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Abstract—In this paper, we consider the maximization of a
quantitative metric of controllability with a constraint of L0 norm
of the control input. Since the optimization problem contains
a combinatorial structure, we introduce a convex relaxation
problem for the sake of reducing computation burden. We prove
the existence of solutions to the main problem and also give
a simple condition under which the relaxed problem gives a
solution to the main problem. It should be emphasized that the
main problem can formulate time-varying control node selection,
which attempts to extract when and where exogenous inputs
should be provided in order to achieve high controllability of
multi-agent systems.

Index Terms—Optimal control, Linear systems, Time-varying
systems, Sparse optimal control, Networked control systems.

I. INTRODUCTION

OPTIMAL control problems in which control variables
are penalized via the L0-norm have attracted a renewed

interest due to its connection to sparsity. Since the penalty
cost is defined as the length of the support of controls, the
optimization tends to make the control input identically zero
on a set with positive measures, and the optimal control is
switched off completely on parts of the time domain. This
is why the problem is referred to as sparse optimal control.
This optimal control framework is, for example, applied to
actuator placements [1], [2], [3], multi-period investments [4],
and networked control systems in the presence of packet-
dropouts [5], to name a few.

The sparse optimal control satisfying a given state transition
from a point to another point is theoretically analyzed in [6],
[7], [8]. On the other hand, it is also important to investigate
a time duration over which some control inputs can realize
efficient state transitions towards all directions. This enables
us to find controller activation schedule that does not depend
on the target state. In addition to input sparsity, one might be
concerned with a question of how much energy is required
to steer the system. For this purpose, several notions of
controllability have been proposed as a measure of possibility
of state transitions.

In view of this, in this paper, we investigate a novel optimal
control problem that aims to maximize a quantitative metric of
controllability when control inputs are constrained in terms of
the L0 norm. For the metric, this paper adopts the trace of the
controllability Gramian from the analytical perspective. This
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quantity is closely related to the average energy required to
steer the system in all directions in the state space. Here, it is
worthy of note that the metric is widely used in the context of
node selection problem [9], [10], [11], [12]. In the context, our
optimal solution is interpreted as an answer to the question of
when and where exogenous control inputs should be provided
for high controllability. Hence the present paper corresponds
to the case of time-varying node selection; see Section V. We
also note that this paper penalizes both the L0 cost and the
L2 cost with respect to the control signal, and this approach
is related to sparse quadratic regulator treated in [13].

The problem addressed above, however, includes a combi-
natorial structure. To circumvent this, we introduce a convex
optimization problem for the sake of reduction of computation
burden. For the theoretical analysis, we first reformulate the
convex optimization so that Pontryagin’s minimum principle
is applicable, and then characterize the optimal solution by
using the costate. Based on this characterization, we establish
a condition for the main problem to be exactly solved via
the convex optimization. Thanks to the result, the existence of
optimal solutions to the main problem is also shown.

The remainder of this paper is organized as follows: In
Section II, we give mathematical preliminaries for our sub-
sequent discussion. In section III, we formulate our optimal
control problem. Section IV gives a theoretical analysis. We
show a condition for the problem to boil down to a convex
optimization problem and prove the existence of optimal solu-
tions to the main problem. Section V illustrates the application
of the main problem to node selection problem, and we offer
concluding remarks in Section VI.

II. MATHEMATICAL PRELIMINARIES

This section reviews notation that will be used throughout
the paper.

Let m be a positive integer and Ω be a subset of R. For
a vector a = [a1, a2, . . . , am]⊤ ∈ Rm, diag(a) denotes the
diagonal matrix whose (i, i)-component is given by ai, and
a ∈ Ωm means ai ∈ Ω for all i. We denote the Euclidean norm
by ∥a∥ , (

∑m
i=1 a

2
i )

1/2. Let N1 and N2 be positive integers.
For a matrix M ∈ RN1×N2 , M⊤ denotes the transpose of M ,
and TrM denotes the trace of M .

Let T > 0. We define the L0 norm and L1 norm of a
continuous-time signal v(t) = [v1(t), v2(t), . . . , vm(t)]⊤ ∈



Rm over a time interval [0, T ] by

∥v∥0 ,
m∑
j=1

µL({t ∈ [0, T ] : vj(t) ̸= 0}),

∥v∥1 ,
m∑
j=1

∫ T

0

|vj(t)|dt,

where µL is the Lebesgue measure on R. We denote the set
of all v with ∥v∥1 < ∞ by L1.

III. PROBLEM FORMULATION

A. Controllability Metrics

This paper investigates an optimal control problem that
maximizes a metric of controllability with a sparse control.
Let us first define a linear model as follows:

ẋ(t) = Ax(t) +Bu(t), 0 ≤ t ≤ T, (1)

where x(t) ∈ Rn is the state; u(t) ∈ Rm is the control input;
A ∈ Rn×n and B ∈ Rn×m are constant matrices; and T > 0
is the final time of control. This paper is interested in a sparse
control constrained in terms of the L0 norm by ∥u∥0 ≤ α with
a given positive number α > 0. This results in the following
expression of the system (1):

ẋ(t) = Ax(t) +BV (t)u(t), 0 ≤ t ≤ T,

V (t) , diag(v(t)),
(2)

where v(t) , [v1(t), v2(t), . . . , vm(t)]⊤ ∈ Rm is a time-
varying vector satisfying ∥v∥0 ≤ α and v(t) ∈ {0, 1}m for all
t ∈ [0, T ]. Note that the function v(t) represents the activation
schedule of the control input. More precisely, the j-th variable
of the control input is able to affect the system at time t if
and only if vj(t) = 1.

In what follows, we introduce a metric of the controllability
for the system (2). The classical notion of controllability
denotes whether the system can be driven to any desired state
from any initial state by using an appropriate control input.
More precisely, the system (2) is said to be controllable on
[0, T ] if for any x0, xf ∈ Rn there exists a control input u(t)
such that the state of the system x(t) is driven from x(0) = x0

to x(T ) = xf by using the control input u(t). It is well known
that the system is controllable if and only if the following
matrix called controllability Gramian is non-singular:

Wc ,
∫ T

0

eAtB(t)B(t)⊤eA
⊤tdt,

where B(t) , BV (t) ∈ Rn×m. Note that this classical
controllability is a binary measure that determines whether the
system is controllable or not, and it does not evaluate how easy
the system is to control. Even if the system is theoretically
controllable, control inputs might require high energy cost,
which fails to realize desired state transitions in practice. Then,
controllability measures that quantify the required energy cost

of steering the system have been analyzed. We here recall the
minimum-energy control problem:

minimize
u

∫ T

0

∥u(t)∥2dt

subject to ẋ(t) = Ax(t) + B(t)u(t),
x(0) = x0, x(T ) = 0.

The minimum control energy is then given by x⊤
0 W

−1
c x0 [14].

Based on this, recent works have been considered to make Wc

as “large” as possible, and a number of controllability metrics
have been proposed, including TrWc, λmin(Wc), det(Wc), and
rank(Wc); see e.g. [9], [10]. While each measure has its own
advantage, this paper adopts the trace of the controllability
Gramian TrWc from the analytical perspective. This quantity
is closely related to the average controllability on the ball {x0 :
∥x0∥ = 1} by the following equation [15]:∫

∥x0∥=1
x⊤
0 W

−1
c x0dx0∫

∥x0∥=1
dx0

=
1

n
TrW−1

c .

B. Main Problem

In this paper, we consider one problem: how should we
provide control inputs to the system in order to realize the best
controllability when control inputs are constrained in terms of
the L0 norm? The problem is formulated as the following
optimization:

Problem 1: Given A ∈ Rn×n, B ∈ Rn×m, T > 0, and
α > 0, find a time-varying matrix V (t) , diag(v(t)), v(t) ,
[v1(t), v2(t), . . . , vm(t)]⊤, that solves

maximize
v1,v2,...,vm

J(V ) , Tr

∫ T

0

eAtBV (t)V (t)⊤B⊤eA
⊤tdt

subject to v(t) ∈ {0, 1}m ∀t ∈ [0, T ], ∥v∥0 ≤ α.

We are now interested in the average controllability as men-
tioned in subsection III-A. Hence the cost function in the opti-
mization problem is defined by the trace of the controllability
Gramian according to the system (2).

Let us now reformulate Problem 1 for the subsequent
theoretical analysis.

Lemma 1: Problem 1 is equivalent to the following problem:

maximize
v1,v2,...,vm

J1(V )

subject to v(t) ∈ {0, 1}m ∀t ∈ [0, T ], ∥v∥0 ≤ α.
(3)

where

J1(V ) ,
∫ T

0

[
f1(t), f2(t), . . . , fm(t)

]
v(t) dt,

fj(t) , b⊤j e
A⊤teAtbj , j = 1, 2, . . . ,m,

v(t) , [v1(t), v2(t), . . . , vm(t)]⊤,

and bj is the j-th column of B.



Proof: It is enough to show J(V ) = J1(V ) for any v
that satisfies the constraints. It follows from a property of the
trace operator that

J(V ) = Tr

∫ T

0

eAtBV (t)V (t)⊤B⊤eA
⊤t dt

= Tr

∫ T

0

B⊤eA
⊤teAtBV (t)2 dt

Here, we have V (t)2 = V (t), since a constraint in Problem 1
imposes the variables vi’s to take only the values of 0 and 1.
We thus obtain the equivalent form (3) of Problem 1.

In this paper, we show that optimal solutions to Problem 1
can be obtained by solving a convex optimal control problem.

IV. ANALYSIS

We first introduce a convex relaxed problem of Problem 1.
Problem 2: Given A ∈ Rn×n, B ∈ Rn×m, T > 0, and

α > 0, find a time-varying matrix V (t) , diag(v(t)), v(t) ,
[v1(t), v2(t), . . . , vm(t)]⊤, that solves

maximize
v1,v2,...,vm

J1(V )

subject to v(t) ∈ [0, 1]m ∀t ∈ [0, T ], ∥v∥1 ≤ α.

We first show the discreteness of solutions to Problem 2,
which guarantees that the optimal solutions to Problem 2
satisfy the constraints in Problem 1, which will be illustrated
in the proof of Theorem 2. For this purpose, we recall
Pontryagin’s maximum principle [16, Theorem 22.2].

Proposition 1: Consider the following optimal control prob-
lem:

minimize
w

∫ T

0

ℓ(t, w(t))dt

subject to ż(t) = Fz(t) +Gw(t), t ∈ [0, T ] a.e.
w(t) ∈ [0, 1]m, t ∈ [0, T ] a.e.
z(0) = z0, z(T ) ∈ E,

(OC)

where ℓ is continuous, z(t) ∈ R, w(t) ∈ Rm, F ∈ R,
G ∈ R1×m, T > 0, z0 ∈ R, and E ⊂ R. Note that
(ℓ, F,G, T, z0, E) is given. Define the Hamiltonian function
Hη : [0, T ]× R× R× Rm associated to Problem (OC) by

Hη(t, z, p, w) , p(Fz +Gw)− ηℓ(t, w),

where η is either 0 or 1. Let the process (z∗, w∗) be a local
minimizer for Problem (OC). Then, there exists an arc p :
[0, T ] → R and a scalar η equal to 0 or 1 satisfying the
nontriviality condition:

(η, p(t)) ̸= 0 ∀t ∈ [0, T ], (4)

the adjoint equation for almost every t:

−ṗ(t) =
∂Hη

∂z
(t, z∗(t), p(t), w∗(t)), (5)

as well as the maximum condition for almost every t:

Hη(t, z∗(t), p(t), w∗(t)) = sup
w∈[0,1]m

Hη(t, z∗(t), p(t), w).

(6)

From now on, we show the discreteness of optimal solutions
to Problem 2.

Theorem 1 (discreteness): Assume that fj(t) defined in
Lemma 1 is not constant on [0, T ] for all j ∈ {1, 2, . . . ,m}.
Then any solution to Problem 2 takes only 0 and 1 almost
everywhere.

Proof: We first reformulate Problem 2 into a form to
which Pontryagin’s maximum principle is applicable. For any
v such that v(t) ∈ [0, 1]m on [0, T ], we have

∥v∥1 =
m∑
j=1

∫ T

0

|vj(t)| dt =
m∑
j=1

∫ T

0

vj(t) dt

=

∫ T

0

[1, 1, . . . , 1]v(t) dt,

where v(t) = [v1(t), v2(t), . . . , vm(t)]⊤. Note that the value
is equal to the final state y(T ) of the system

ẏ(t) = [1, 1, . . . , 1]v(t)

with y(0) = 0. Hence the set of all variables satisfying the
constraints in Problem 2 is equivalent to the set

{v : v(t) ∈ [0, 1]m ∀t ∈ [0, T ],

ẏ(t) = [1, 1, . . . , 1]v(t), y(0) = 0, y(T ) ≤ α},

and Problem 2 is equivalently expressed by the following
problem:

maximize
v1,v2,...,vm

J1(V )

subject to ẏ(t) = [1, 1, . . . , 1]v(t),

y(0) = 0, y(T ) ≤ α,

v(t) ∈ [0, 1]m ∀t ∈ [0, T ].

(7)

We thus obtain an optimal control problem to which Pontrya-
gin’s maximum principle is applicable.

Define the Hamiltonian function Hη : [0, T ]×R×R×Rm

associated to the problem (7) by

Hη(t, y, p, v) , p[1, 1, . . . , 1]v − ηℓ(t, v),

where η is either 0 or 1 and

ℓ(t, v) , −
[
f1(t), f2(t), . . . , fm(t)

]
v,

fj(t) , b⊤j e
A⊤teAtbj , j = 1, 2, . . . ,m.

Let the process (y∗, v∗) be a local maximizer for the prob-
lem (7). Then there exists an arc p : [0, T ] → R and a scalar
η equal to 0 or 1 satisfying the conditions (4), (5), and (6).
Put the set on which (4), (5), and (6) hold by I ⊂ [0, T ]. Note
that µL(I) = T . Since we now have ∂Hη

∂y = 0, it follows from
(5) that there exists p0 ∈ R and p(t) = p0 for t ∈ I . Then, it
follows from (6) that(

p0 + ηfj(t)
)
v∗j (t) = sup

vj∈[0,1]

(
p0 + ηfj(t)

)
vj

for each j ∈ {1, 2, . . . ,m} and t ∈ I . Note that the supremum
is attained by a point in [0, 1], since the right hand side is a
linear function of vj on a closed interval. Hence

v∗j (t) = arg max
vj∈[0,1]

(
p0 + ηfj(t)

)
vj .



The characterization is divided into the following two cases.
1) If η = 0, then p0 ̸= 0 from (4). Hence

v∗j (t) = arg max
vj∈[0,1]

p0vj =

{
1, if p0 > 0,

0, if p0 < 0.

2) If η = 1, then

v∗j (t) = arg max
vj∈[0,1]

(
p0 + fj(t)

)
vj .

Hence

v∗j (t) =

{
1, if p0 + fj(t) > 0,

0, if p0 + fj(t) < 0,

and v∗j (t) is not determined if p0+ fj(t) = 0. Here, put
Ij , {t ∈ [0, T ] ∩ I : p0 + fj(t) = 0}.

In what follows, we show that for each j, if fj(t) is not
constant, then v∗j takes only 0 and 1 almost everywhere. For
the purpose, we show that if η = 1 and µL(Ij0) > 0 for some
j0, then fj0(t) is constant. Put

ϕj0(t) , p0 + fj0(t). (8)

Then, ϕj0(t) = 0 for t ∈ Ij0 . Since ϕj0(t) is an analytic
function, it follows from µL(Ij0) > 0 that ϕj0 ≡ 0, as
described in [17]. This implies that fj0(t) is constant, and
then completes the proof.

Remark 1: As illustrated in the proof, the j-th component
v∗j (t) of the optimal solution may switch the values only at
time t such that fj(t) + p0 = 0. Since the function fj(t) + p0
is analytic, the set of all zeros of the function does not contain
accumulation points, which ensures the nonexistence of Zeno
phenomena.

The following theorem is the main result, which shows the
equivalence between Problem 1 and Problem 2.

Theorem 2 (equivalence): Assume that fj(t) defined in
Lemma 1 is not constant for all j. Denote the set of all solu-
tions to Problem 1 and Problem 2 by V∗

1 and V∗
2 , respectively.

If V∗
2 ̸= ∅, then V∗

1 = V∗
2 .

Proof: Let v̂ , [v̂1, v̂2, . . . , v̂m]⊤ be an optimal solution
to Problem 2. Then all v̂j’s take only the values of 0 and
1 almost everywhere by Theorem 1. Note that the null set
∪m
j=1{t ∈ [0, T ] : v̂j(t) ̸∈ {0, 1}} does not affect the cost, and

hence we can adjust the variables so that v̂j(t) ∈ {0, 1} on
[0, T ] for all j, without loss of the optimality. We have

m∑
j=1

∥v̂j∥1 =
m∑
j=1

∫
{t∈[0,T ]:v̂j(t) ̸=0}

|v̂j(t)|dt

=
m∑
j=1

∥v̂j∥0,
(9)

where we used the discreteness of v̂j . Since v̂ satisfies the
constraints in Problem 2, we have

∑m
j=1 ∥v̂j∥0 ≤ α from (9).

Thus, v̂ also satisfies the constraints in Problem 1.
Here,

max
v(t)∈{0,1}m,∀t

∥v∥0≤α

J1(V ) ≤ max
v(t)∈[0,1]m,∀t

∥v∥0≤α

J1(V ).
(10)

Since we have ∥g∥1 ≤ ∥g∥0 for any measurable function
g(t) ∈ R with g(t) ∈ [0, 1] on [0, T ], we have

{v : v(t) ∈ [0, 1]m ∀t, ∥v∥0 ≤ α}
⊂ {v : v(t) ∈ [0, 1]m ∀t, ∥v∥1 ≤ α}.

Hence

max
v(t)∈[0,1]m,∀t

∥v∥0≤α

J1(V ) ≤ max
v(t)∈[0,1]m,∀t

∥v∥1≤α

J1(V ).
(11)

It follows from inequalities (10) and (11) that

max
v(t)∈{0,1}m,∀t

∥v∥0≤α

J1(V ) ≤ max
v(t)∈[0,1]m,∀t

∥v∥1≤α

J1(V ).
(12)

Here, v̂ is an optimal solution to Problem 2, and hence

max
v(t)∈[0,1]m,∀t

∥v∥1≤α

J1(V ) = J1(V
∗
2 ) (13)

where V ∗
2 , diag(v̂). On the other hand, since v̂ satisfies the

constraints in Problem 1, we have

J1(V
∗
2 ) ≤ max

v(t)∈{0,1}m,∀t
∥v∥0≤α

J1(V ). (14)

Hence, we have

J1(V
∗
2 ) = max

v(t)∈{0,1}m,∀t
∥v∥0≤α

J1(V ) (15)

by (12), (13), and (14). This means that v̂ is a solution to
Problem 1. Hence we have V∗

2 ⊂ V∗
1 and V∗

1 ̸= ∅.
Let us take any optimal solution ṽ , [ṽ1, ṽ2, . . . , ṽm]⊤ ∈

V∗
1 . Then we have ṽj(t) ∈ {0, 1} on [0, T ] for all j and

m∑
j=1

∥ṽj∥1 =
m∑
j=1

∥ṽj∥0 ≤ α.

Hence ṽ also satisfies the constraints in Problem 2. In addition,
it follows from (15) that J1(V

∗
1 ) = J1(V

∗
2 ), where V ∗

1 ,
diag(ṽ). Therefore, ṽ ∈ V∗

2 and V∗
1 ⊂ V∗

2 . This gives V∗
1 = V∗

2 .

Remark 2: When a function fj is constant for some j,
optimal solutions to Problem 2 do not necessarily take only
values of 0 and 1. Indeed, once the j-th component of an
optimal solution to Problem 2 takes the value 1 on an interval,
there exists an optimal solution whose j-th component takes
besides the values of 0 and 1. This implies that the set V∗

2 is
not necessarily included in the set V∗

1 when a function fj is
constant.

In Theorem 2, we assume the existence of optimal solutions
to Problem 2 in order to discuss the equivalence V∗

1 = V∗
2 .

We next show the existence of solutions to Problem 1 and
Problem 2. For the purpose, we first show that there exist
solutions to Problem 2. Note that this guarantees the existence
of solutions to Problem 1 if fj(t) is not constant for all j by
Theorem 2. We then finally show that there exists at least one
solution to Problem 1, even if fj(t) is constant for some j.

Theorem 3 (existence): For any A ∈ Rn×n, B ∈ Rn×m,
T > 0, and α > 0, there exists at least one optimal solution
to Problem 1 and Problem 2, respectively.



Proof: We first show the existence of solutions to Prob-
lem 2. For this, we consider the equivalent problem (7). Let
us denote the set of all variables satisfying the constraints in
the problem (7) by V , i.e,

V ,
{
v ∈ L1 :

∫ T

0

[1, 1, . . . , 1]v(t)dt ≤ α,

v(t) ∈ [0, 1]m ∀t ∈ [0, T ]

}
.

Since V ̸= ∅, we can define

θ , sup{J1(V ) : v ∈ V}.

Then there exists a sequence {v(l)}l∈N ⊂ V such that
liml→∞ J1(v

(l)) = θ. Here, the set {w ∈ L∞ : ∥w∥∞ ≤ 1}
is sequentially compact in the weak∗ topology of L∞ [18].
Then it follows that there exist a measurable function v(∞)

with v(∞)(t) ∈ [0, 1]m almost everywhere and a subsequence
{v(l′)} such that each component v(l

′)
j converges to v

(∞)
j , the

j-th component of v(∞), in the weak∗ topology of L∞, that
is, we have

lim
l′→∞

∫ T

0

(
v
(l′)
j (t)− v

(∞)
j (t)

)
g(t)dt = 0

for any g ∈ L1 and j = 1, 2, . . . ,m. Then∫ T

0

[1, 1, . . . , 1]v(∞)(t)dt = lim
l′→∞

∫ T

0

[1, 1, . . . , 1]v(l
′)(t)dt

≤ α

and hence v(∞) ∈ V . In addition, we have

J1(V
(∞)) =

∫ T

0

[
f1(t), f2(t), . . . , fm(t)

]
v(∞)(t)dt

= lim
l′→∞

∫ T

0

[
f1(t), f2(t), . . . , fm(t)

]
v(l

′)(t)dt

= lim
l′→∞

J1(V
(l′)) = θ,

where V (∞) , diag(v(∞)) and V (l′) , diag(v(l
′)). This

shows that v(∞) is an optimal solution to Problem 2.
We next show that there exists at least one optimal solution

to Problem 2 that takes only the values of 0 and 1 even if
fj(t) is constant for some j. Here, let us denote the set of
all solutions to Problem 2 by V∗

2 , which is not empty from
the discussion above, and take any optimal solution v∗ ∈ V∗

2 .
Now, it is enough to consider the case that η = 1 and K ,
{j ∈ {1, 2, . . . ,m} : µ(Ij) > 0} ̸= ∅, where η and Ij are
defined in the proof of Theorem 1, since for the other cases
v∗ obviously take only the values of 0 and 1. Note that the
j-th component v∗j of v∗ satisfies v∗j (t) ∈ {0, 1} on [0, T ] for
j ̸∈ K. For any j ∈ K, it follows from the proof of Theorem 2
that ϕj(t) ≡ 0, where ϕj is defined by (8). Hence fj(t) = −p0
on [0, T ] for all j ∈ K. Here we take a measurable function
v such that ∫ T

0

vj(t)dt =

∫ T

0

v∗j (t)dt,

vj(t) ∈ {0, 1} ∀t ∈ [0, T ]

for j ∈ K and vj = v∗j for j ̸∈ K. Then the function v ,
[v1, v2, . . . , vm]⊤ satisfies J1(V ) = J1(V

∗), ∥v∥1 = ∥v∗∥1 ≤
α, and v(t) ∈ {0, 1}m on [0, T ], where V = diag(v) and
V ∗ = diag(v∗). Hence v is a solution to Problem 2 that takes
only 0 and 1.

Finally, the set of all solutions to Problem 2 that take only
0 and 1 is equal to V∗

1 , which is the set of all solutions to
Problem 1. This can be verified by the proof of Theorem 2.
Thus, we obtain V∗

1 ̸= ∅.

V. APPLICATION TO CONTROL NODE SELECTION

In this section, we illustrate the application of Problem 1
to control node selection. We first briefly review the node
selection problem. The purpose of the problem is to identify
the set of nodes with exogenous control inputs that can
effectively guide the system’s entire dynamics. The selected
nodes are called control nodes, and the selection techniques of
control nodes have been extensively studied in the context of
complex networks. In recent works, control nodes are chosen
in order to optimize a metric of controllability [19], [20], [9],
[10], [21], [22]. For example, [19] considers the minimum set
of control nodes that guarantees the classical controllability
proposed in [23]; [20] considers the structural controllability;
and [9], [10] introduce quantities that evaluate how much the
system is easy to control, such as the trace, the minimum
eigenvalue, and the rank of the controllability Gramian. While
these works investigate the selection problem in which the set
of control nodes is fixed over the time, more recent works [11],
[12] alternatively select the time-varying set of control nodes
for discrete-time systems.

In the context of the selection problem, our model (2) is
interpreted as follows: x(t) , [x1(t), x2(t), . . . , xn(t)]

⊤ is the
state vector of the network consisting of n nodes, where xi(t)
is the state of the i-th node at time t; u(t) is the exogenous
control input that influences the network dynamics; A is the
dynamics matrix that represents the information flow among
nodes. In particular, the node selection problem is interested
in the design of the B-matrix, since it locates control nodes. In
our case, BV (t) plays the role. More precisely, if vj(t) = 1,
then the input uj(t) is provided to the system through the
vector bj at time t, and if vj(t) = 0, then the input uj(t)
is not provided to the system. Thus Problem 1 can answer
to a question of when and where exogenous control inputs
should be provided. In other words, Problem 1 is considered
as a node selection problem that extracts time-varying control
nodes. To the best of our knowledge, the time-varying control
node selection for continuous-time systems has not yet been
proposed.

We next give an example of node selection problem based
on the proposed method. We consider the network consisting
of 5 nodes. Let A in (2) be the adjacency matrix defined by

A ,


0 0 0 0 1
0 0 1 1 0
0 1 0 1 0
0 0 1 0 0
1 0 1 1 0





Fig. 1. Graph associated with A; Dashed lines show nodes that can be
provided exogenous inputs.
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Fig. 2. Profile of control nodes

and take B as I5×5, which is the identity matrix of dimension
5. Fig. 1 shows the graph according to the adjacency matrix
A.

For this network, we simulated the proposed method with
T = 1 and α = 1. In this example, each node can be a
control node since B = I5×5, but the constraint ∥v∥0 ≤ α = 1
imposes us to provide control inputs at most 1 sec. Note that
this example satisfies the assumption of Theorem 2, and hence
the optimal solution can be obtained by solving Problem 2, for
which we can use, for example, CVX in MATLAB [24] after
applying a time discretization.

Fig. 2 shows the profile of control nodes selected on the
interval [0, T ]. Note that we plot the profile only on [0.5, T ],
since no node is activated on [0, 0.5] in this example. We
can see that the set of control nodes is not constant on
[0, T ]. Indeed, the sets of control nodes on [0.576, 0.591),
[0.591, 0.833), and [0.833, 1] are {3}, {3, 4}, and {2, 3, 4},
respectively. Note that our framework may select several nodes
at the same time since ∥v∥0 ,

∑m
j=1 µL({t ∈ [0, T ] : vj(t) ̸=

0}).

VI. CONCLUSIONS

In this paper, we have analyzed an optimal control problem
that maximizes a controllability metric when a sparse control
is applied. This analysis enables us to find an activation

schedule of control inputs that can steer the system while
saving energy. We have analytically shown the existence of the
optimal solutions and proved that the solutions can be obtained
via a convex optimization if each function (i.e. fj) in front of
decision variables is not constant. We have also illustrated the
application of the optimization problem addressed in the paper
to the control node selection problem. Our optimization can
select time-varying control nodes for continuous-time systems.
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