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Abstract—In this paper, a phasor measurement unit (PMU)-
based wide-area damping control method is proposed to damp
the interarea oscillations that threaten the modern power system
stability and security. Utilizing the synchronized PMU data, the
proposed almost model-free approach can achieve an effective
damping for the selected modes using a minimum number of
synchronous generators. Simulations are performed to show the
validity of the proposed wide-area damping control scheme.

Index Terms—Power systems, estimation, control applications

I. INTRODUCTION

LOW-FREQUENCY interarea oscillations, involving two
coherent generator groups swinging against each other

at a frequency typically less than 2 Hz, lead to a small-
signal stability concern for the modern inter-connected power
systems. The undesirable existence of interarea oscillations
due to weakly-tied transmission lines may limit the power
transmission capability between different areas and damage
the power grid elements, and therefore needs to be constantly
monitored and controlled. Conventionally, power system sta-
bilizers (PSSs) have been employed to damp the interarea
oscillations. However, classical PSSs are incapable of damping
the iterarea modes, the frequencies of which lie beyond their
limited bandwidth. Although a vast amount of techniques
aiming to improve the traditional PSSs have been proposed,
including the multiple-input PSSs (e.g., [1]), multi-band PSSs
(e.g., [2]) and supervisory level PSSs (e.g., [3]), PSS tech-
niques may not effectively damp the interarea modes involving
different areas and may strongly depend on the assumed
network model [4].

The implementation of a synchrophasor-based wide-area
measurement system (WAMS) in power grids greatly enhances
the observability of power system dynamics, providing a
unique opportunity to observe, identify and damp the inter-
area oscillations. Multiple control methodologies have been
developed for damping the interarea oscillations deploying
a WAMS. A comprehensive discussion about the formula-
tion of wide-area control problem in power systems was
presented in [5]. In [6], a decentralized/hierarchical archi-
tecture for wide-area damping control using PMU remote
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feedback signals was discussed. In [7], a sparsity-promoting
optimal wide-area control was employed to damp the interarea
oscillations in bulk power systems. References [4] [8] pro-
posed the design of wide-area damping controllers (WADCs)
that provide supplementary damping control to synchronous
generators. The authors of [9] applied a networked control
system model for wide-area closed-loop power systems. The
authors of [10] introduced a power oscillation damping (POD)
controller based on a WAMS using a modal linear quadratic
Gaussian (MLGC) methodology. However, these approaches
require the detailed and accurate knowledge of the complete
network model (both topology and parameter values), that is
unavailable or corrupted in practice as a result of communica-
tion failures, bad data in state estimation etc. In addition, the
impact of disturbances on the interarea oscillations cannot be
well captured by these methods.

In this paper, we attempt to develop a wide-area damping
control strategy for interarea modes utilizing PMU measure-
ments, which does not rely on the assumed network model (the
only required knowledge is the damping and inertia constants
of generators which are not subject to constant changes). To
the knowledge of authors, the proposed wide-area damping
method for interarea oscillations seems to be the first method
that is completely independent of the network model and its
parameter values. The main contributions of the paper are as
below:
• A measurement-based (almost model-free) technique is

applied to accurately estimate the system state matrix
in ambient conditions, which is completely independent
of the system network model and is computationally
efficient.

• An effective wide-area damping control scheme for in-
terarea modes is proposed using the participation factors
of the estimated system state matrix, which can damp
a target mode by a desired coefficient using the least
possible number of generators while maintaining the
other modes unaffected.

• Numerical studies are conducted in the IEEE 39-bus 10-
generator New England system to show that the proposed
wide-area damping control method is fast, effective, and
robust again measurement noise.

II. THE STOCHASTIC POWER SYSTEM MODEL

In this paper, we investigate the power system dynamic
operation in quasi steady-state, i.e., in ambient conditions.
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Since interarea modes are predominantly determined by the
machine rotor angles and speeds, classical swing equations
are used to model generator dynamics:

δ̇i = ωi − ωS
Miω̇i = Pmi − Pei −Di(ωi − ωS) i = 1, ..., n

(1)

where δi is the generator rotor angle, ωi is the rotor angular
velocity, ωS is the synchronous speed, Mi is the inertia
constant, Di is the damping coefficient, Pmi is the generator’s
mechanical power input from the prime mover, Pei is the
generator’s electrical power output, and n is the number of
generators in the system. Pei is defined as

Pei = Ei

n∑
j=1

EjYij cos(δi − δj − φij) i = 1, ..., n (2)

where Ei is the constant voltage behind the transient reactance
X ′d, and Yij∠φij is the (i,j)th entry of the reduced admittance
matrix containing generators’ impedances. It should be pointed
out that in (1) each generator represents the equivalent aggre-
gation of thousands of actual generators.

In the power system model of (1)-(2), the loads are modeled
as constant impedances. However, other types of loads such
as ZIP loads can be incorporated in this formulation It is
common and reasonable to assume that the load power varies
stochastically following a Gaussian distribution [11]. The load
fluctuation manifests itself in the diagonal elements of the
reduced admittance matrix as proposed in [12], [13]:

Y (i, i) = Yii(1 + σidWt,i)∠φii (3)

where Wt is a Wiener process and σi is the standard deviation
of the variation describing load fluctuations. Therefore, the
power system equations become:

δ̇i = ωi − ωS
Miω̇i = Pmi

− Pei −Di(ωi − ωS)− E2
iGiiσiξi

(4)

where Gii = Yii cos(φii), and ξi =
dWt,i

dt , i = 1, ..., n, are
independent Gaussian random variables.

Note that (4) represents a set of stochastic differential
equations. To conduct the small-signal stability analysis, we
linearize (4) around the steady-state operating point as shown
below:[
δ̇
ω̇

]
=

[
0 In

−M−1 ∂Pe

∂δ −M−1D

] [
δ
ω

]
+

[
0

−M−1E2GΣ

]
ξ

(5)
where δ = [δ1, ..., δn]T , ω = [ω1 − ωS , ..., ωn −
ωS ]T , M = diag([M1, ...,Mn]), D = diag(D1, ..., Dn),
Pe = [Pe1 , ..., Pen ]T , E = diag([E1, ..., En]), G =
diag([G11, ..., Gnn]), Σ = diag([σ1, ..., σn]), and ξ =
[ξ1, ..., ξn]T .

Let x = [δ,ω]T , A =

[
0 In

−M−1 ∂Pe

∂δ −M−1D

]
, B =

[0,−M−1E2GΣ]T , then (5) takes the following compact
form:

ẋ = Ax+Bξ (6)

In short, the stochastic power system dynamic model in
ambient conditions can be represented as a vector Ornstein-
Unlenbeck process that is Gaussian and Markovian. It will be
discussed in Section III that the dynamic system state matrix
A can be estimated from the statistical properties of the PMU
measurements, based on which a measurement-based wide-
area damping control scheme is developed.

III. PMU-BASED WIDE-AREA DAMPING CONTROL

A. An (Almost) Model-Free Approach of Estimating A

Assuming that the state matrix A is stable (satisfied in
ambient conditions), the stationary covariance matrix Cxx
satisfies the following Lyapunov equation [14]:

ACxx + CxxA
T = −BBT (7)

where Cxx =

[
Cδδ Cδω
Cωδ Cωω

]
. Equation (7) integrates the

statistical properties of states that can be extracted from PMUs
and the model knowledge, providing an ingenious way to
estimate the model information from measurements.

Supposing that PMUs are installed at all the generator
terminal buses (optimistic currently, yet not unreasonable in
the near future), we can use the PMU measurements to
calculate the values of rotor angle δ and rotor speed ω in
ambient conditions as discussed in many previous works (e.g.,
[15]). We, therefore, can further estimate the covariance matrix
Cxx of δ and ω (see Appendix). If the damping D and inertia
constants M are known, it has been shown in [12] that the
dynamic state Jacobian matrix ∂Pe

∂δ can be estimated by the
following equation derived from (7):

(
∂Pe
∂δ

) = MCωωC
−1
δδ −DCωδC

−1
δδ (8)

Importantly, we do not require any information about the
network model (topology and parameter values) that is usually
subject to inaccuracy due to, for instance, communication
errors. Therefore, this method for estimating the dynamic state
Jacobian matrix and the system state matrix is almost model-
free (except the knowledge of D and M ). A brief overview
of the detailed derivation of ∂Pe

∂δ is presented in Appendix.
Note that the conventional model-based method calculates
the matrix ∂Pe

∂δ by differentiating (2) with respect to δ that
heavily depends on the network topology and parameter values
embedded in the admittance matrix Y .

Once the dynamic state Jacobian matrix ∂Pe

∂δ is estimated,
the system state matrix A can be easily computed by:

A =

[
0 In

−M−1 ∂Pe

∂δ −M−1D

]
(9)

B. Modal Analysis and Linear Feedback Control

The eigenvalues Λ = diag([λ1, ..., λ2n]) of A appearing in
complex conjugate pairs λi = ηi ± ωi, i = 1, ..., n, the right
eigenvectors Φ = [φ1, ..., φ2n] and the left eigenvectors Ψ =
[ψT1 , ..., ψ

T
2n]T of A can be readily extracted from the esti-

mated matrix A. Therefore, the mode frequencies fi = ωi

2π , i =
1, ..., n and the damping ratios ζi = −ηi√

ηi2+ωi
2
, i = 1, ..., n are



straightforwardly obtained. Moreover, the participation factor
Pi of λi defined as:

Pi = [P1,i, ...P2n,i]
T = [φ1,iψi,1, ..., φ2n,iψi,2n]T (10)

can be estimated from the right and left eigenvectors.
In addition, the matrix Λ with the eigenvalues of A as

diagonal elements, can be written as:

Λ = ΨAΦ (11)

The left and right eigenvectors corresponding to λi and λj
satisfy the following relation:

ψjφi =

{
1, if i = j

0, if i 6= j
(12)

where a vector normalization has been applied.

C. The Proposed Wide-Area Damping Control Scheme

In this paper, we intend to develop a wide-area damping
control scheme using PMU measurements. Actually, we add a
state feedback control loop to the original linear time-invariant
open-loop system described by (5) as shown below:

ẋ = Ax+Bcu

u = Kx
(13)

where x = [δ,ω]T is obtained from PMU measurements.
The gain matrix K is designed to damp the targeted interarea
oscillation modes. The control center sends the input control
signals u = Kx to the generators that participate in the
WAMS-based central control as indicated by Bc.

The matrix Bc is defined as: Bc =

[
Bcδ 0
0 Bcω

]
, where Bcδ

and Bcω refer to δ and ω respectively. Ideally, the remedial
control scheme is applied to all n generators and thus, Bc = I .
However, it is rather impractical and expensive to apply a
control measure to every synchronous machine. In this paper,
the generators with the largest participation factors in regard
to the mode of interest, are selected to conduct the damping
control. Mathematically speaking, the diagonal entries of Bc
corresponding to the generators that no controls are carried
out, are substituted by 0.

The closed-loop plant matrix Acl is given by:

Acl = A+ ∆A (14)

where ∆A = BcK, according to the state feedback loop
defined in (13). Representing ∆A in diagonal canonical form
by applying the similarity transformation described by (11),

∆Λ = Ψ∆AΦ (15)

Hence, substituting ∆A = BcK in the above relation,

∆Λ = ΨBcKΦ (16)

Inspired by the model-based damping technique introduced
in [16], we propose a 2n × 2n damping matrix to damp
the particular interarea oscillation mode k. In contrast to the
model-based method in [16], the proposed wide-area damping
control releases the dependence of the method on the accurate

network model, topology, and parameter values, which are
subject to frequent changes. The subscript (k) is attached
to the mathematical symbols thereafter to denote their refer-
ence to mode k. For instance, K(k) symbolizes the feedback
matrix devoted to mode k. The two open-loop eigenvalues
associated with mode k are denoted as λk1 = ηk + jωk and
λk2 = ηk − jωk.

1) Ideal Case: As we have seen before, ideally Bc = I if
all generators receive the damping control signals. Assuming
that we want to move the eigenvalues of mode k (the conjugate
pair λk1 and λk2 ) by a coefficient σk < 0, we propose to use
the following damping matrix:

K(k) = σk[φk1 , φk2 ][ψTk1 , ψ
T
k2 ]T (17)

Substituting (17) to (16) with Bc = I , we have:

∆Λ(k) = σkΨ[φk1 , φk2 ][ψTk1 , ψ
T
k2 ]TΦ (18)

the (i, j)th entry of which is:

∆Λij(k) = σkψiφk1ψk1φj + σkψiφk2ψk2φj (19)

Applying the orthogonality principle illustrated by (12), we
have:

∆Λij(k) =

{
σk, if (i, j) ∈ {(k1, k1), (k2, k2)}
0, otherwise

(20)

Therefore, λk1 = σk+ηk+jωk and λk2 = σk+ηk−jωk, the
eigenvalues of the closed-loop state matrix Acl corresponding
to the targeted mode k, migrate to the left by a coefficient
σk, leading to an improved damping. The rest of the eigenval-
ues remain unaffected under the proposed feedback damping
control.

2) Practical Case: In reality, Bc may not be equal to I
as mentioned previously considering the cost of conducting
control for all generators. If we still let the damping matrix
K to be:

K(k) = σk[φk1 , φk2 ][ψTk1 , ψ
T
k2 ]T (21)

then

∆Λ(k) = σkΨBc[φk1 , φk2 ][ψTk1 , ψ
T
k2 ]TΦ

= σkΨBcφk1ψk1Φ + σkΨBcφk2ψk2Φ

= σkΨφ̂k1ψk1Φ + σkΨφ̂k2ψk2Φ (22)

where φ̂ki = Bcφki i = 1, 2.

As a result, φ̂ki will have nonzero entries only if the
corresponding generators carry out the WAMS-based control.
For instance, presuming that only Generators 4-6 receive
damping control signals, then we have φ̂ki = [φ̂δki , φ̂

ω
ki

] =

[0, 0, 0, φδ4ki , φ
δ5
ki
, φδ6ki , 0, ..., 0, φ

ω4

ki
, φω5

ki
, φω6

ki
, 0, ..., 0]T .

By the eigenvalue perturbation theory [17], the eigenvalues
[λ̂1, ..., λ̂2n] of Λ + ∆Λ(k), and thus of A+ ∆A(k) satisfy:

λ̂i = λi + eTi σk(Ψφ̂k1ψk1Φ + Ψφ̂k2ψk2Φ)ei

=

{
λi + σke

T
i Ψφ̂i, if i ∈ {k1, k2}

λi, otherwise
(23)

where ei denotes a unit vector that has 1 in the ith position and
0 elsewhere. It is observed that although the damping effect to



the targeted mode k is slightly affected compared to the ideal
case since eTi Ψφ̂i is typically different from 1, the other modes
still remain unaffected. To ensure that an effective damping is
acted to mode k while minimizing the number of generators,
we choose the generators with the largest participation factors
in mode k to carry out the control signals. The proposed
WAMS-based damping control algorithm is presented below
and is illustrated in Fig. 1.

Step 1. Estimate the system state matrix A using the PMU
measurements by (8)-(9).
Step 2. Calculate the eigenvalues Λ, the right eigenvectors
Φ, the left eigenvectors Ψ of the estimated A, and the
participation factor Pi for each mode λi. Select the interarea
oscillation mode k to damp.
Step 3. Compute the damping matrix K by (17) for the
targeted mode k.
Step 4. Select the generators with the largest participation
factors, find the corresponding Bc, and send the damping
control input signals u = BcKx to the selected generators.

In practice, the damping control signals are transmitted to
the remote terminal units (RTUs) of the favored generators
where they can serve either as ancillary control inputs to the
generators’ PSSs or as direct inputs to the generators’ exciters.

Fig. 1: Schematic diagram of the closed-loop system.

IV. NUMERICAL RESULTS
The IEEE 39-bus 10-generator New England system, is

used to demonstrate the effect of the proposed control tech-
nique The topology of the system can be found in [12].
For validation purposes, two case studies are presented. The
first study intends to test the proposed control method on
the classical generator models under which the method is
developed. The second study is employed to demonstrate
the validity of the suggested method in the real-world case
where the generators are modelled as higher-order models and
are controlled by exciters and PSSs. In addition, the PMU
measurement noise is also considered. All parameters for the
two studies are available in: https://github.com/zenili/Mode-
Participation-Estimation-2017. PSAT-2.1.9 [18] is used for all
simulations.

A. Study I: Classical Generator Model

The 10 generators are modelled as the classical model
described by (4). The angle of Generator 1 (G1) serves as the
reference. The load fluctuations are characterized by a standard
deviation σi = 5 in (3) for all generators. We assume that the

sampling rate is 20 Hz, lying within the typical range of PMU
sampling rate: 6-60 Hz [6]. By executing the system state
matrix estimation and modal analysis described in Section III,
all the eigenvalues can be estimated with a very good accuracy.
Indeed, the estimation error is less than 2% for frequencies and
below 6% for damping ratios for all modes. Specifically, Mode
7 that is characterized by the estimated values f7 = 1.662 Hz
(0.54% estimation error) and ζ7 = 1.03% (5.56% estimation
error) is considered to be weakly damped as ζ7 < 10%, which
is a widely accepted criterion for satisfactory damping.

The estimated mode shapes and participation factors for
Mode 7 are presented in Fig. 2. It is clear from Fig. 2a that
Mode 7 is an interarea oscillation mode, in which Generator
4 (G4) and 5 (G5) are swinging against Generator 6 (G6) and
7 (G7). The influence of the rest of the generators in Mode 7
is negligible as their participation factors are close to zero.

  0.2

  0.4

  0.6

  0.8

30

210

60

240

90

270

120

300

150

330

180 0

 

 
Gen 5
Gen 6
Gen 7
Gen 8
Gen 9
Gen 10
Gen 2
Gen 3
Gen 4

(a) Mode shapes for Mode 7.

2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

Generator number

 

 

the estimated
participation factor

(b) Participation factors for
Mode 7.

Fig. 2: Study I: The estimated mode shapes and participation
factors for Mode 7.

It is worth noting that the total CPU time needed for the
calculation of A is 9.642 ms using a computer of 2.50GHz
and 8.00GB memory, indicating that the real-time estimation
of the system state matrix of the reduced network model is
feasible in practical applications.

By the proposed WAMS-based damping control algorithm,
the most significant participants in Mode 7, Generator 5-
7, are chosen to conduct the control. To illustrate how the
number of controlled generators influences the damping effect,
we perform the following numerical experiments. In the 1st

experiment, the damping control signal is adopted only at
the generator with the largest participation factor—G5. In the
2nd experiment, both G5 and G7 receive the damping control
signals. In the 3rd experiment, we include G6 together with
G5 and G7 to apply the control signals. In the 4th experiment,
all generators participate in the damping feedback loop. The
damping coefficient is set to be σ7 = 2 in all experiments. The
comparison between the open-loop eigenvalues and the closed-
loop eigenvalues is illustrated in Fig. 3. It can be observed
that the selected interarea mode gains more damping as the
number of connected stations increases. Also, it seems that
the exclusion of the generators with negligible participation
factors does not have a notable impact on the effectiveness
and efficiency of the damping control scheme. Moreover,
Table I shows that the threshold 10% is met in the last three
experiments, indicating that the proposed technique requires
only two generators (G5 and G7) to achieve a desirable



damping performance, although more controlled generators
will provide an even enhanced damping effect. Note that the
rest of the modes are not affected by the method.
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Fig. 3: Study I: A comparison between the open-loop and the
closed-loop eigenvalues.

TABLE I: Study I: Closed-loop damping ratio for Mode 7.

Generators Closed-loop
damping ratio (%)

G5 8.55
G5, G7 13.11

G5, G7, G6 17.15
All Generators 19.77

B. Study II: Detailed Generator Model with PMU Measure-
ment Noise

In this study, all the 10 generators in the IEEE 39-bus system
are modelled by the fourth-order models, which are controlled
by field exciters and PSSs. Besides this, a Gaussian-distributed
measurement noise with standard deviation of 10−3 for angles
and 10−6 for rotor speeds is added to the emulated PMU
measurements according to the IEEE standard [19].

The eigenvalues of the system state matrix A are accurately
estimated with an error lower than 2% for mode frequencies
and less than 8% for damping ratios. Particularly, Mode 6
that is described by the estimated values f6 = 1.800 Hz
(0.67% estimation error) and ζ6 = 2.66% < 10% (3.42%
estimation error) is obviously underdamped. Fig. 4 presents
the estimated mode shapes and participation factors for Mode
6 that is apparently an interarea mode. Indeed, Generator 10
(G10) and 8 (G8) oscillate against Generator 2 (G2) and 9
(G9). These generators take the most responsibility for the
excitation of Mode 6.

It should be noted that in this case the total CPU time
needed for the calculation of A is 9.731 ms.

The developed damping control technique is implemented
by G10, G2 and G8 , the most important participants in Mode
6, utilizing four different experiments. The experiments with
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Fig. 4: Study II: The estimated mode shapes and participation
factors for Mode 6.

an increasing number of controlled generators are designed
based on the participation factor ranking while the damping
factor is selected to be σ6 = 2. The relationship between the
open-loop and the closed-loop eigenvalues is shown in Fig. 5.
It can be seen that the damping effect increases as the number
of the generators participating in the central control grows,
which is also corroborated by the damping ratios presented
at Table II. Furthermore, the 10% damping ratio requirement
is satisfied by all experiments, implying that the proposed
technique can achieve an effective damping impact with only
one generator (G10) under control.
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Fig. 5: Study II: Comparison between the open-loop and the
closed-loop eigenvalues.

TABLE II: Study II: Closed-loop damping ratio for Mode 6.

Generators Closed-loop
damping ratio (%)

G10 10.39
G10, G2 17.29

G10, G2, G8 18.86
All Generators 19.93

The last but not the least, the effectiveness of the pro-
posed approach is demonstrated by comparing it with the
conventional PSS technique. Particularly, the interarea Mode



7 (f7 = 1.662 Hz and ζ7 = 1.03%) was excited and the time-
domain response of δ4 (Fig. 6) was simulated for the following
cases:
• Case A: No PSS control;
• Case B: PSS control at all generators;
• Case C: WAMS-based control at all generators;
• Case D: WAMS-based control at G5 (biggest participa-

tion factor);
It can be seen that the proposed method (Case C and Case

D) achieves an improved damping performance compared to
Case A and Case B. Even when the control is conducted at
only one generator (G5), the damping performance of the
proposed wide-area damping method is better than the PSS
local control. As known, the conventional PSS is only effective
in a typically narrow frequency range. Although multi-band
PSS [2] may enhance the performance, a complicated tuning
process is required and may affect the rest of the modes. In
addition, these approaches may not work well if the assumed
network model is subject to constant changes. In contrast, the
proposed wide-area damping control method can effectively
damp the target mode by any selected damping coefficient
using a small number of generators while maintaining the other
modes unaffected. More importantly, the network model and
parameter values are not assumed to be known.
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Fig. 6: Study II: Time-domain response of δ4 to the excitation
of Mode 5.

V. CONCLUSIONS AND PERSPECTIVES
This paper proposes a wide-area damping control method

using PMU data to damp the undesirable interarea oscillations
in the modern power grid. The proposed method does not
depend on the network model and can be integrated into
online dynamic security assessment (DSA) for continuous
monitoring and controlling the interarea oscillations. It has
been shown analytically and numerically that the targeted
mode can be adequately damped using a small number of
synchronous machines. In the future, our efforts will focus
on simultaneously damping multiple interarea modes in larger
power systems exploiting the estimated participation factors.

APPENDIX

The stationary covariance matrix is given by:

Cxx =

[
Cδδ Cδω
Cωδ Cωω

]
where, for instance, Cδiδj = E[(δi−µi)(δj−µj)], and µi is the
mean of δi. In practice, Cδδ is usually unknown due to insuf-
ficient data. Thus, Cδδ is estimated by the sample covariance

matrix Qδδ , the (i, j)th element of which is computed as [14]:

Qδiδj = 1
N−1

N∑
k=1

(δki− δ̄i)(δkj− δ̄j), where δ̄i symbolizes the

sample mean of δi, and N is the sample size. Similarly, Qωω
and Qωδ are used to estimate Cωω and Cωδ respectively. A
window size of 450s is used in the examples of this paper,
which shows good accuracy.

It should be noted that the proposed technique of estimating
Cxx is fast and efficient as shown in the simulation study.
Moreover, Cxx can be estimated recursively using a fast
iterative approach, which will further reduce the computational
effort.
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