the partitions generated by a hierarchical

clustering method, cut-off at two clusters, using distance

matrices generated by the different distance measures of

section II and section III versus the ground truth (i.e. the

time series was generated by the system with parameters S1

or with parameters S2, as in Figure 1).

B. Results

The results for the set-up in the previous subsection are

shown in Figure 2, which shows the average and standard

deviation for the ARI of the simulation results, and Figure

3, which shows the average and standard deviation for the

execution time of the simulations.

It is clear that the extended cepstral distance gives the

best results. In fact, it manages to cluster the simulated in-

put/output pairs perfectly every time. This is, of course, to be

2Note that, for longer time series (i.e. 210 and beyond), the Fast Fourier
Transform [1] provides a clean enough output to work on. We could thus
speed up the algorithm even further for longer series.
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Fig. 2. Performance of the different clustering algorithms, as measured by
the ARI. For each time series length, shown on the x-axis, the average ARI
over 100 experiments of finding 2 clusters in 400 time series is depicted
as the height of the bar. The error bars show the standard deviation for
the performance on these 100 experiments. Note that the Euclidean, Keogh
LB and cepstral distance have an ARI of 0, i.e., they amount to random
guessing. The extended cepstral distance performs best for all series lengths.
The model based distances were given a wrong model order, but still give
good performance for longer time series.

expected, as this distance measure was tailored specifically

to take into account the dynamics of the underlying model3,

and nothing but those dynamics. The reasons why it performs

better than the other measures will be explained in what

follows, and we will again use the distinction between raw

data and model-based distances measures from Section II.

1) Raw Data Distance Measures:

The reason why the other raw data distance measures do

not perform well on the problem at hand, is because they do

not take into account the information from the input signal.

Indeed, the dynamics of the output are dominated by the

input, due to the way the inputs were designed (i.e. the

models generating the inputs are of higher order than the

models describing the electrical circuits). The other distance

measures are thus dominated by contributions coming from

the input to cluster the time series, as they cannot separate

the different contributions.

If we only use white noise inputs, we see, on the left hand

side in Figure 4, that the original cepstral distance performs

better.4 The Euclidean and DTW distances still do not deliver

good results when detecting the difference in dynamics.

There is thus no hope to achieve better results by taking the

input signal into account in the case of the Euclidean distance

or the DTW distance. Indeed, the distances look at the shape

of the signal, rather than its generative dynamics. DTW is

better at this job [5], but, as we can see from Figure 3, also

3We redid the experiments for generating systems of higher order, and
the extended cepstral distance still performed best. Results were omitted.

4In fact, the original and extended cepstral distance are equivalent in this
case. Indeed, the cepstrum of white noise is only non-zero in its zeroth
component, which is not taken into account in the sum in equations (7) and
(9), which coincide in that case.

26 28 210 212 214 216

10−2

10−1

100

101

102

103

104

Time Series Length

T
im

e
(s

)

Euclidean Keogh LB Cepstral

Extended H2-norm H∞-norm

Fig. 3. Execution time of the different clustering algorithms, measured in
seconds. For each time series length, shown on the x-axis, the average time
over 100 experiments of finding 2 clusters in 400 time series is depicted
as the height of the bar. The error bars show the standard deviation for
the execution time on these 100 experiments. Note that the y-axis has
logarithmic scale. The extended cepstral distance remains several orders
of magnitudes faster than the model-based distances. Note that Keogh
LB quickly becomes the computationally most expensive technique. The
Euclidean distance is always fastest.

has a big disadvantage: it takes a lot of time to compute,

especially for long time series, where it even surpasses the

model-based distance measures in computation time.

Based on these results, the extended cepstral distance is

thus preferred to cluster input/output signals based on the

dynamics of their generating models.

2) Model-based Distance Measures:

The model-based distance measures show better results

than the raw data distance measures, and this again is to be

expected. Indeed, the model-based measures take the input

information into account and thus manage to peel out the

information on the system that generated the input/output

pair. However, since a priori we have no information on the

order of the underlying system, we arbitrarily have to set a

model order. In this case, we estimated transfer functions

of order 5. If we share the information on the correct

model order (3) with the system identification algorithm, the

performance of the model norms increases, as on the right

hand side of Figure 4.

There exist, of course, schemes to determine appropriate

model orders, and more effort can be put in correctly

identifying the underlying model. However, as can be seen

from Figure 3, the model norm techniques are already several

orders of magnitude slower than the extended cepstrum

distance measure. For problems concerning large amounts of

long input/output-pairs, as can be found in realistic problems

in process industry (see, for example, [7], where more than

250 sensors make a measurement every 5 minutes for 6

months), this becomes highly impractical.

The extended cepstral distance is thus preferred over

explicitly identifying systems, because of both being easier

to automate, and taking less time to compute.
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Fig. 4. On the left, the performance is shown of the different raw data
distance measures, as measured by the Adjusted Rand Index (ARI), in
the case of white noise as an input, and time series of length 210 . Here,
the average over 100 experiments with 400 output signals is shown. Note
that the original cepstral distance now shows the same performance as the
extended one. On the right, results of an experiment where we provided the
system identification step with the correct orders of the models are shown.
Here, we calculated an average over 100 experiments with 40 output signals,
to reduce computation time. Again, we simulated time series of length 210.
the model-based distances now show better performance.

V. CONCLUSION AND FURTHER RESEARCH

We have devised a distance measure that is as insightful as

a model norm-based distance, yet remains computationally

much simpler than explicitly estimating models. It allows to

meaningfully cluster large input/output signal pair datasets

based exclusively on the dynamics of the generating systems.

We have tested it on a simulation of data coming from

electrical circuits, where we started from two electrical

circuits with a current as input and a voltage difference over

an inductor as output. We provided both circuits with 200

different inputs, resulting in 400 input/output pairs.

We then showed that the proposed measure performs as

well as model-based distances on estimates of the generative

systems, but is much easier to calculate and that other

distance measures (Euclidean, DTW) perform much worse.

We furthermore show that, in the stochastic input case,

the extended distance proposed in this paper reduces to the

original cepstrum distance, which was proven ([3], [8]) to

be equivalent to a model norm. This gives hope that the

extended distance could also be linked to a model norm.

Research that looks into this link is currently under way and

will be discussed in a forthcoming paper.

The results indicate the extended cepstral distance measure

does a good job of capturing the dynamics of input/output

pairs. An application to a real-life dataset is needed to

validate the effectiveness in practice, but for the simulated

problem at hand, the distance measure succeeded in perfectly

distinguishing different dynamics based on raw data alone.

APPENDIX

A pseudo-code overview of the algorithm is shown in

Algorithm 1. A minimal working example of the simulations

performed in Section IV is available on GitHub.5

5https://github.com/Olauwers/Extended-Cepstral-Distance

Algorithm 1: Algorithm for the extended cepstral distance

input : Two input/output signal pairs, (y1, u1) of length N1, and
(y2, u2) of length N2

output: The extended cepstral distance dCe
((y1, u1), (y2, u2))

between these two pairs, as defined in Subsection III-B
1 for i← 1 to 2 do

2 Φui

Welch’s Method
←−−−−−−−− ui

3 cui
← ifft (log (Φui

))

4 Φyi

Welch’s Method
←−−−−−−−− yi

5 cyi ← ifft (log (Φyi))
6 // cui

and cyi are vectors of length Ni

7 end

8 w = [0, 1, . . . ,max{N1, N2} − 1]
9 add (max{N1, N2} −min{N1, N2}) 0’s to the cepstra of the

signal pair of length min{N1, N2}
10 dCe

((y1, u1), (y2, u2))← w ∗ ((cy1 − cu1
)⊺ − (cy2 − cu2

)⊺)2

Calculating the extended cepstral distance amounts to es-

timating the power spectral density of both input and output

by Welch’s method [13] (employing the FFT, which is of

O(n logn), with n the length of the windows considered in

Welch’s method), taking the logarithm of the resulting vector,

and then applying an inverse Fourier transform (employing

the IFFT, running in O(N logN) time, with N the length

of the time series) on them. In the end, we then apply a

weighted Euclidean distance on the results.

The complexity of calculating the extended cepstral dis-

tance between two time series is thus O(N logN), with N

the length of the time series.
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