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Abstract— In this paper, we consider a set of agents, which
may receive an observation of their state by a central observa-
tion post via a shared wireless network. The aim of this work is
to design a scheduling mechanism for the central observation
post to decide how to allocate the available communication
resources. The problem is tackled in two phases: (i) first, the
local controllers are designed so as to stabilise the subsystems
for the case of perfect communication; (ii) second, the com-
munication schedule is decided with the aim of maximising
the stability of the subsystems. To this end, we formulate an
optimisation problem which explicitly minimises the Lyapunov
function increase due to communication limitations. We show
how the proposed optimisation can be expressed in terms of
Value of Information (VoI), we prove Lyapunov stability in
probability and we test our approach in simulations.

I. INTRODUCTION

The advancement of smart devices with increasing sens-
ing, computing and control capabilities makes it possible
for several processes to become more intelligent, energy-
efficient, safe and secure. However, the components of such
systems are spatially distributed and communication be-
tween smart devices (being sensors, actuators or controllers)
is mainly supported by a shared, wireless communication
network. These systems are known as Wireless Networked
Control Systems (WNCSs); a thorough literature review can
be found in [1], [2]. The use of wireless communications in
such systems, however, introduces additional challenges due
to the limitations imposed by the use of the wireless medium,
e.g. packet losses, data rate constraints and interference.
Therefore, it is necessary to develop Medium Access Control
(MAC) mechanisms for WNCSs.

There are two types of MAC: (a) random access mecha-
nisms, in which each agent can access the network randomly,
and (b) scheduling mechanisms, in which a centralised entity
decides on the allocation of the resources. Even though
random access protocols can easily be implemented in a
distributed fashion, it is difficult to provide any performance
guarantee.

In this work, we consider a scenario in which several
agents may receive an observation of their state by a central
observation post, that has the ability to observe the states of
all the agents in the system, via a shared wireless network.
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The shared wireless network is interference-limited, thus al-
lowing only a limited number of simultaneous transmissions.
Additionally, these transmissions may not reach the agents
since the communication channel can be unreliable. Such
setups may arise in several realistic occasions, e.g. when
a rescue operation takes place, a drone observes the scene
and informs the agents by broadcasting their location with
respect to the target mission, one agent at the time. In such
cases on the one hand the local control schemes are required
to stabilise the subsystems (agents); on the other hand, a
scheduling mechanism must decide which information is sent
to which subsystem.

For discrete-time linear systems, several scheduling ap-
proaches have been proposed in order to make a good use of
the communication channel, see e.g. [3]–[5] and references
therein. These works consider the scheduling problem for
state estimation of LTI systems with Gaussian noise. With a
few exceptions (e.g., [6], [7]), a finite time horizon is consid-
ered, in which the problem is a combinatorial optimisation
one [8], and hence NP-hard, making the computation of
the globally optimal solution over long time horizons com-
putationally expensive. The works considering the infinite
horizon case, focus on estimation only.

In this paper, we decouple the control and communica-
tion allocation problems: (i) first, the local controllers are
designed, so as to stabilise the subsystems in the perfect
communication case; (ii) second, the communication sched-
ule is decided with the aim of maximising the stability of
the subsystems. To this end, we formulate an optimisation
problem which explicitly minimises the Lyapunov function
increases due to communication limitations. We show how
the proposed optimisation can be expressed in terms of
VoI which, in the considered case, resembles the concept
of cost-to-go used in dynamic programming, and we prove
Lyapunov stability in probability. Finally, we rely on a
numerical approach for mixed-integer optimal control for
cheaply solving the problem to local optimality.

The proposed approach is rather flexible, as it easily adapts
to different formulations and can explicitly account for lossy
communication channels, so as to (a) exploit knowledge
on the probability of having a successful communication
and (b) adapt the schedule whenever a message fails to be
delivered. Moreover, since the choice of Lyapunov functions
is not unique, there is some freedom in the definition of the
cost which allows one to e.g. assign higher priority to some
subsystem.

The rest of the paper is organised as follows. In Sec-
tion II we give some preliminary results and the problem
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formulation. In Section III we present our main theoretical
contribution, i.e. the formulation of the communication al-
location problem. In Section IV we evaluate our theoretical
developments in a series of different scenarios. Finally, in
Section V we summarise our results and discuss possible
future directions.

II. PRELIMINARIES AND PROBLEM FORMULATION

We consider a network consisting of M agents with unre-
liable communication links from the sensors to the observer
and controller, and perfect communication links from the
controller to the agents, as depicted in Figure 1.

A. Definitions

Throughout the paper, we denote agents by index i and
time instants by index k, such that each agent has state xi,k
and control ui,k. Whenever it is not necessary, we drop index
i for simplicity of notation.

We consider agents described as perturbed linear systems

xk+1 = Axk +Buk + wk, (1)

where x, u and w denote the state, control and perturbation,
respectively. We assume that x0 and w are Gaussian random
variables with zero mean and covariance X0 = E{x0x

>
0 }

and W = E{ww>}. Moreover, we assume that x0 and w
are independent, such that E{x0w

>} = 0.
The observations of the states are given by

yk = Cxk + vk (2)

where v denotes the measurement noise, which we assume
to be a Gaussian random variable with zero mean and
covariance E{vv>} = V . Moreover, we assume that w, x0,
v are mutually independent, i.e. E{wv>} = E{x0v

>} = 0.

B. Kalman Filter Updates

Let δk = 1 if the observation is sent to the agent, δk =
0 otherwise. The a posteriori state estimate given by the
Kalman filter [9] is

x̂k+1 = Ax̂k +Buk + δk+1Lk+1(yk+1 − C(Ax̂k +Buk)),
(3)

with

Ēk+1 = AEkA
> +W, (4a)

Lk+1 = Ēk+1C
> (V + CĒk+1C

>)−1
, (4b)

Ek+1 = (I − δk+1Lk+1C) Ēk+1, (4c)

where the estimation error is defined as ek = xk − x̂k and
its covariance as E = E{ee>}.

C. Imperfect Communication

In the previous subsection we implicitly assumed a perfect
downlink, i.e., all messages sent by the central node to the
agents arrive at destination. While this assumption might be
reasonable for physically connected systems, it is not when
the communication is wireless. In this case, one needs to
further account for the probability that the communication
does not succeed.
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Fig. 1. Scheme of the system: all agents share the same communication
channel, which has limited resources. The Communication Allocation (CA)
algorithm assigns the channel to a selected subset of the agents.

We assume in the following that the probability σ of
having a successful communication from the sensor to the
observer (see Figure 1) is not correlated with the estimation
error e. This is in general not true, since the distance estimate
is in general dependent on e. Our assumption then implicitly
relies on the error e being small enough. In the case of
wideband communication, this requires the position estimate
error to be no larger than a few meters. Note that σ is
typically also a function of the power of the transmission. In
the following, we will assume that the distance and power
are fixed and known a priori, such that σk is a known time-
varying signal.

By defining s as a Bernoulli random variable with E{s} =
σ, Equation (4c) becomes

Ek+1 = (I − δk+1σkLk+1C)Ēk+1. (5)

Note that E defined by (5), now denotes the expected co-
variance. We summarise the time evolution of E as Ek+1 =
fE
k (Ek, δk+1). This function is in general subsystem-

dependent and it inherits the time-varying nature from σk.

D. Feedback Control

We consider the local linear feedback

uk = −Kx̂k. (6)

By defining AK , A−BK, the state dynamics (1) become
xk+1 = AKxk +BKek + wk.

Note that, if we consider a quadratic cost (as we will do
in Section III-A), then the so-called certainty equivalence
principle holds. It states that, the optimal solution is the same
as for the corresponding deterministic problem as long as the
disturbances present in the stochastic control system are zero
mean [10].

III. STABILITY WITH LIMITED COMMUNICATION

In this section, we analyse the stability of the closed-loop
system in the case of limited communication resources.

Note that the stability of the system in terms of expected
value is obtained regardless of communication, by choosing
K appropriately. The time evolution of the expected values
of the state and error are given respectively by

E{ek} = 0,

E{xk+1} = AKE{xk} = AK x̂k,



where we assumed that x̂0 = E{x0}. Communication,
however, is crucial in order to ensure that the error covariance
E does not grow indefinitely large.

We define the Lyapunov function of each subsystem as
V(x) = x>Px. We remark here that matrix P can be easily
computed by using the Lyapunov equation

A>KPAK − P +Q = 0, (7)

with Q � 0. The freedom in choosing matrix Q will later
be exploited in order to tune the communication allocation
as desired.

In order to select how to schedule the communication
between the central node and the agents, we aim at defining
the cost of communicating or not with each subsystem. In
this sense, our definition resembles that VoI, already used
in e.g. [3], [5]. Because we find it relevant to relate the
VoI to the stability of each subsystem, we first establish a
framework aimed at building a cost directly related to the
Lyapunov function of each subsystem. Second, we formulate
the communication allocation problem in order to minimise
the chosen cost function. Third, we establish a connection
between our formulation and the definition of VoI. Finally,
we prove Lyapunov stability in probability.

A. Stabilising Feedback and its Cost

In this subsection, we aim at defining the cost of not com-
municating the state measurement or estimate. We express
this cost based on the Lyapunov function of each subsystem
in order to explicitly account for the suboptimality resulting
from control actions based on imperfect estimation. Because
we consider each subsystem separately, we drop the index i
for simplicity.

In order to simplify the description, we first restrict our
attention to the LQR case. In a second step, we will detail
how, for any stabilising feedback matrix K, one can define
LQR cost matrices that yield K as optimal feedback matrix.

Consider an LQR with stage cost

`(x, u) =

[
x
u

]> [
Q S>

S R

] [
x
u

]
. (8)

The discrete-time algebraic Riccati equation (DARE) is

0 = Q− P +A>PA− (S> +A>PB)K, (9a)

K = (R+B>PB)−1(S +B>PA). (9b)

We now compare the cost of applying the feedback u =
−Kx̂ to the cost of applying the nominal feedback ū =
−Kx. We first note that

u = −Kx+Ke = ū+Ke, (10a)
xūk+1 = AKxk + wk, (10b)
xuk+1 = AKxk +BKek + wk = xūk+1 +BKek. (10c)

The effect of the estimation error over one prediction step is
given by the following difference in closed-loop cost

∆V(xk) =`(xk,−Kx̂k)− `(xk,−Kxk)

+
(
xuk+1

)>
Pxuk+1 −

(
xūk+1

)>
Pxūk+1. (11)

By taking the expected value of the cost increase and noting
that E{e} = 0, one obtains

E{∆V(xk)} = E{e>kK>RKek + e>kK
>B>PBKek}

= tr
(
K>

(
R+B>PB

)
KEk

)
.

Because the loop is closed using the state estimate, the
expected value of the increase in the Lyapunov function due
to estimation error over a given time interval [0, N ] is then

N∑
k=0

E{∆V(xk)} =

N∑
k=0

tr (ΓEk) ,

with Γ , K>
(
R+B>PB

)
K. Note that dynamic pro-

gramming yields
(
R+B>PB

)
� 0 and, therefore, Γ � 0.

Moreover, (9) yields Γ = Q− P +A>PA.
We now turn our attention to generalising the proposed

framework to any stabilising feedback gain K.
Propositon 1: Given any linear system xk+1 = Axk +

Buk and stabilising feedback gain K, one can obtain the
feedback gain K as the solution of an LQR formulated using
the stage cost `(x, u) from (8) using matrices R = I , S = K,
Q = K>K.

Proof: The proposed matrices solve the DARE (9) with
P = 0 and R+B>PB � 0. The proof is then obtained by
noting that the DARE admits at most one stabilising solution,
i.e. K, which is stabilising by assumption.
Note that the LQR obtained by applying Proposition 1 has
a positive semi-definite stage cost and yields Γ = K>K.
If a positive-definite formulation is sought, the technique
proposed in [11] can be applied. Alternatively, (7) can be
solved and Γ = Q− P +A>PA can be used.

B. Optimal Communication Allocation

After analysing each subsystem separately, we consider
the aggregate cost of communication, resulting from all
subsystems considered as one system. While the design of
each agent’s controller can be done separately, it is important
to note that some degrees of freedom in the cost definition
are free and should be exploited in order to define the
communication cost. The simplest observation is that by
multiplying the LQR tuning matrices by a factor ai 6= 0, the
same feedback gain is obtained, but the Lyapunov function
matrix becomes aiPi. This allows one to assign higher or
lower importance to some subsystems, thus indicating one
possibility to further tune the cost for the aggregate system.
Another approach can be to design the cost of the single
systems in an aggregate way, i.e. by considering them as a
single (sparse) system.

We remark here that one tempting approach could consist
in applying [11, Lemma 2], so as to assign an arbitrarily cho-
sen value Pi � 0 the cost-to-go matrix of each subsystem’s
controller. While this is always possible, the relative stage
cost is typically indefinite. Consequently, the cost-to-go is
not guaranteed to be a Lyapunov function: though positive
definite, it typically fails to fulfil the decrease condition.



We formulate the communication allocation problem by
summarising the previously described design choices in ma-
trices Γi , K>i

(
Ri +B>i PiBi

)
Ki. The optimal allocation

problem at time j can then be formulated as

min
δ

M∑
i=1

N+j∑
k=j

tr(ΓiEi,k) (12a)

s.t. Ei,k = fE
i,k(Ei,k−1, δi,k), i ∈ IM1 , k ∈ IN+j

j , (12b)

δi,k = {0, 1}, i ∈ IM1 , k ∈ IN+j
j , (12c)

M∑
i=1

δi,k ≤ γ, k ∈ IN+j
j , (12d)

where we define Iba , { n ∈ N | a ≤ n ≤ b } and δ =
(δ1, . . . , δM ) and δi = (δi,0, . . . , δi,N ).

C. The Value of Information

In this subsection, we show the connection between our
approach and the concept of value of information (VoI), used
in different settings in e.g. [3], [5]. In the context of our
setting, the VoI could be defined for agent j as

νi(δi, Ei,j−1) ,
N+j∑
k=j

tr(ΓiEi,k) (13a)

s.t. Ei,k = fE
i,k(Ei,k−1, δi,k), k ∈ IN+j

j . (13b)

Then, Problem (12) can be formulated in terms of VoI as

min
δ

M∑
i=1

νi(δi, Ei,j−1) (14a)

s.t. δi,k = {0, 1}, k ∈ IN+j
j , (14b)

M∑
i=1

δi,k ≤ γ, k ∈ IN+j
j . (14c)

Problem (14) has the same complexity as (12). However,
the problem of computing the VoI (13) is very difficult and
presents strong similarities to the computation of the cost-
to-go function in dynamic programming.

D. Lyapunov Stability in Probability

In this subsection, we analyse the conditions under which
our approach yields closed-loop stability. The stability con-
cept we will use is Lyapunov stability in probabilty [12]. For
the sake of notational simplicity, we consider the system as
a whole, such that xk = (x1,k, . . . , xM,k), and matrices E
and P are defined consistently.

Definition 2 (Lyapunov Stability in Probability):
Lyapunov Stability in Probability (LSP) holds for a
linear system if, given P � 0, ε, ε̄, there exists ρ(ε, ε̄) > 0
such that |x0| < ρ implies

lim sup
k→∞

P[x>k Pxk ≥ ε] ≤ ε̄.

Assumption 3: There exists a baseline schedule δbs over
the time interval [0, N ] yielding error covariance Ebs

k such
that ∀ E0 ∈ E , {E | tr(ΓE) ≤ µ ∈ R} it holds that
Ebs
k ∈ E , k = 1, . . . , N .

Theorem 4: Assume that the initial state covariance, the
noise covariances W , V and the initial estimation error are
finite. Suppose moreover that Assumption 3 holds. Then, the
closed-loop system with communication allocation based on
the solution of Problem (12) is LSP.

Proof: Since EN ∈ E , by applying the baseline
schedule, EN+1 ∈ E and the problem is recursively feasible.

We apply Markov’s inequality to obtain the upper bound

P[x>k Pxk ≥ ε] ≤
E{x>k Pxk}

ε
. (15)

We define Xk , E{xkx>k } and write the time evolution of
E{x>k Pxk} = tr(PXk) as

E{x>k+1Pxk+1} = tr(PXk+1)

= tr(A>KPAKXk) + tr(PW ) + tr(ΓEk).

Since AK is stable, using (7) we obtain tr(A>KPAKXk) =
tr((P −Q)Xk) ≤ α tr(PXk), with 0 ≤ α < 1.

By optimality
∑k+N
j=k tr(ΓEj) ≤

∑k+N
j=k tr(ΓEbs

j ), and
we conclude that

tr(ΓEk) ≤ N
k+N∑
j=k

tr(ΓEbs
j ) ≤ Nµ.

This further yields the upper bound tr(PW )+tr(ΓEk) ≤ ν,
where ν , tr(PW ) +Nµ <∞, such that

tr(PXk+1) ≤ α tr(PXk) + ν.

Consequently, lim sup
k→∞

tr(PXk) ≤ ν

1− α
≤ ν <∞.

IV. NUMERICAL RESULTS

In this section, we test the theoretical developments of
the previous sections in a series of different scenarios. We
consider subsystems with

Ai =

[
1 0.1
0 1

]
, Bi =

[
0.005
0.1

]
. (16)

Unless specified differently, we control each subsystem by an
LQR controller designed using weighting matrices Qi = I
and Ri = 0.01.

A. Numerical Methods

Problem (12) is a mixed-integer optimal control problem
(MIOCP) formulated in discrete time. An efficient approach,
called partial outer convexification, has been proposed
in [13], [14] to handle the numerical solution of MIOCPs.
Consider a generic system with state x, continuous control
u, binary control ω and system dynamics x+ = f(x, u, ω).
Partial outer convexification reformulates the dynamics as
x+ =

∑nc

j=1 f(x, u, ωj)ω̃j , where, vectors ωj are binary vec-
tors spanning the space of all possible binary combinations
of inputs, nc is the amount of such combinations and ω̃j is
a newly introduced control variable. In order to solve the
MIOCP, the integer constraint is relaxed to ω̃ ∈ [0, 1]nc and
the relaxed OCP is solved using standard techniques. This
relaxation can be proven to be tighter than the relaxation of
the original formulation x+ = f(x, u, ω) using ω ∈ [0, 1]nω .



Often the solution of the relaxed problem is integer. In
all other cases, the continuous solution can be approximated
by a switching integer solution by using a rounding scheme.
Note that, because the relaxed problem is nonconvex, the
solver returns a local minimum. We refer to [13], [14] and
references therein for more details on the topic.

We remark that the problem formulations used in this
paper are already in their partial outer convexification form.
We solve the optimisation problems using Casadi [15] and
Ipopt [16].

B. Identical Subsystems
We simulate first the simplest case of identical subsystems

with identical noise covariance. In this simple case, the
optimal solution is to communicate with subsystem i only
after communication has happened with all subsystems j 6= i.

We considered 4 identical agents with Wi = 10−2I ,
Vi = 10−3I and a prediction horizon N ∈ [1, 10] and γ = 1.
Due to the symmetry of the problem, the solver returned
non-integer solutions in the beginning of the simulation
and a rounding strategy was necessary in the beginning.
Afterwards, integer solutions were always obtained and the
periodic solution δi,k = 1 when k mod i = 0, δi,k = 0
otherwise, was obtained (modulo phase shifts).

C. Non-Identical Subsystem with Perfect Communication
We consider now the case of non-identical subsystems. In

particular, we consider different numbers of agents M .
The closed-loop cost for γ = 1 is displayed in Figure 2 for

different prediction horizons N and amounts of subsystems
M . For M < 5, horizons N > 1 did not seem to improve
the closed-loop cost. For M ≥ 5, it can be seen that,
while the optimiser often falls into local minima, the cost
tends to decrease by using longer prediction horizons until
N = 5. This effect is more evident when the amount M of
subsystems becomes larger. In most cases, the closed-loop
cost is less than 5% higher than the best value found by
the optimiser. For M ≤ 9 the solver always returned an
integer solution. In all other simulations the solution needed
to be rounded at most twice. Simulations with γ > 1 showed
similar trends. Finally, the closed-loop cost dependence on
γ is shown on the bottom graph in Figure 2.

D. Tuning the Cost of Communication
In this subsection, we briefly present how the cost of

communicating to one subsystem rather than to the others
can be tuned. For the sake of simplicity, we consider two
identical subsystems.

We use the following tuning for the LQR: Q1 = I and
R1 = 0.01 and Q2 = a2Q1 and R2 = a2R1, where a is
our tuning parameter. As remarked before, this choice yields
the same feedback gain for both systems, i.e. K1 = K2.
However, the cost-to-go matrices are P2 = a2P1, such that
Γ2 = a2Γ1. As one could expect, the ratio r =

∑
k δ2,k/δ1,k

between the amount of communication with system 1 and 2
scales roughly linearly with increasing a. However, since the
problem has an integer nature and the solvers only finds a
local minimum the ratio evolves as displayed in Figure 3.

Fig. 2. Top graph: closed-loop cost forM ∈ [5, 15], γ = 1 as a function of
the prediction horizon for several scenarios considering different numbers
of agents. The value Js denotes the closed-loop cost scaled around the
minimum for each scenario. Bottom graph: Closed-loop cost J for M = 10
as a function of the amount of available communication γ in (12d).

Fig. 3. Ratio r =
∑

k δ2,k/δ1,k as a function of parameter a.

E. Imperfect Communication

We now consider a scenario with a lossy communication
channel with probability of successful communication given
by pi,k = e−d

2
i,k , where di,k denotes the distance of agent i

from the central node at time k. We use identical systems,
i.e. with variances given by

V1 = 10−3I, W1 = 10−2I, V2 = V1, W2 = W1.

We consider a scenario where di,k = cos
(
0.1k + iπ2

)
, such

that when one system is at the farthest point, the other
system is at the closest one. We run 100 simulations over
a horizon of 100 steps. We compare the formulation explic-
itly accounting for lossy communication to the formulation
assuming perfect communication and the baseline strategy of
alternating communication between the two systems at each
step, which is optimal in case of no packet loss.

We consider three scenarios, with decreasing probability
of successful packet reception, as displayed in Figure 4. The
time evolution of the probability is periodic and the proba-
bility for the two systems is shifted by half a period. The
resulting average closed-loop cost is displayed in FIgure 5.
We have normalised the cost with respect to the baseline
strategy. For the first two scenarios, the prediction horizon
does not seem to have an important role. It is interesting
to note that, even if perfect communication is assumed, the
algorithm uses the information on packet loss in order to
improve the closed-loop cost. While in the first scenario



Fig. 4. Periodic probability of having a successful communication for
system 1. System 2 has the same probability time evolution but shifted by
half a period.

including the information on the probability of packet loss
does not improve the closed-loop cost, in the second scenario
the improvement is significant. Finally, in the third and most
challenging scenario, explicitly accounting for the probability
of packet drop is crucial for performance, as not doing
so significantly deteriorates the performance with respect
to the baseline strategy. Note that in this last scenario,
longer prediction horizons improve the performance. For
prediction horizons N > 15, i.e. longer than approximately
half a period of the package drop probability variation, the
performance does not improve further.

V. CONCLUSIONS AND FUTURE RESEARCH

We have presented an approach for allocating communi-
cation between sensors and agents in the case of limited
communication resources. The problem formulation min-
imises the Lyapunov function increase caused by imperfect
communication and can incorporate knowledge on packet
loss probability in order to improve the closed-loop cost.

In the case of perfect communication, some closed-loop
solutions are periodic. This happens especially for small
M , while for large amounts of subsystems this periodic
behaviour does not appear. While it seems hard to prove that
a periodic behaviour is optimal, the fact that the optimiser
does not return a periodic solution could be explained that,
due to nonconvexity, only locally optimal solutions are ob-
tained. If periodic solutions are sought, the initial constraint
in Problem (12) can be replaced by a periodicity constraint
and the problem can be solved for different period lengths
in order to select the solution with the lowest cost.

Moreover, in a fully distributed setting, the proposed
approach can be used in combination with the approach
of [4]: the offline deployment of our framework can give
indications on how to select the tuning parameters of that
algorithm, i.e. the quadratic cost the relative threshold.
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