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Abstract. A novel class of derivative-free optimization
algorithms is developed. The main idea is to utilize cer-
tain non-commutative maps in order to approximate the
gradient of the objective function. Convergence properties
of the novel algorithms are established and simulation
examples are presented.

1. INTRODUCTION

In the course of continuously increasing computational
power, optimization algorithms and optimization-based
control play more and more a central role in solving con-
trol and real-time decision making problems. In many
tasks, the resulting optimization problems are very chal-
lenging, i.e., they are high-dimensional, non-convex, non-
smooth, or of stochastic nature. Hence, improving existing
optimization algorithms and developing novel algorithms
is of central importance. An interesting class of algorithms
are derivative-free algorithms, which typically need only
evaluations of the objective function for optimization.
Hence, derivative-free optimization algorithms are sim-
ple and appealing in many challenging applications, for
example in real-time optimization, where only noisy mea-
surements and no mathematical description of the objec-
tive function are available and therefore no derivative,
i.e., no gradient can be computed directly. Consequently,
derivative-free optimization and adaptive control tech-
niques are often used in this applications [2, 3, 4, 5, 6, 7].
Moreover, in the field of machine learning, derivative-free
optimization problems [8, 9, 10, 11] gain renewed interest,
which are often tackled with so-called stochastic gradient
approximation methods [11]. In this paper, we propose
a novel class of derivative-free discrete-time optimiza-
tion algorithms. The key characteristic of the proposed

* This article is a slightly extended version of [1] with an extra Figure 6.

algorithms is the use of deterministic non-commutative
maps to evaluate the objective function at certain points
such that a gradient descent step is approximated. In
comparison to [8, 9, 10, 11] our proposed method is not a
randomized or stochastic algorithm. Interestingly and to
the best of our knowledge, the use of such a deterministic
non-commutative scheme in discrete-time optimization
algorithms has not been studied so far in the optimization
literature.

In the geometric control theory literature, however, the
effect of non-commutative vector fields is of fundamen-
tal importance [12] and has been used in control design
since decades. Recently, non-commutative vector fields
have also been used in the design of continuous-time op-
timization algorithms. For example, Lie brackets, i.e., the
infinitesimal characterization of non-commutativity be-
tween two vector fields, have been used to approximate
gradients and to design extremum seeking algorithms for
unconstrained and constrained optimization and adaptive
control problems, see, e.g., [13, 14, 15, 16, 17]. Further-
more, in [18], Lie brackets have been exploited to tackle the
problem of distributed optimization over directed graphs.

The proposed class of discrete-time derivative-free algo-
rithms are inspired by these Lie bracket based continuous-
time, explorative optimization methods, but our approach
is not simply a discretization of continuous-time meth-
ods. For example, utilizing non-commutative maps based
on Euler-integration steps lead to approximation results
which are different from continuous-time Lie bracket ap-
proximation results (see, e.g., [19]), yet we show how
they can be used for gradient approximation. Indeed,
as shown in the paper, suitable integration schemes need
to be employed in order to approximate the results known
from continuous-time methods. One advantage which
arises from utilizing non-commutative maps in gradient
approximation is the robustness with respect to noisy ob-
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jective functions as we will see in simulations. This is
not observed if finite differences are used for gradient ap-
proximations, like it was done in [20], where extremum
seeking and a version of [11] is combined. Overall, the
contributions of this work are as follows: Firstly, utiliz-
ing non-commutative maps, we develop novel discrete-
time gradient approximation schemes and corresponding
derivative-free optimization algorithms. Secondly, we per-
form a convergence analysis of the proposed algorithms.
Finally, we study the proposed algorithm in different sim-
ulation examples. The sequel of the paper is structured as
follows: In the next section we state the problem setup and
give the main idea how the discrete-time derivative-free
optimization algorithms are derived. Section III contains
the main lemmas and theorems providing the gradient ap-
proximation and the asymptotic convergence behavior of
the algorithms. In Section IV we analyze the algorithm in
various simulation examples. Finally, we give a summary
and outlook of further work.

Notation. N0 denote the natural numbers including
zero, i.e., {0, 1, 2, . . .}. Cn with n ∈N0 stands for the set of
n-times differentiable functions. The norm | · | denotes the
Euclidean norm. A compact set denoted by Sδ

x∗ with δ ∈
(0, ∞) and x∗ ∈ Rn is defined as {x ∈ Rn : |x− x∗| ≤ δ}.
The gradient of a function J ∈ C2 : Rn → R is represented
by ∇x J(x) := (∂J/∂x(x))> and its Hessian by ∇2

x J(x) :=
∂2 J/∂x2(x). A function f (ε) : R→ Rn is said to be of order
O(ε), if there exist k, ε̄ ∈ R such that | f (ε)| ≤ kε, for
all ε ∈ [0, ε̄]. The operator k mod n denotes the modulo
operation.

2. MAIN IDEA AND ALGORITHM

The aim of this section is to motivate and to develop the
basic steps of the proposed derivative-free optimization
algorithms for unconstrained multidimensional optimiza-
tion problems of the form

min
x∈Rn

J(x), (1)

where J : Rn → R is the so-called objective or cost func-
tion.

2.1. Non-Commutative Vector Fields and
Continuous-time Gradient
Approximation

Consider the scalar continuous-time system

ẋ(t) = f1(x(t))u1(t) + f2(x(t))u2(t) (2)

with state x(t) ∈ R, vector fields f1, f2 ∈ C2 : R → R

and periodic inputs ui(t) = ui(t + T) ∈ R, i = 1, 2, with

period T ∈ R. It is very well-known that, if for example
periodic rectangular-shaped input signals such as

u1(t) =


1, t ∈ [0, h)
0, t ∈ [h, 2h)
−1, t ∈ [2h, 3h)
0, t ∈ [3h, 4h)

, (3)

u2(t) =


0, t ∈ [0, h)
1, t ∈ [h, 2h)
0, t ∈ [2h, 3h)
−1, t ∈ [3h, 4h)

(4)

are applied to system (2), as shown in Figure 1(a), then,
for h > 0 small, a second order Taylor expansion reveals

x(4h)− x(0) = h2[ f1, f2](x(0)) +O(h3), (5)

where [ f1, f2] =
∂ f2
∂x f1 − ∂ f1

∂x f2 is the Lie bracket between
the vector fields f1, f2. Scaling the vector fields f1, f2
by 1√

h
gives x(4h) − x(0) = h[ f1, f2](x(0)) + O(h3/2).

Then, by successively repeating (5) with new initial values
x(lh), l = 1, 2, . . . and taking the limit h→ 0 leads to the
approximate (Lie bracket) system

˙̄x(t) = [ f1, f2](x̄(t)). (6)

Regarding the (scalar) optimization problem (1), one desir-
able methodology to find an extremum, would be a simple
continuous-time gradient descent equation ẋ = −∇x J(x).
Interestingly, by defining

fi(x) := fi(J(x)), (7)

i = 1, 2, and choosing f1, f2 : R→ R as

f1(x) = J(x), f2(x) = 1, or (8)
f1(x) = sin(J(x)), f2(x) = cos(J(x)), (9)

we have [f1, f2](x) = −∇x J(x). Hence, by substitution
fi by h−1/2fi, i = 1, 2, in (5) and (2), respectively, we
obtain by (2) a derivative-free approximation of a gra-
dient flow. This observation has been utilized and gen-
eralized for the design and analysis of continuous-time
extremum seeking algorithms, see [13, 15, 17] and refer-
ences therein. Especially, [15] presents a broad class of
generating vector fields f1, f2 for gradient approximation.
Non-commutativity comes into play since Lie brackets
naturally arise when studying the commutativity of flows.
In particular, if we denote with ϕt

fi
(x0) : Rn → Rn the

flow map of the vector field fi : Rn → Rn at time t + t0
and initial condition x(t0) = x0 ∈ Rn, then we can express
equation (5) as

x(4h) =
(

ϕh
− f2
◦ ϕh
− f1
◦ ϕh

f2
◦ ϕh

f1

)
(x0), (10)
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Figure 1. Switching vector fields: (a) periodic inputs u1(t), u2(t)
depicted for one period 4h; (b) non-commutative flow maps of
vector fields ± f1,± f2.

as shown in Figure 1(b). It is easy to see that x(4h) = x(0)
if and only if the flow maps ϕh

f1
,ϕh

f2
commute, since the

flow is a bijection with (ϕh
f1
)−1 = ϕh

− f1
and hence x(4h) =

x(0) if and only if (ϕh
f2
◦ ϕh

f1
)(x(0)) = (ϕh

f1
◦ ϕh

f2
)(x(0)).

Further, it can be shown that the flow maps commute if
and only if the Lie bracket between f1, f2 vanishes [21],
hence the Lie bracket is an infinitesimal measure for the
commutativity of vector fields.

2.2. Non-Commutative Maps

In principle, one could just numerically integrate (2)
with appropriate vector fields and inputs in order to
get a derivative-free discrete-time algorithm. How-
ever, rectangular-shaped inputs as shown in Figure 1(a)
often lead to bad numerical behavior in combination
with standard numerical integration schemes. Hence,
in continuous-time algorithms [13, 15], the rectangular-
shaped inputs are often replaced by sinusoidal inputs in
order to avoid these problems. A key idea of the pro-
posed discrete-time optimization algorithm is to incorpo-
rate non-commutative maps more directly into a tailored
integration scheme, which approximates a gradient de-
scent step with the help of composite maps of the form
(10). Hereby, two challenges arise: i) How to efficiently
obtain the maps? ii) What are suitable discrete-time input
functions in an n-dimensional optimization problem?

i) Maps. We construct the composition of flow maps
by suitable numerical integration methods, where we
consider two approaches. Firstly, we utilize the Euler-
integration method. It does not lead to a Lie bracket ap-
proximation as in (5), since the Euler-integration method
is a first order method while Lie brackets are second or-
der effects. However, we show that the Euler-integration
method still can be used for gradient approximation. 1Sec-
ondly, we utilize the so-called Heun-integration method,
also known as the trapezoidal-integration method, which
preserve properties like (5) (see Lemma 2 in Section 3).

Accordingly, for an ODE ẋ = g(x) with x ∈ Rn and vector
field g : Rn → Rn we use the Euler- and Heun-integration
steps given by

Eh
g(xk) := xk + hg(xk), and (11)

Hh
g(xk) := xk +

h
2
(g(xk) + g(xk + hg(xk))) , (12)

as an approximation of the flow map ϕh
g.

ii) Inputs. As depicted in Figure 1(a), we consider peri-
odic rectangular-shaped inputs. These inputs can simply
be interpreted as switching f1, f2 : Rn → R at every time
step (interval) k (h). Hence, a switched vector field is de-
fined as

gk(x) =


f1(x)el if k mod 4 = 0
f2(x)el if k mod 4 = 1
−f1(x)el if k mod 4 = 2
−f2(x)el if k mod 4 = 3

, (13)

where l = k/4 mod n + 1 with el the l-th unit vector in
Rn. Functions f1, f2 : Rn → R, as for example in (8) and
(9) are components of vector fields gk(x) = fi(x)el , but
for the sake of convenience we sometimes call f1, f2 vec-
tor fields and use the notation [f1, f2] = ∇xf2f1 −∇xf1f2.
Regarding (13), one can think of executing four steps in ev-
ery coordinate direction successively, hence the switching
rule represents a coordinate wise approximation scheme.
To keep the main idea clear, we consider only this single
switching function and refer to further work where we
will investigate more complex switching policies.

2.3. Derivative-free Optimization Algorithms

Combining the integration steps (11) and (12), respectively,
with the sequential switching rule (13) and scaling the
vector fields f1, f2 with h−1/2, as discussed in the previ-
ous section, results in our discrete-time derivative-free
optimization algorithms:

xk+1 = M
√

h
gk

(xk) =

 E
√

h
gk

(xk) (14a)

H
√

h
gk

(xk). (14b)

As shown in the next section, every four steps (scalar case)

xk+4 = (M
√

h
gk+3
◦M

√
h

gk+2
◦M

√
h

gk+1
◦M

√
h

gk
)(xk) (15)

a gradient descent step under suitable conditions on the
vector fields f1, f2 is approximated. Summarizing, two al-
gorithms presented in (14) and also in Algorithm 1, were
derived by utilizing the effect of non-commutative maps,
introduced by a sequential switching rule of vector fields
and proper integration methods. In the next section we
analyze both schemes by showing the gradient approxi-
mation property and prove asymptotic convergence to a
neighborhood of an extremum.
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Algorithm 1 Derivative-free optimization algorithm with
non-commutative maps (14b)

1: Required: x0,h,f1, f2, stop criterion
2: Init: k = 0
3: while stop criterion is not fulfilled do
4: l ← n mod k/4 + 1
5: el ← [0l , 1, 0n−1−l ]

>

6: gk(x)←


f1(x)el if k mod 4 = 0
f2(x)el if k mod 4 = 1
−f1(x)el if k mod 4 = 2
−f2(x)el if k mod 4 = 3

7: c1 ← gk(xk)

8: c2 ← gk(xk +
√

hc1)

9: xk+1 ← xk +
√

h
2 (c1 + c2)

10: k← k + 1
11: end while
12: return [x0, x1, . . .]

3. MAIN RESULTS

In the sequel, basic convergence and approximation prop-
erties of both discrete-time derivative-free optimization
algorithms presented in (14) are analyzed. Note, conver-
gence rate results of derivative-free algorithms are almost
absent in literature [8]. The algorithms are applicable
for broad classes of objective functions J, including non-
differentiable objective functions, given a choice of proper
algorithmic parameters x0, h, f1, f2, as we observe in simu-
lations, since only function evaluations of J are necessary.
However, for the approximation and convergence analysis
we assume:

Assumption 1. The objective function J : Rn → R in (1)
and the vector fields f1, f2 : Rn → R in (7) are class C2

functions. N

First, we state two lemmas, which show the approxi-
mated optimization direction after 4n steps, induced by
the non-commutative maps of our proposed algorithms
(14):

Lemma 1. Let Assumption 1 hold and consider algorithm
(14a). Then the evolution of xk ∈ Rn at step k+ 4n is given
by

xk+4n = xk + h ([f1, f2](xk)−∇xf1(xk)f1(xk)

−∇xf2(xk)f2(xk)) +O(h3/2). (16)

for all k ∈N0 N

Lemma 2. Let Assumption 1 hold and consider algorithm
(14b). Then the evolution of xk ∈ Rn at step k+ 4n is given
by

xk+4n = xk + h[f1, f2](xk) +O(h3/2). (17)

for all k ∈N0 N

The proofs of Lemma 1 and Lemma 2 are given in Ap-
pendix A.1 and Appendix A.2, respectively. We observe

that the Heun-integration steps H
√

h
gk (xk) preserve the Lie

bracket approximation property, as shown in (17). How-
ever, as mention in Section 1, successively applying the

Euler-integration steps E
√

h
gk (xk) reveals the Lie bracket

but additional terms of the same order O(h) are present,
as shown in (16). Interestingly, choosing proper vector
fields f1, f2, both algorithms approximate a gradient de-
scent method:

Theorem 1. Let Assumption 1 hold and consider the al-
gorithms in (14) with the pair of vector fields (9). Then the
evolution of xk ∈ Rn at step k + 4n is given by

xk+4n = xk − h∇x J(xk) +O(h3/2) (18)

for all k ∈N0 N

Proof. This result follows directly from Lemma 1
and Lemma 2 and simple calculations.

Remark 1. The pair of vector fields (8) with algorithm
(14a), as commonly employed in continuous-time meth-
ods [13], yield an approximation scheme of the form

xk+4n = xk − h∇x J(xk)(1 + J(xk)) +O(h3/2). (19)

Hence, this scheme is not a gradient descent step but it is
still suitable for optimization if, for example, the objective
function is positive semi-definite. N

For the convergence analysis of (14), we impose the
following additional assumptions on the cost function
J : Rn → R in (1) :

Assumption 2. J(x) is radially unbounded and there ex-
ists a x∗ ∈ Rn such that ∇x J(x)>(x − x∗) > 0 for all
x ∈ Rn\{x∗}. N

Remark 2. Assumption A2 implies that x∗ is the unique
global minimizer and there exists no other local minimum.

N

The following theorem shows asymptotic convergence
to a neighborhood of the minimum x∗ of J(x):

Theorem 2. Let Assumption 1 and Assumption 2 hold.
Consider the discrete-time derivative-free optimization
algorithm (14) and let the vector fields f1, f2 satisfy for
(14a) and (14b) respectively:

−∇x J(x) = ([f1, f2]−∇xf1f1 −∇xf2f2) (x), (20)
−∇x J(x) = [f1, f2](x). (21)

Then for all 0 < δ2 < δ1 there exists an h∗ > 0 such that
for all h ∈ (0, h∗) and all initial conditions x0 ∈ Sδ1

x∗ , xk

converges to Sδ2
x∗ . N
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Figure 2. Convergence of xk in (14) for setup P with h = 0.5 to a
neighborhood of x∗ = 2. The flow maps as in (15) for M = E are

highlighted with E
√

h
f1

( ), E
√

h
f2

( ), E
√

h
−f1

( ), E
√

h
−f2

( ) and the
same color scheme (dotted) for (15), M = H. This is compared
with the trajectory resulting from a gradient descent algorithm
with the exact gradient ( ). By filtering xk, a good asymptotic
convergence behavior of yk to x∗ can be observed ( ).

The proof of Theorem 2 is given in Appendix A.3. Note,
that Theorem 2 states the semi-global uniform practical
asymptotic stability property [13] of Sδ2

x∗ of (14) under the
given assumptions.

4. SIMULATIONS

In this section we study our discrete-time derivative-free
optimization algorithms (14) in various simulation ex-
amples and provide some tuning rules. To this end, we
consider the cost function J(x) = (x− 2)2 + 6. If not oth-
erwise specified we use the vector fields (9) and initialize
the algorithms with x0 = x(0) = 0.5. For the sake of
convenience we define this setup as P := (J, x0, f1, f2).
Note that the results obtained with such a quadratic cost
function also provide insight into the results that would
be obtained with an arbitrary function of class C2 near a
minimum with positive definite Hessian. We start by ana-
lyzing (14), applied to the basic setup P , which is depicted
for (a large) step size h = 0.5 in Figure 2, where the switch-
ing of the vector fields f1, f2 is highlighted. As it can be
observed, the trajectories of xk are converging into a neigh-
borhood of x∗, which is of order O(

√
h) (see proof of The-

orem 2). To eliminate the steady-state oscillatory behavior,
we propose the filter yk+1 = yk +

1
4n ∑k−1

i=k−4n xi+1 − xi
where y0 = x0 and xl = x0, l < 0, which shows a good
asymptotic convergence behavior of the algorithms (14) to
the extremum x∗ as illustrated in Figure 2. Obviously, yk
is a windowed filter with length 4n, which is not fed back
into the algorithm. This behavior can also be observed
in a multidimensional optimization problem as depicted
in Figure 3.

0
1

2

0

1

2

3

8

10

12

14

x1

x2

J(
x)

Figure 3. A two-dimensional optimization problem with J(x) =
(x1 − 2)2 + (x2 − 2)2 + 6. Trajectories xk ( ) of (14a) and yk
( ) converge to the extremum x∗ = [2, 2] (•) initialized with
x0 = y0 = [0.5, 0.5] (•).

0 2 4 6 8 10 12

0.5

1

1.5

2

2.5

kh

x k

Figure 4. Choosing smaller step sizes for algorithm (14a) or (14b)
yield to a smaller neighborhood of convergence. Trajectories of
xk for setup P with step sizes h = 0.5 ( ), h = 0.1 ( ), h = 0.01
( ), h = 0.001 ( ).

As known from continuous-time methods, see for exam-
ple [13], increasing the (switching) frequency, and hence
reducing the step size h, leads to a convergence into a
smaller neighborhood around x∗ as depicted for different
h’s in Figure 4. Clearly, for decreasing the step size, more
iterations are needed, hence more function evaluations.

As mentioned in Section 1, an advantage of the pro-
posed class of algorithms is robustness with respect to
noisy objective functions. Therefore, consider the setup P ,
but with a noisy cost function J̄ : R→ R such that

J̄(xk) ∼ N (J(xk), 0.04), (22)

where N (J(xk), 0.04) is a normal distribution with mean
J(xk) and standard derivation

√
0.04 = 0.2. In Figure 5,

algorithm (14b) is compared with the well known dif-
ference quotient method to approximate the gradient
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Figure 5. Study of noisy objective function: trajectory xk of algo-
rithm (14b) ( ), trajectory x̄k of gradient descent with gradient
approximation via difference quotient ( ), trajectory of gradient
descent with exact gradient ( ).

D(J(x̄)) := h−1(J(x̄k) − J(x̄k + h)) used in a gradient
descent algorithm x̄k+1 = x̄k − hD(J(x̄)) with step size
h = 0.01 and initial condition x̄0 = x0. Apparently,
approximating the gradient via the difference quotient
method is much more sensitive regarding noisy objectives
as algorithms (14). This is reasoned by the averaging be-
havior of the proposed algorithms, implied by utilizing
non-commutative maps.

Concluding, we illustrated both algorithms (14) on sim-
ple examples and we introduced a filtering method. Sec-
ondly, we showed the impact of decreasing h and the
performance under noisy measurements. Regarding the
convergence behavior, algorithm (14a) and (14b) show
similar convergence behavior for the considered vector
fields (9) and switching function (13). Nevertheless, al-
gorithm (14b) needs two times more function evaluations
than (14a).

5. CONCLUSION

In this work we introduced a methodology for the de-
sign of novel discrete-time derivative-free optimization
algorithms. Based on non-commutative maps, designed
by two different numerical integration methods and a se-
quential switching rule, it was shown how to approximate
a gradient descent step. Furthermore, practical conver-
gence and stability towards an extremum of the objective
function was proven. The algorithms are illustrated using
numerical examples.

The introduced class of algorithms raise several new
research questions, which will be part of future work.
For example, what are more efficient switching rules in
multidimensional optimization problems compared to the
introduced coordinate wise switching rule. Moreover,
it is interesting to characterize a general class of non-
commutative maps which show gradient approximation

properties or to study convergence rates or accelerated
gradient schemes.
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A. APPENDIX

A.1. Proof of Lemma 1

We consider the derivative-free optimization algorithm
(14a) and assume without loss of generality k mod 4 = 0
and k/4 mod n = 0. Due to our assumption on k, gk(xk) =
f1(xk)e1. Since, the switching policy (13) is based on a

coordinate-wise implementation, it is sufficient to analyze
the evolution of xk in only one dimension. Hence, it holds

xk+1 = xk +
√

hf1(xk)e1. (23)

For the sake of readability in the sequel we define fki :=
fi(xk)e1 and Fk

i := ( ∂fi
∂x (xk))

>e1 and neglect e1. Therefore,
the next step is given by

xk+2 = xk +
√

h(fk1 + f2(xk +
√

hfk1)). (24)

Performing a Taylor expansion on f2(xk +
√

hfk1) in (24)
reveals

xk+2 = xk +
√

h(fk1 + fk2) + hFk
2 f

k
1 +O(h3/2), (25)

where all higher order terms are pushed in O(h3/2). Re-
peating this procedure, as presented above, xk evolutes as
follows:

xk+3 = xk +
√

hfk2 + h(Fk
2 f

k
1 − Fk

1 f
k
1 − Fk

1 f
k
2)

+O(h3/2), (26)

xk+4 = xk + h(Fk
2 f

k
1 − Fk

1 f
k
1 − Fk

1 f
k
2 − Fk

2 f
k
2)

+O(h3/2). (27)

Eventually, repeating the same procedure for dimensions
{2, 3, . . . , n} delivers the same expression (27) for each
dimension, hence (16) can be directly concluded. �

A.2. Proof of Lemma 2

As in the proof of Lemma 1 we repeat the same procedure
and only state the main equations. For notations and
assumptions (w.l.o.g) reread Appendix A.1. Therefore it
holds

xk+1 = xk +

√
h

2

(
fk1 + f1(xk +

√
hfk1)

)
. (28)

Performing a Taylor expansion on f1(xk +
√

hfk1) in (28)
reveals

xk+1 = xk +
√

hfk1 +
h
2

Fk
1 f

k
1 +O(h3/2). (29)

Repeat the procedure, as presented above, xk evolutes as
follows:

xk+2 = xk +
√

h(fk1 + fk2)

+
h
2

(
Fk

1 f
k
1 + Fk

2 (2f
k
1 + fk2)

)
+O(h3/2), (30)

xk+3 = xk +
√

hfk2 +O(h3/2)

+
h
2
(−2Fk

1 f
k
2 + 2Fk

2 f
k
1 + Fk

2 f
k
2), (31)

xk+4 = xk + h(Fk
2 f

k
1 − Fk

1 f
k
2) +O(h3/2). (32)

Eventually, repeating the same procedure for dimensions
{2, 3, . . . , n} delivers the same expression (32) for each
dimension, hence (17) can be directly concluded. �
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A.3. Proof of Theorem 2

Let 0 ≤ δ3 ≤ δ2 ≤ δ1 ≤ δ0. The proof is separated in:
1) Define a Lyapunov-like function V(x), such that
V(xk+4n)−V(xk) < 0 for Sδ0

x∗\S
δ3
x∗ , 2) Practical invariance

of Sδ1
x∗ , 3) Convergence of xk to Sδ2

x∗ with x0 ∈ Sδ1
x∗ .

1) Consider the algorithms (14) and their evolution as
given in (16) and (17) under conditions (20), (21) on vector
fields f1, f2 as stated in Theorem 2. W.l.o.g., let the La-
grange remainder of the Taylor expansion (16) and (17),
respectively, be of the form h3/2Rk = O(h3/2), where
Rk ∈ Rn depends on the vector fields f1, f2 and their Jaco-
bians and Hessians. Hence, (14) is given by

xk+4n = xk − h∇x J(xk) + h3/2Rk. (33)

Consider the Lyapunov-like candidate function V(xk) =
J(xk)− J(x∗), then it holds for all k ≥ 0,

V(xk+4n)−V(xk) =

= J
(

xk − h∇x J(xk) + h3/2Rk

)
− J(xk)

= −h∇x J(xk)
>∇x J(xk)

+ h3/2∇x J(xk)
>Rk +

h2

2
γ>Hkγ, (34)

where the last equality is gained by a second order Taylor
expansion at xk, with the Lagrange reminder h2

2 γ>Hkγ,
where γ = ∇x J(xk) + h3/2Rk and Hk ∈ Rn×n. Rk and
Hk depend on J, f1, f2 and their Jacobians and Hessians,
Hence, Rk, Hk, and∇x J(x) are bounded on every compact
set Sδ0

x∗ , due to Assumption 1. Therefore, for every δ0 there
exists a 0 ≤ Rδ0 ∈ R such that for all xk ∈ Sδ0

x∗ hold

V(xk+4n)−V(xk) ≤ −h|∇x J(xk)|2 + h3/2Rδ0 . (35)

Then under Assumption 2, there exists a h1 > 0, such that
for all h ∈ (0, h1) hold

V(xk+4n)−V(xk) ≤ −ε on L = L0\L3, (36)

with ε > 0, Sδ0
x∗\S

δ3
x∗ ⊆ L and sub-level sets of V(x),

L0 ⊇ Sδ0
x∗ and L3 ⊆ Sδ3

x∗ .
2) By Assumption 1 and the first order Taylor expan-

sions, it holds that for all k ≥ 0, 0 < l < 4n, there exist an
upper bound on the Lagrange reminders 0 ≤ R̃k+l ∈ R in
Sδ0

x∗ such that

V(xk+l) = V(xk +
√

h
k+l−1

∑
i=k

gi(xi))

≤ V(xk) +
√

hR̃k+l (37)

Hence, in combination with 1) there exist a h2 > 0 such
that for all h ∈ (0, h2), x0 ∈ Sδ1

x∗ ⇒ xk ∈ Sδ0
x∗ for all k ≥ 0.

3) Due to (36) with h1 > 0, it holds that for every ini-
tial value x0 ∈ Sδ1

x∗ , there exist a maximum number of
iterations k̄ > 0, such that for all h ∈ (0, min{h1, h2}),
it holds xk̄ ∈ S

δ3
x∗ . Furthermore, as in 2), one can show

that there exists a h3 > 0, such that for all h ∈ (0, h3)

and x0 ∈ Sδ3
x∗ , xk ∈ Sδ2

x∗ for all k ≥ 0. Thus, for all
h ∈ (0, min{h1, h2, h3}), if x0 ∈ Sδ1

x∗ , then xk converges
to Sδ2

x∗ . Figure 6 illustrates the proof and the introduced
compact sets Sx∗ . �

×x∗

x0

Sδ1
x∗ Sδ0

x∗Sδ2
x∗Sδ3

x∗

Figure 6. Convergence of xk ∈ R2 (•) with initial value x0 (•)
∈ Sδ1

x∗ ⊆ S
δ0
x∗ to Sδ2

x∗ . For all k > k̃, xk stays in Sδ2
x∗ . Note, every

4n-th step is marked with •.
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